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Abstract

How much information can be carried over a wireless network with a multiplicity of
nodes? What are the optimal strategies for information transmission and cooperation
among the nodes? We obtain sharp information theoretic scaling laws under some condi-
tions. We also establish the optimality of multi-hop operation in some situations, and a
strategy of coherent multi-stage relaying with interference cancellation in some others.

Consider a network with:

(i) n nodes located on a plane, with minimum separation distance pmyin > 0.

(ii) A simplistic model of signal attenuation %}ﬁ over a distance p, where v > 0 is the
absorption constant (usually positive, unless over a vacuum), and § > 0 is the path

loss exponent.

(iii) All receptions subject to additive Gaussian noise of variance 2.
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Let O :=sup ;" | Re-ps, where the supremum is taken over vectors (Ri, Ro, ... ,Ry) of
feasible rates for m source-destination pairs, and py is the distance between the ¢-th source
and its destination. Call this distance-weighted sum-capacity the transport capacity of the
network. We show that:

(i) Cr = O(n) is an upper bound on the capacity of any planar network if either there
is any absorption, i.e., v > 0, or the path loss exponent § > 3, and each node is
subject to an individual power constraint P;,,. For a regular planar network where
the nodes are located on a square integer lattice, the optimal transport capacity
is Cr = ©(n). It can be achieved by multi-hop operation: Packets can simply be
relayed from node to node, with all interference simply treated as noise at each hop.

(ii) For every 3 < § <1, and 1 < § < %, there is a family of networks with nodes located
on a line, such that C'r = @(na) is the optimal transport capacity when there is no
absorption, i.e., v = 0. The optimal strategy is coherent multi-stage relaying with
interference cancellation — all upstream nodes coherently transmit to help each stage
of relaying, and all receivers employ interference cancellation at each stage.

(iii) A given rate vector for a set of source-destination pairs can be supported in a planar
network if the traffic can be routed in a multi-hop way such that the total traffic
to be relayed by any node is less than a certain c¢(p), where p is an upper bound
on the distance of all hops, under the individual power constraint P;,4, when v > 0
or § > 1. If n source-destination pairs are randomly chosen, then a regular planar
network with n nodes can simultaneously support a rate Ry, = Q(ﬁgn) for every

source-destination pair ¢, with probability approaching one as n — 0.

(iv) The total power used by the entire network bounds the transport capacity: Cr <
CPtotal lf’)’ >0o0r > 3.

(v) However, the transport capacity can be unbounded even at fixed total power if v = 0
and § < %
(vi) We provide an explicit rate for the general Gaussian multiple relay channel with a

single source-destination pair, which is achievable by coherent multi-stage relaying
with interference cancellation.

Similar results are provided for linear networks.

1 Introduction

The focus of this paper is on wireless networks, that is, on networks formed by nodes with
radios. This includes ad hoc networks, currently the subject of great interest, the protocols for
which are under intense development [1, 2, 3, 4, 5, 6]. As their name implies, ad hoc networks
can be set up without any pre-existing wired infrastructure that may be either capital intensive
or simply not feasible in a mobile environment, as for example in a network for automobiles.
Wireless networks may also be used to interconnect embedded devices whose proliferation rate
is faster than PCs. With each embedded device functioning as a sensor or an actuator, in



addition to having computational capability, the future may see large orchestras of control
systems played over the ether and controlling our physical environment [7].

Since so much of this depends on wireless networking, it is important to understand what
such networks are capable of doing, and how to operate them to maximize their capabilities.
Thus we seek an information theory for wireless networks to guide us in this process — the goal
of this paper.

In contrast to wireline networks, wireless networks do not come with ready made links.
Instead, they only consist of nodes radiating energy. Links, if such a notion even exists, have
to be fashioned out of the ether by nodes choosing signals and power levels for radiation. Two
fundamental questions that arise are:

i) How much information can wireless networks transport?

ii) How should one operate wireless networks?

1.1 The ocean of ignorance

An attempt to address these issues was made in [8] under an assumption on how the technology
operates. However, to an information theorist, the answers there are not conclusive as to what
are the ultimate limits to feasibility. The reason is that, in [8], all interference is essentially
regarded as noise, and models considered there presuppose that signals or packets are cor-
rectly received only if either there are no “collisions” with other packets being simultaneously
transmitted by other nodes in the vicinity of the receiver, or the received signal-to-noise-plus-
interference ratio (SINR) is large enough, or the received rate is related to the SINR (see
Gupta [9] for more on the latter). However, assumptions and constructs such as “collision,” or
“signal-to-noise-plus-interference ratio,” are arbitrary. While they may well model how current
technology operates, e.g., WaveLan cards, and thus tell us what is feasible with such technol-
ogy, they do not tell us what are the ultimate limits to information transfer in future wireless
networks. The reason is simply that interference need not be interference — it can carry in-
formation. For example, it is well known from even the simple model of two transmitters and
two receivers, see Figure 3, that if there is excessive interference from an interfering transmit-
ter, then that is good, because the interfering signal can first be decoded perfectly, and then
subtracted from the received signal, thus eliminating the interference.

Thus, one wishes to study wireless networks without making preconceived assumptions
about how they are to operate. There is however a universe of possibilities. Nodes may
broadcast simultaneously to several receivers, or several receivers may simultaneously transmit
to a certain receiver (multiple access), or a node can serve as a relay, etc. However, these modes
of cooperation only scratch the surface, and do not come close to exhausting the possibilities for
interaction between a large number of nodes in a network. A group of nodes could cooperate
somehow in cancelling the interference of another group of transmitters at a third group of
receivers, and so on. Nodes can simultaneously serve several functions of relaying, broadcast,



interference cancelling, etc. There are just too many ways in which a plethora of nodes can
cooperate with each other. More possibilities exist than can be dreamt of.

Thus it is that one turns to information theory for an answer to the question: How much
information can wireless networks transport?

It is a triumph of information theory that the capacity regions for some systems have been
characterized, as for example the Gaussian broadcast channel [10, 11, 12, 13] shown in Figure 1,
and the Gaussian multiple access channel [14, 15] shown in Figure 2. Recently, for a network
with a single source-destination pair, the asymptotic rate has been characterized as the number
of nodes in a bounded domain is increased, while excluding them from open neighborhoods of
the source and destination; see [16].
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Figure 1: The Gaussian broadcast channel.
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Figure 2: The Gaussian multiple access channel.

However, as observed in [17], the union between information theory and networks is not
wholly consummated. The capacity region of even the simple four node system with two sources
and two receivers shown in Figure 3, the so called interference channel originally studied by
Shannon (see [18] [19]), is unknown when the interfering powers are moderate rather than large
or small. Also unknown is the capacity of the simplest relay channel [20, 21, 22] shown in
Figure 4, consisting of just three nodes, a source, a relay, and a destination. Even in a simple
four node network with just two parallel relays, shown in Figure 5, strategies which are quite
different in nature have to be considered for different parameter values [23].

Given this ocean of ignorance, what can one then say about much more complicated networks
of the type shown in Figures 6 or 7, where there are several source-destination pairs among
an arbitrarily large finite number of nodes on the plane or line, all cooperating in whatever
ways are imaginable to maximize information transfer? One really needs a more large-scale
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Figure 3: A system with two transmitters and two receivers.
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Figure 4: The simplest relay channel.

information theory that can inform us as to what are the limits to information transfer in
networks and also, importantly, how one is to operate them. This motivates the subject of
the present paper, where our goal is to precisely address complex wireless networks of the type
shown in Figures 6 or 7.

The remainder of this paper is organized as follows. In Section 2, we detail the models
considered, and in Section 3 the main results, with nothing but proofs in Section 4. Some
concluding remarks are made in Section 5, and some open issues, which bear examination and
which may lead to a more complete theory, are mentioned.

2 Models considered

The wireless network models considered in this paper have the following ingredients:
1. A finite set A of n nodes located on a plane.
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Figure 5: A four node network with two parallel relays.



2. Let p;; be the distance between any two nodes 7, j € A/ with minimum separation distance
Pmin := Ming; p;; > 0.

3. Every node has a receiver and a transmitter. At time instants ¢t = 1,2,...,node i € N
sends X;(t) and receives Y;(t) with

e_7pin.(t)
Yit)=> ——— T Zi(t),
iz Pu

where Z;(t),1 € N, t =1,2,... are Gaussian i.i.d. random variables with mean zero and
variance o2. The constant § > 0 will be called the path loss exponent, while v > 0 will be
called the absorption constant. A positive v generally prevails except for transmission in
a vacuum, and corresponds to a loss of 20y log,, e db/meter; see [24].

4. Denote by P, > 0 the power used by node 7. We will study two separate types of
constraints on {Py, Py, ..., P, }:

Total Power Constraint Pt Y oy Pi < Piotals

or
Individual Power Constraint Pj,;: P; < Pj,q fori=1,2,...  n.
5. The network can have several source-destination pairs (s, dy), £ =1,... ,m, where s,,d,

are nodes in . If m = 1, then there is only a single source-destination pair, which we
will simply denote by (s, d).

Essentially, this is the network version of the classical AWGN channel, with signals at-
tenuated by distance, and possibly multiple source-destination pairs. The model explicitly
incorporates the distance between nodes, and signal attenuation as a function of distance.

2.1 The planar and linear settings considered

We will consider four settings for wireless networks.

Planar networks

We consider n nodes located on a two-dimensional plane, with the only restriction on the
locations being that the minimum separation between any two nodes is pmin > 0; see Figure 6.
We call such a network a planar network.

Linear networks

In this case we suppose that the n nodes are located on a straight line, again with minimum
separation distance pp,; see Figure 7. We call such a network a linear network. The chief



Figure 6: A planar network: n nodes located on a two-dimensional plane, with minimum
separation distance pmin-

reason for considering linear networks is that the proofs are easier to state and comprehend
than in the planar case, and can be generalized to the planar case. Also, the linear case may
have some utility for, say, networks of cars on a highway, since its scaling laws are different.

Figure 7: A linear network: n nodes located on a line, with minimum separation distance pmin.

Regular planar networks

By this we mean a square containing n nodes located at the points (7, j) for 1 < i,5 < /n; see
Figure 8. This setting will be used mainly to exhibit achievability of some capacities, i.e., inner
bounds.
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Figure 8: A regular planar network: n nodes located on a plane at (i,7) with 1 <4, j < /n.



Regular linear networks

Here we consider n nodes located on a straight line, at positions 1,2, ... ,n; see Figure 9. This
setting will also be used mainly to exhibit achievability results.

1 2 i+l n
Figure 9: A regular linear network: n nodes located on a line at 1,2,... ,n.

2.2 The transport capacity

Let (Rsydy, Rsodys - - - , Rs,.a,,) be a vector of feasible rates for the m source-destination pairs.
(The precise definition of a feasible rate vector is given in Section 3.1). For brevity, we will
denote R, := Ry,q,, and py := p;,q,. It is traditional in information theory to study the capacity
region, which is the set of all such feasible vector rates.

We will however also consider the distance-weighted sum-capacity introduced in [8],

m
Cr:=  sup Z Ry - py,
(R1,Ra,...,Rm) 41
and call it the transport capacity of the network. The units in which it is measured is bit-
meters/second, or bit-meters/slot. When one bit has been successfully received by a destination
at a distance of one meter from the source of that bit, we say that the network has pumped one

bit-meter. It is analogous to the man-miles/year metric considered, for example, by airlines.

This transport capacity is of interest for two different reasons. First, we will show, under
conditions detailed in the sequel, that regardless of how many and which source-destination
pairs are active, and the throughput requirements of each pair, the transport capacity follows a
scaling law. That is, it satisfies a conservation law and is thus a constraint on what the wireless
network can deliver, regardless of whether it is of prima facie interest in its own right.

The second reason is that it is indeed of interest in its own right. It is a natural quantity
that allows us to compare apples with apples in multi-hop networks, and avoids double counting
the rate supplied to a longer path as two separate rates for two of its sub-paths.

3 The main results
Our main results are the following:

(i) The best case transport capacity for planar networks with individual power
constraints follows a ©(n) scaling law when either there is absorption, i.e.,



~ > 0, or the path loss exponent § > 3.!

The following result shows that O(n) is an upper bound for all planar networks:

Theorem 3.1 Consider any planar network under the individual power constraint Pj,q.
Suppose that either there is some absorption in the medium, i.e., v > 0, or there is no
absorption at all but the path loss exponent & > 3. Then its transport capacity is upper
bounded as follows:

C1 (’Ya 5, pmin)Pind

Cr < >

-n, where (1)

920+7 ewpman/?(g _ eﬂpmin/2)

d min =
c1(75 6, Pmin) 72&2;5;1 (1_6—’)’pmin/2)

if v >0,

22045 (35 — 8)
(6 —2)%(6 — 3)pmin’

min

if y=0 and d > 3.

This proves that the “square-root scaling law” of [8] continues to hold without making
any assumptions on how the network is to operate.? It thus captures the ultimate limits
of what is achievable without making any pre-conceived assumptions on the nature of
technology.

That this O(n) upper bound is tight is captured by the following theorem, which shows
that it can be achieved by a regular planar network. Let S(z) denote the Shannon
function:

S(z) = %log(l + ).

Theorem 3.2 In a regular planar network with either v > 0 or § > 1, and individual
power constraint Py,q, the following network transport capacity is achievable:

e~ P, d
Cr> S in .
= (62(’7: 6)Pind+02> "

!"We use Knuth’s notation: f = O(g) if limsup,_, o % < 4o0; f = Q(g) if g = O(f); f = O(g) if
f =0(g) as well as g = O(f). Thus, all O(-) results are upper bounds, all {(-) results are lower bounds, and
all O(-) results are sharp estimates for the optimal capacity.

2The reason why the square-root itself is missing in our statement is due to the fact that here we have not
normalized the area of the domain to be 1 square meter. In [8], the precise order is O(v/An), where A is the
area of the domain. Due to the minimum distance between nodes being positive, the area for a planar network

has to grow at least linearly in the number of nodes n.




where

4(1+4y)e ™ — 4e™

62(7’ 5) 27(1 —6727) Zf’Y > 05
1682+ (2r—16)5—7 .,
= G-1@ 1) if v=20and d > 3.

From the above two results we see that, in the very best case, a planar network can attain
a transport capacity scaling law of O(n).

When can a set of rates (R, Ry, ... , Ry) be supported by a planar network? It is enough
that the traffic can be routed in a multi-hop manner over a variety of routes such that no
node is overloaded.

Theorem 3.3 A set of rates (R, Rs,...,Ry) can be supported by a planar network
if, for some p, the traffic can be routed in a multi-hop manner (with a single source-
destination pair’s traffic possibly carried over many paths) such that no hop is longer

e PPng
c3 (7;61pmin)Pind+0'2)

than p, and every node has to relay less than S (/725 ( , where

23+2(5677pmin

c3(7, 0, pmin) = ———m5— 7 >0,
o
22—|—25
————— ify=0and § > 1.
p?rfin(é - 1)

What is the situation when n source-destination pairs are randomly chosen? The following

result shows that every one of the n randomly chosen source-destination pairs in a regular
planar network can be provided a rate R, = Q(ﬁgn) for¢ =1,2,...,n, with probability
n

approaching one as n — oo, yielding a transport capacity (2 ( J@) as a consequence.

Theorem 3.4 Consider a regular planar network with either v > 0 or 6 > 3, and in-
dividual power constraint Py,q. The n source-destination pairs are randomly chosen as
follows: Every source sy is chosen as the node nearest to a randomly (uniformly i.i.d.)
chosen point in the domain, and similarly for every destination d,. Then

C
lim Prob(Ry = ——
Jim Prob(Ry Jnlogn

for some ¢ > 0. Consequently, a transport capacity of

)

is feasible for every £ € {1,2,...,n}) =1

n
Viogn

18 supported with probability approaching one as n — oo.

Cr = Q

10



The following is the corresponding result for linear networks.

Theorem 3.5 For any linear network, if either v > 0 or § > 2, then the transport
capacity is upper bounded as follows:

ca(7, 0, pmin) Pind

Cr < 5 -n, where
g
26_27pmin .
04(,-)/’ 5a pmin) = (1 _ e—’YPmin)Z(l _ e—Q’YPmin)p%fl Zf’Y >0,
26(62 -6 —1) .
= , =0 and § > 2. 3
G- 0 @

(ii) Multi-hop operation is optimal when attenuation is large.

We can use the above results to answer how wireless networks should be operated. For
example, should one operate wireless networks in a multi-hop mode where packets are
simply relayed from node to node, with all interference simply regarded as noise at each
hop? Or should one use more sophisticated strategies where nodes coherently cooperate
and use interference cancellation?

This is a fundamental question because multi-hop operation brings with it several prob-
lems, e.g., the routing problem [1, 2, 3], the media access control problem [4, 6], the power
control problem [5], etc., protocols for which are under consideration in their appropriate
research and development communities. On the other hand, other strategies may require
multi-user detection or interference cancellation or network-wide coherent cooperation.
The strategies in the two cases are thus violently different. Answering this question is
fundamental to determining how to operate wireless networks, directly affects the basic
design of the overall system, and determines all the subsequent communication protocols
of interest. It is precisely the kind of question that one hopes to resolve by network
information theory.

We show in Theorem 3.2 that when either there is any absorption in the medium, i.e.,
~v > 0, or the path loss exponent § > 3, then multi-hop operation is scaling law optimal.
At each hop the packet is decoded with all interference simply regarded as noise, and
then relayed to the next node.

Such operation can be achieved with current off-the-shelf technology, which is thus prov-
ably optimal in an information theoretic sense in at least certain circumstances.

(iii) A ©(n%) scaling law with 1 < § < 2 is feasible under low attenuation with
individual power constraints.

When the attenuation is low, one can attain a transport capacity of ©(n?) for 1 < 8 < 2
even for linear networks. Obviously, this result holds for planar networks too, since they
include linear networks as a special case.

11



Theorem 3.6 Consider v = 0 and individual power constraint Py,q. For every % <o <
1,2 and1 <0< %, there is a family of linear networks for which the transport capacity is

Cr = 0(n’). (4)

This optimal transport capacity s attained by coherent multi-stage relaying with inter-
ference cancellation — all upstream nodes coherently transmit to help at each stage of
relaying, and all receivers employ interference cancellation at each stage. This is there-
fore an optimal strategy for information transmission.

(iv) Coherent multi-stage relaying with interference cancellation is optimal for a
single source-destination pair, when attenuation is low.

For the networks in Theorem 3.6, since the optimal transport capacity order of ©(n?) is
attained by coherent multi-stage relaying with interference cancellation, such a scheme is
the optimal strategy for information transmission.

Thus we see an interesting bifurcation: At high attenuation, multi-hop operation is opti-
mal, where all interference can simply be regarded as noise. At low attenuation, coherent
multi-stage relaying with interference cancellation is optimal.

(v) The transport capacity is bounded by the total power in networks with high
attenuation.

It is well known from Shannon’s work that for a source-destination pair (s, dy), the rate
R, is bounded by the received power at d,.

What is interesting is that, in networks, there is a fundamental relationship between the
total transmitted power Py, used by the entire network, and the transport capacity of
the network:

The transport capacity is bounded by the total transmitted power, when the
attenuation is large.

This is true irrespective of how the nodes are located, subject only to a minimum sep-
aration distance pyi, > 0, how many source-destination pairs exist, and how they are
chosen. Thus, the total power P, available to the entire network plays a key role.

Theorem 3.7 In any planar network, with either positive absorption, i.e., v > 0, or with
path loss exponent 6 > 3,

c1(7; 6, Pmin)

Cr < =

. Ptotal ) (5)

where ¢1(7Y, 9, pmin) 1S as in (2).

3For a linear network with individual power constraints, even if there is no absorption (y = 0), and even if
there are an infinite number of nodes, the total received power is finite at every node if § > 1, or even if only
0> % provided the sources are incoherent. That is, the night sky is dark.

12



The following is the corresponding result for linear networks.

Theorem 3.8 If either v > 0 or d > 2 in any linear network, then

CT < Cq (7) 6) pmin)

0_2 . Ptotala (6)

where c4(7, 9, pmin) s as in (3).

(vi) At low attenuation unbounded transport capacity can be obtained for bounded

(vii)

total power.

In contrast to the high attenuation case, when the attenuation is low, the transport
capacity can be unbounded even with finite total power.

Theorem 3.9 (i) If there is no absorption, i.e., v = 0, and the path loss exponent
d < 3/2, then even with a fized total power Py, any arbitrarily large transport capacity
can be supported by a reqular planar network with a large enough number of nodes n.

(i) If y = 0 and 6 < 1, then even with a fized total power Piyq, any reqular planar network
can support a fized rate Ryin > 0 for any single source-destination pair, irrespective of
the distance between them.

The following is the corresponding result for linear networks.

Theorem 3.10 (i) If v = 0 and § < 1, then even with a fized total power Py, any
arbitrarily large transport capacity can be supported by a regular linear network with a
large enough number of nodes n.

(i) If v = 0 and § < 1/2, then even with a fized total power Py, any reqular linear net-
work can support a fized rate Ry, > 0 for any single source-destination pair, irrespective
of the distance between them.

The Gaussian multiple relay channel with a single source-destination pair:
Coherent relaying with interference cancellation, and an explicit achievable
rate.

Consider a network of n nodes with «;; the attenuation from node i to node j (the
nodes need not be on a plane, and in fact there need not be a notion of distance), and
i.i.d. additive N(0,0?) noise at each receiver. Each node has an upper bound on the
power available to it, which may differ from node to node. Suppose there is a single
source-destination pair (s,d). We call this the Gaussian multiple relay channel.

Consider the following strategy for cooperation: The nodes are divided into groups, with
the first group containing only the source s, and the last group containing only the

13



destination d. Call the higher numbered groups as “downstream” groups, though they
need not actually be closer to the destination. Nodes in group 7 for 1 < 7 < k — 1,
dedicate a portion of their power P to coherently transmit for the benefit of the nodes
in downstream groups. Each node j employs interference cancellation, and uses jointly
typical decoding which conforms with all the coherent transmissions of its upstream nodes.
We call this strategy coherent multi-stage relaying with interference cancellation.

We provide the following explicit expressions for the achievable rate R. The first theorem
addresses the case where each relaying group consists of only one node.

Theorem 3.11 Consider the Gausstan multiple relay channel with coherent multi-stage
relaying and interference cancellation. Consider M + 1 nodes, sequentially denoted by
0,1,...,M, with 0 as the source, M as the destination, and the other M — 1 nodes
serving as M — 1 stages of relay. Then any rate R satisfying the following inequality is
achievable from 0 to M :

where Py, > 0 satisfies Z,]CV‘;Z.H Py <P,

Remark 3.1 For the network setting in Theorem 3.11, Theorem 3.1 in [25] shows that
a rate Ry is achievable if there exist some {Ry, Ry, -+, Ryr—1} such that

R < S PAI}M ! and
M o2 + M 2PR ’

P, Pl
R, < min{ S o R 4+ min S e
; o2+ S PR )T miasken T\ 02 + ST PR,

for each m =0,1,--- , M — 2, where

2
PH_(ZO% MH) for 0<l<k<M.

From the above, recursively form =M —2, M — 1,---,0, it is easy to prove that

R, < min S Zhem f i
m+1<j<M O-2+Zm PR

For m = 0, this inequality is exactly (7), showing that we get a higher achievable rate in
Theorem 3.11.

14



Theorem 3.12 Consider again the Gaussian multiple relay channel using coherent multi-
stage relaying with interference cancellation. Consider any M + 1 groups of nodes se-
quentially denoted by Ny, N1,... , Ny with Ny = {s} as the source, N)y = {d} as the
destination, and the other M —1 groups as M — 1 stages of relay. Let n; be the number of
nodes in Group Nj, i € {0,1,...,M}. Let the power constraint for each node in Group
N; be % > 0. Then any rate R satisfying the following inequality is achievable from s to
d:

J

1 k-1 2
R < inin S ;Z(;aﬂfi/\/j\/ﬂk/ni'ni> (8)

k=1

where Py, > 0 satisfies ZkMZiH P < B, and apnn; = min{ag © k € Ni, b € N},
i,j €1{0,1,...,M}.

3.1 Definition of feasible rate vectors

The following definition of feasible rates is standard. It captures the complicated interplays
possible in a large number of nodes with multiple source-destination pairs, and intrinsically
allows for all causal feedbacks, thus including all strategies for information transport.

Definition 3.1 In a wireless network with multiple source-destination pairs (sg, dg), £ =1,... ,m,
a ((2TR ... [ 2TR=) T \p) code with total power constraint Py consists of the following:

1. m random wvariables W, with P(W, = k;) = ﬁ, for any k, € {1,2,... 278} ¢ =
1,...,m.

2. Functions fs,,: R x {1,2,... 2T’} 5 RV ¢t =1,2,...,T for the source nodes sy, =
1,...,mand fiy: REY 5 Rt =2,... T for all the other nodes i & {s¢, £ =1,... ,m},
such that

Xy, () = fou(Vo,(1),.. Yo, (t —1), W), t=1,2,....T, £=1,...,m;

Xz(l) = 07 Xl(t) = fz,t(}/;(l)a :sz(t - 1))’ = 273: s :T7 fOTi ¢ {S@,E = 1a' - ’m}a

such that the following total power constraint holds:

T
1
T Z Z Xf(t) S Ptota,la a.s. (9)

t=1 ieN

8. m decoding functions gq, : RT — {1,2,...,2TR} for the destination nodes dy, ¢ =
1,...,m.

15



4. The maximal probability of error:

Ap = max Prob{ga, (Ydf) # ko|Wy = ky}, (10)
kpe{1,2,...,2T ey
0=1,2,....m

where Y = (Y5,(1), Y4, (2), ..., Yq,(T)).

Definition 3.2 A rate vector (Ry, ..., Ry) is said to be feasible for the m source-destination
pairs (se,dg), £ = 1,...,m, with total power constraint Py, if there exists a sequence of
(TR . [ 2TE=) T \p) codes satisfying the total power constraint Py, such that Ay — 0 as
T — oo.

Next is the definition of the transport capacity of a network.

Definition 3.3 The network transport capacity Cp with constraint Pyye 1s

m

Cr = sup > R p,
(Rl;'“,Rm) f@asible =1

where py s the distance between sy and dy.

The above definitions are presented in the context of a total power constraint Pj,,. With
individual power constraint Pj,4, one simply needs to replace the constraint (9) by

T

1

7 ZXf(t) < Pia, as., forieN, (11)
=1

and correspondingly modify the rest of the definitions.

4 Nothing but proofs

We begin with a max-flow min-cut bound.

4.1 A max-flow min-cut lemma

The following max-flow min-cut bound will be used to establish certain upper bounds on the
feasible rate vectors.

Definition 4.1 Let N1 C N. A source-destination pair (se, dy) is said to cut Ny if dg € N
but s, ¢ Ni.

16



Lemma 4.1 Let N; be any subset of N. If (Ry,...,Ry) is a feasible rate vector with a

sequence of (2%, ... 2T8=) T A1) codes with A\r — 0 as T — oo, then
1 : : Tec
Y R < 5oz liminf PE(T), (12)

{:dg€EN1,50¢N1}

where PiES(T) is the average power received by N, from outside Ny, for the code
(2T . 2TE=) T \p), i.e.,

Pi(T) = %EEE ZXj(t) : (13)

oL
t=1 icN; JEN t

Proof. First we introduce some notation:

X;(t :
v = S e (14)
JEN1 Y
Vi(t) = Ui(t)+ Zi(t), i€ N (15)
DenOte WN{iestfcut = {We . (S£7 de) CutS Nl}, leource = {Se . Sy & N‘lj'g = 1’.__ ’m} and
Wsouree := {Wj,i € N7o*re¢}. We adopt the notation:

V() = {Vi(t),ie M} Vi ={Vi(r),7=1,...,t},

and similarly for Y, U, X, and Z.
Now we prove that the following forms a Markov chain

WN{iESt_Cut —) {V/;l/:l , WNisource} —) {Yj’\l;l 3 WNisouTce}, (16)

by showing that any element in Y7 is a deterministic function of {V , Wssouree }. This can be
easily seen since for any i € N7, 2 <t < T,

X;(?)
Y;(t) = Vz(t)+2 ]5
jeny, Pii
i
Fi(Y] ) Fin (Y] W)
= Vi+ Y, = >, T
JeN \Wiouree Pij jensource Pij
74 J#
and for t =1,
fian(Wy)
(1) = i+ >
jengouree Pij
J#



Hence, by Fano’s Lemma and (16), we have

H (WNldest—cut

where e — 0 as T — oc.
Thus, we have the following chain of inequalities:

mi1
T Ry,
k=1

with

v

>

T

T

T

T

Vi, Wagowree) < 1+ TAr =: Ter,

1

H(WN{iest—cut) = I(WNldest—cut; Vj;l;l, WNf aaaaa ) + H(WN{iest—cut V./;I/:l, WNIS ooooo )
I(WN{iest—cut; V‘,,\I;l, WNis ooooo ) + TCT
== I(WNldest—cut; WNf UUUUU ) + I(WN{iest—cut; VN’-T’I |WNIS ooooo ) —|— T6T
= 0 + h(VJ\’l;l |WNiSource) - h(V./\’I;l |WN{ieSt_Cut’ WNl.saurce) + TGT
< (Vi) = BV [Wygtest—eur, Wiggouree) + Ter,
h/(VJ\T;I |WN{iest7cut’ WNIS ooooo )

> WV (O)[Van (1), - Vi (t = 1), Wigatsscons, Wiggouree)

t=1

D Vi) Vi (1) -+ s Vivg (= 1), X yest-cue (£), Wyggese-cue, Winggouree)

t=1

D (Vi ()| X pgaeseeae (£))

t=1

> AV ()[Un (1)),

where the last two (in)equalities follow from the following two Markov chains:

{ij/?l, WN{iest—cut, WNi‘?O’U'TCC} _) XNiiest—cut (t) _> VNl (t); XN{iest—cut (t) _> UNI (t) _> VNI (t) .
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Hence, we have

TY R, < hVE) =Y hVa U (0) + Ter

t=1 ieN1
T T
< ZZh )—ZZh +Tep
t=1 ieN] t=1 i€
T
= ZZ[h (ViO)|Ui(t))] + Ter
=1 1eN;
T
= ZZI +T€T
t=1 €Ny
T
ST ( Eww)
t=1 'LENI
< 53 ZZEW ) + Ter.
t=1 ieN;

Finally, letting 7' — oo in the above, and noticing ez — 0, we have (12).

4.2 The total power bounds the transport capacity

We begin with the case of linear networks.

Proof of Theorem 3.8 First we consider the case v =0 and § > 2.

Let a;pmin denote the coordinate of the node 7. Apply Lemma 4.1 to the following subsets:

fieN: —co<a;<q}, Nf={ieN:q<a <o},

and we have for any ¢ € Z,
2
X'(t)
2 2 N —_ 1 f— E ]— .
o < A Y RS )
= iEN; ]m; min
2

N

hTHL{},}f_Z SE(Y X;(t)

a; —a
t= 1Z€N+ J§ENq+( 1 ]) pmln

IN

20'2 . RNq-}—

19



Above, R N is the sum of the rates of all the pairs which cut N, .- B N is similarly defined.
Now, any source-destination pair (sg, dy) with distance p, between s, and dy cuts at least
| pe/ Prain] subsets among N, N, ¢ € Z. For example, if ag, = a and a,, = a+py/pmin (the case

where a;, < aq4, being analyzed similarly), then (s, dg) cuts the subsets N, ¢ = |a+1],... , [a+
pe/ Pmin]- By definition, R, is a summand in every RNq—,q =|a+1],..., e+ pe/pmin|- Hence
we have (noting p¢ > pmin)

m m “+o00 —+00

ZRE * Pe S 2,Omin ZRE . Lpe/pminJ S 2pmin Z R/\/q— + 2prnin Z RN;‘ (20)

=1 =1 q=—© q=—00

Now we prove that

o2 < 04(7:5apmin)P 21
2 S S g T 2y

By (18), we only need to show that

26—1

l XT: f Z E Z Xj (t) < C4 (75 5: pmin)pmin P (22)
T (a-7 _ ai)(s ~ 9 total»
t=1 g=—00 je N, JENT

with X () satisfying the total power constraint

T
1
T Z Z X.72 (t) S Ptotal; a.s.. (23)

t=1 jeN

The intuition behind the inequality (22) is that the summation of the received powers is upper
bounded by the total transmitted power.

We now establish (22) for the case where § > 2, as follows. By (23), for § > 2, we only need
to prove that for any ¢,

2
26—1

> Y (X ) < bt p), 2

g=—00ieN; \jgNy

where

P(t) =) X2(1). (25)

1EN

First, we observe that the L.H.S. of (24) is a summation of infinite terms of the basic form
Bk X;(t) X (t), where B is the appropriate coefficient. If every X;(¢)Xj/(¢) is replaced with the

20



1
larger value §(Xj2(t) + X2(t)), it is easy to see that

[ak] 1

LHS of 2) <> | Y > Z k—ai)‘f X2(t).

kEN \ 4==0 ie N jgNT

This, together with (25), would imply (24), as long as for any k € N,

[ar]— 26—1

Z Z Z — az — a’i)(s S 64(7757 p;nin)pmm ) (26)

g="X 4eNg jENg

For § > 2, (26) is established by the following chain of inequalities: Letting a, 2 min a;
JENg
and noting that Ir;éln la; — aj| > 1, we have
i#]

L.H.S. of (26)
[ar]—1 1
<
- Z z:z:l—i—oz—aZ )0 (a, — a;)®
q=—00 je Ny =0
[ax]—1
—1+gq, 1
<
- Z Z a—a)é(ak—ai)J
g=— zE./\/'_
_ Z Z [ 1 } 1
o _ _ _ )01 IPRY
{i:a;<ar} g=[a;] az (6 1)(Qq az) (ak al)
< > e e
{ira;<ar} LI=1 =1 1
3 —62-=9
S 27
= (6-120-2) (27)
04(7: 55 pmin)pifml
- 2
2 ’ (28)
where we have used the fact that for any real a > 0 and 5 > 1,
“+0oo 1 1 o0 1 B 1 +a
3 <3 +/ dr < . 29
lz:; (l—i—a)ﬂ ab 0 (a—{—x)ﬂ (B — l)aﬂ (29)

Hence (24) is established.
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Thus (21) follows. Similarly, we can prove

+Zoo Roe < G070 pmin) p (30)
et Nq >~ 4pmin02 total -

Finally, (6) follows from (20), (21) and (30).
Next we consider the case v > 0. It is easy to see from the above that we only need to prove

2

T +o *V(Gj—ai)PminX,t ) . 20—1
=S IDIAD IS ) < aln o bl p,,
— = =  (4—a) 2
t=1 g=—00jc N FENG

which can be easily established since for any k& € N,

-1
|—ak-| e 70'_7 —a; pmlne 7(ak a)Pmm 6727pmin

Z Z Z , (ak _ ai)é < (1 — e—momin)2(1 _ e—27pmin)

q=—0 jeNg jENg

26—1

— 64(75 6’ pmin)pmln |:|
2 .

Proof of Theorem 3.7. The proof is similar to that of Theorem 3.8. Hence, we only mention
the differences here.

Consider first the case v =0 and § > 3.

Let (%ilmin Dmin b %lmin) denote the coordinates of node i. First, Lemma 4.1 is applied to the
following four classes of subsets:

j\/’(;OO = {ieN: —o<a <q—-00<b<+o}, q€Z; (31)
Nfo = {ieN:qg<a; <+oo,—00 < b <400}, ¢E€Z
Ng, = {ieN: —0<a; <+oo,—00<b; <q}, g€
Ni, = {ieN: —c0<a; <+00,g < b; < +o0}, qE€L.

For example, for the class (31), we have

2

QJQ'RN;,OO < hmlnf—z Z E Z XLJ(t) , (32)

T—o0 Pii
t=1 1€ENG 0o JENG oo J

where RNq— is defined similarly to RN— in the proof of Theorem 3.8. RN+ , RN— and RN:g,q
are also similarly defined.

Now in the planar case, for any source-destination pair (s, dy) with distance p, between s,
and dy, it is easy to see that it cuts at least [2py/pmin| subsets among N, Nt N_ . N

q,00? q,007 0,q? Q0,q?
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q € Z. Hence we have the following inequality:

m m
Z RZ * Pe S Pmin Z RZ . [QPZ/pmin]
=1 =1

+00 +00 +00 +00
< Pmin Z RNq_,oo + Pmin Z R_/\[q":oo + Pmin Z R_/\[o—o’q + Pmin Z RNot,q. (33)

g=—o0 g=—o0 g=—o0 g=—00

Now, we prove that

+o00
S Ry < Q0w (34)
g=—00 R 4pmin02

By (32), we only need to show that

%ZT: +§ IR DY L0 o aldmm)p (35)

d. 20mm;
t=1 gq=——00 Z’Ethoo J¢Nq7,oo pl] pmln

or equivalently,

1 — X;(t)
T 2 ISR [(a; — ai)? + (bj — b))%/ (pmin/2)°

t=1 g=—00 je N o, NG Y

C1 (77 5: pmin)
< G0 Puin) p 36
< AL, (36)

with X () satisfying the total power constraint

T
1
T Z Z Xf(t) S Ptotal a.s.. (37)

t=1 jeN

The intuition behind the inequality (36) is that the summation of the received powers is upper
bounded by the transmitted power.

We now establish (36) for the case where § > 3. By (37), for 6 > 3, we only need to prove
that for any ¢,

26—1

+oo X;(t) c1(7, 8, pmin) p20
Z Z Z [(a; — ai)? + (bj — b;)?]%/? < 926-+1 P(t), (38)

1= iENg 00 \JENg 00

where

P(t)=>_X7(t). (39)

iEN
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1
After replacing each X;(t)X(t) by §(X]2(t) + XZ(t)) in the L.H.S. of (38), we only need to
) in 20—1
prove that the coefficient of any X2(¢) is bounded by aly, ’2'206+1)'0m‘“ i.e., for any k € NV,
sl 1 1

2. X

9=7% ieNg

>

JENT + (b; — b:)?%/% [(ax — a;)% +

Z

(bk _ bi)2]6/2

C1 (7? 55 pmin)pifml
— 926+1 (40)
Using the fact that for any dy > 2
1 4 (5[t 1
1o _/ / _rdrdf),
dp — 7 J-zJo (d%+r?—2rdycosf)>
since n;ém[( —a;)?+ (bj — b;)*]'/? > 2, we have for any i € N, oor 0
i#]
> ! / / —xdxde
& T =0+ (= )PP ¢ Jiay-acn @
— (0-2)(a, —a;+1)Vv1P2
where g, := min a;
jqu_oo
Then we have for § > 3,
L.H. S of (40)
[ar]—
4 1
<
- Z Z_ [(a, — ai + 1) V11°2 [(a, — a;)? + (be — b;)?]%/2
g=—0 zE./\/'qoo
[ar]—1
4 1
<
- Z Z CL —a; + 1) V 1]5_2 [(ak — al-)Q + (bk - bi)2]6/2
{i:a;<ar} g=[a;]
8 4 1
<
- 2 (5 e 3) [(ar, — ai)? + (b, — b;)?]°/
{i:a;<ar}
8 4 4
< _—t — | - —xdzdf
< 8 + 4
- 0 — 6—3 6 -2

26—1
Pmin

c1(7, 5, Pmin)
22(5+1
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Hence (38) is proved. Thus (34) follows. The remaining arguments are similar to the proof
of Theorem 3.8.

Next we consider the case v > (0. Similar to the linear case, we only need to show that for
any k € NV,

26—1

[ar]—1 e—’y[(aj_a,i)2+(bj_bi)2]1/2pmin/2 @—7[(%_ai)2+(bk_bi)2]1/2pmin/2 c (% 5’ pmin)pmin

2. 2| X

<
o i i a5 = aa)* + (b = b [(ak — a0)? + (bs = )71/ ] = 220

This holds for
920+7 677pmin/2(2 _ eﬂpmin/Q)

c1(7,6, pmin) = 2 20+1 (1 — e 7Pmin/2)

Pmin

[l

Proofs of Theorems 3.1 and 3.5. The results for the case of individual power P;,q follow
directly from the case of Pjy, in Theorems 3.8 and 3.7 by noting that Py = nPj,g is also a
constraint. O

4.3 The Gaussian multiple relay channel: The strategy of coher-
ent multi-stage relaying with interference cancellation and an
achievable rate

We now address the channel considered in Theorems 3.11 and 3.12, featuring a multitude of
relays. Each stage of relay can be either one node or a group of nodes.

We use some standard results for jointly typical sequences which we gather together here;
see [22, Section 8.6].

Definition 4.2 The set A% of jointly typical sequences {(xT,yT)} with respect to the joint
density function f(x,y) is the set of T-sequences with empirical entropies e-close to the true
entropies, i.e.,

€

AT = {(xT,yT) eR' xR":

‘—llogf(aET) — h(X)‘ <€,

T
1

108 £7) = h(Y) <

‘—% log f(z",y") — h(X, Y)‘ < e} ,
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where

T

7@y = T1F@ow).

i=1

Definition 4.3 AET) (P, N) denotes the set AET) with respect to the joint density function

foy) = gp@on(y—2) = ﬁp(—ﬁ) \/217T—Nexp<—(y2_;)2).

Lemma 4.2 Let (XT,Y7T) be sequences of length T drawn i.i.d. according to

fTy") = HQP($i)gN(yi_mi)-

Then
1. Prob((XT,YT) € A"(P,N)) > 1 as T — oo.

2. f(mT W) AD) (PN daTdy” < 2T+ where h(X,Y) denotes the differential entropy.

3. If (XT,V7") ~ I, 9p(x:)gpsn(i), i.e., X7 and YT are independent with the same
marginals as (XT,YT), then

Prob((XT,¥T) € AT(P,N)) < 27TS(5)=39,
Also, for sufficiently large T,

P’/‘Ob((XT’}?T) e AET)(P, N)) > (1 _ 6)2—T(S(§)+35)'

Proof of Theorem 3.11. The coding-decoding scheme is different from that of [21], though
we still use a block coding argument. We consider B blocks of transmission, each of 7" trans-
mission slots. A sequence of B— M + 1 indices, w, € {1,... ,278} b=1,2,... ,B— M +1 will
be sent over in T'B transmission slots. (Note that as B — oo, the rate TR(B — M +1)/TB is
arbitrarily close to R for any T'.)

Generation of codebooks

Randomly generate M? matrices Xy(by), for k = 1,... , M, and by = 1,..., M, each of size
2TR x T, with every element independently chosen with Gaussian distribution N(0,1—¢;). The
M? matrices are revealed to all the M + 1 nodes. Let X (b) := Xj(b mod M),b=1,2,...,B.
Denote by x4 (b, w) the w-th row of the matrix Xj(b), for w € {1,... 278},
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Encoding

At the beginning of each block b € {1,..., B}, every node i € {0,..., M — 1} has estimates
(see the sequel) Wp_g41; of Wp—g41, £ > i+ 1 (with @Wy_k41,0 = wp—g+1) and sends the following

vector of length 7" in the block:

M
Xi(b) = Z V P (b, Wy g1,3)-

k=i+1
We set
Wy, ; = wp, =0 for any b; < 0, and z,(b,0) := 0.
Every node k € {1,..., M} thus receives the vector:
Yi(b) = Z i Xi (0) + Zi(b)
0<i<M—1
7k
M
= > > vV Pumi(b, Bp—ig,:) + Zi(b)
0<i<M—1[=1+1
ik
ko1 M
= Z Z + Z Z i/ Py (b, Wp141,6) + Zk (D).
=1 =0 I=k+10<i<I-1
iZk
Let
M

Vi) = Y®) = Y D o Pumi(b, Bomi1)-
l=k+10<i<i-1
iZk
This will serve as an estimate by node k of

k

-1
Z Z ik \/Eﬂfl(b, 7:Db—l+1,i);

=1 =0

as we show in the sequel.

Decoding

(42)

At the end of each block b € {1,...,B}, every node k € {1,...,M} (for b—k+1 > 1)
declares Wp_g41, = w if w is the unique value in {1,...,2%R} such that in all the blocks
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b—3j,i=0,1,... . k—1:

k—j—1 k -1
{Z azk\/ ik—j Thk— ] b Jyw 7 Z Zazkfxl — 7, Wp— —j— l+llc)}

l=k—j+1 i=

€ AN (P, Nij), (44)

k—j—1

Pyj:= (Z g/ Py - ]) (1—¢1), Ni,:= Z (Z%k\/ﬁ) (1—&1)+ 0%

=1

Otherwise, if an unique w as above does not exist, an error is declared and @, 1« is set to 0.

Analysis of probability of error. Denote the event that no decoding error is made in the
first b blocks by

Ac(b) = {&]\bl—k—f—l,k = Wp;—k+1, for all b; € {1, . ,b} and k € {1, - ,M}},

and let its probability be P,.(b) := Prob(A.(b)), with P.(0) := 1.
Then the probability that some decoding error is made at some node k € {1,... , M} in
some block b € {1,...,B} is

P, := Prob(@y_j+1xk # Wp—k4+1, for some k € {1,... ,M},be {1,...,B})

B
= ) Prob(@y—ps1 # Wh—kr1 for some k € {1,..., M}A,(b— 1)) Po(b—1)

b=1
B M
< D) Prob(@y—ps1k # Weps1]Ac(b — 1)) - Po(b— 1)
b=1 k=1
= ZZP (b, k) - P,(b—1), (45)
b=1 k=1

where P, (b, k) := Prob(Wp—g416 7 We—k+1|Ac(b —1)). Hence P.(b, k) is the probability that a
decoding error happens at node k£ in block b, conditioned on the event that no decoding error
was made in the former b — 1 blocks.

Next, we calculate P, (b, k). Since A.(b— 1) is presumed to hold, for any node k£ we have

Why—kt1,k = Wh—kt1, for b < by <b—1.

Hence, noting (41), Wy, x = ws, Whenever by + k& < b. Then, by (42) and (43), for all b — j with
J =0,

-1

k M
Yeb—7) = Z + Z Z gV P xi(b — J, wp—j—i11) + Zk(b — J),
=1 =0 l=k+1 OSEEI
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and

?k(b_j) = b—J Z Z azerl — Jy Wo—j—1+1)

I=k+1 0<i<i—-1
i#k

-1

k
= Z ik Py xy(b— j,wp—j—141) + Z(b—j).

I=1 i=0
So,
PR
E E i/ Paxy(b— 7, Wy—j—151,%)
I=k—j+1 i=0
k—j 1—1
= i Py x(b— j,wy—j_111) + Z(b — j).
=1 =0

Hence, under the condition A.(b — 1) the decoding rule (44) is equivalent to: Each node k €
{1,..., M} (when b—k+1 > 1) declares @Wp_g 114 = w if w is the unique value in {1,... ,22%}
such that in all the blocks b — j, for 5 =0,1,... ,k —1:

k—j—1 k—j 1-1
{ Z Qi zk ]xkz ] b ]a 7zzazk\/7xl ]7wb —j— l+1)+Zk(b )}

=1 =0

€ AD(Pyj, Nyj).  (46)
Let
Wik, = {we{l,... ,2TRY : w satisfies (46)};

k-1
Wik = [ Whk-

Then, P, (b, k) is the probability that wy i1 & Wy, or some w(# wp_g+1) € Wy, conditioned
on the event that no decoding error was made in the former b — 1 blocks. Thus,

Pe(b, k) = Prob(wb_k+1 € Wb,k, or w e Wb,k for some w 75 wb_k+1|Ac(b - 1))
< Prob(wp k41 Ac(b—1)) + Prob(w € Wy, for some w # wy_g11]|Ac(b — 1))
Prob(wy_g+1 € Whi) = Prob(w € W, for some w # wy_g41)
Pc(b_l) Pc(b_l) .

VAN

Hence, by (45),
B M
Z Z [Prob(wp_41 & Wh ) + Prob(w € W, for some w # wy_g41)]. (47)
b=1 k=1
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Now, by Lemma 4.2, for T" large enough, we have for j =0,1,... ,k — 1,
Prob(wp—k4+1 € Whij) < €

and for any w' # wy g1,

— Pr,j
Prob(w' € Wyy,;) < 2 T,
Hence,
k—1 k—1
PI‘Ob(’U)b_]H_l Ql ka ZPI‘Ob Wp—k+1 € Wb lc,]) S = ke S MG, (48)
7=0 j=0
and

Prob(w € W, for some w # wy_g11) < Z Prob(w' € W)

w'e{1,... 2TR}
w' FEWp_ 41

k-1

= Z H Prob(w' € W k.j) (49)

w'e{1,...,2TR} j=0
w’ Fwy_ k41

< 2TR H 2—T

. (2TR _ 1)2*T(S(o_f2)*3k€).

)—3e€)

The equality (49) follows from the independence of the rows xy (b, w) and also the transmissions

wy, the fact that
55 (8)-5(2)
i Nkﬂ o2 ’
as well as

=0

lzl (Zalk\ﬁ> (1—ey).

For any R satisfying (7), by choosing T large enough, we can make £; and € small enough such
that for any €9 > 0

P
Prob(w € Wy, for some w # wy 541) < (27F — 1)27T(5(?§)*3k6) < &9. (50)
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Hence, by (47), (48) and (50),

B M
Pe S ZZ M€+52

b=1 k=1
< BMZ?+ BMe,,

which can be made arbitrarily small by letting 1" — oo. ([

Proof of Theorem 3.12. The proof follows similarly to that of Theorem 3.11. The only
difference is that now all the n; nodes in each group N; equally share the same power P;; and
transmit coherently. We take the maximum attenuation ay;x; to ensure that every node in
each group can successfully do the decoding. O

4.4 An unbounded transport capacity can be obtained for bounded
total power when attenuation is low

First we consider the linear case.

Proof of Theorem 3.10. We consider one source-destination pair where the source node is
located at 0, and the destination node is located at n. Let the n — 1 nodes in between, located
at 1,2,...,n — 1, be the n — 1 stages of relay. Then by Theorem 3.11, the following rate is
achievable:

R < 1I<nji£n5 —i(z ) ) (51)

—’L
k=1 O'7

with the total power constraint Y ,_, Zk ! Py < Piosar- The intuitive interpretation of Py, is
the part of the power used by node i 1ntended directly for node k.
We specifically choose

P
Py = —, 0<i<k<n, 52
T R T (52
where o > 1,3 > 1 are two constants to be determined later, and
a—1 -1
P = ( )(ﬁ )-Ptota,l- (53)

of

Using (29), it is easy to check that the total power constraint Py, holds.
For 3 — a — 8 > 0, we now establish the following lower bound usable in the R.H.S. of (51):

Zl (zz — ) a/;//fﬁ_h(J — i) ) = Q). (54)
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For 3 —a— g > 0, we have

v
¥
™

1 [kt 1 ’1
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2
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W2 |, 1= y)er Y 78

P P (i
“o ZkQ_a_ﬂ > —0925 / 2> Py (for j > 2)
J 2

C()Pj?’faf’g — 93—a—

W,
¥ o
™

P 1 &l 1 21
- jTézl(kaﬂ £ (1—i/k)a/2> kP

v

y)o/?
Now we proceed by analyzing two cases.
Case 1. § < %
In this case, we specifically choose o > 1 and 8 > 1 such that

1/2 1
where ¢y := ( / ﬂidy) > 0. This establishes (54).
. _

3—a—0F—-26 >0.
Then by (54) and (55), there exists some P > 0 such that for any 7,

k—1 \/ﬁ 2
Z (Z (k _ Z’)a/Qkﬂ/Q(j _ ’L)‘5> >

J
k=1 \i=0

™

(55)

Thus, by (51), for any n, any R < S (J%) is achievable. Without loss of generality, this means
that any R < S (U%) is achievable with power constraint P, for any single source-destination
pair. Furthermore, since py, = n, R-n is an achievable network transport with power constraint

Pyota1, which tends to infinity as n — oo.
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Case 2. $ <6< 1.
In this case, we specifically choose o > 1 and S > 1 such that

A—a—B—26>0. (56)

Note that 3 — a — f — 20 < 0. Hence the minimum of (54) over j = 1,2,...,n is attained at
j =n. So by (56), we have

j 2
i _ —a—B—-26
nénj?ns FZ (Z (k—i)a/Qkﬁ/Q(j—i)‘s —Q(n ) — 00, as n — oQ.

k=1 =0

This means that an arbitrarily large network transport is achievable with a fixed total power
constraint Pi,a;- O

Now we turn to the planar case.

Proof of Theorem 3.9. The idea of the proof is similar to that of the linear case in Theo-
rem 3.10. The only difference is that in the planar case there are more nodes to help.

We still consider one source-destination pair where the source node s is located at (0,0) and
the destination node d is located at (r?,0), with ¢ a positive integer to be determined.

We need the cooperation of r — 1 groups of relay nodes: Group N; consists of n; nodes in a
neighborhood of the node (i%,0), for i = 1,... ,7 — 1, with Ny = {s}, no = 1. Each Group N;
corresponds to the node 7 in the linear case: The n; nodes equally share the power P;, defined
in (52) and coherently transmit.

Then by Theorem 3.12, the following rate is achievable

R < min S —i(Z v Z’“/"“ ”) , (57)

1<5<
SIS oS A

where py,; is the maximum distance between any node in Group N; and any node in Group
N;.

For any i = 1,2,...,r — 1, we specifically choose Group N; to be the set of nodes: {(u,v) :
i <u <4491 —1, -9t <o <971} It is easy to check that these groups are disjoint from
each other and n; > i2¢~1). Furthermore, forany 0 < i < j <7, p;; < j9—i?+i? 145914501 <
374. Hence by (57), the following rate is achievable:

: . VP i7"
R<II£]1£TS —Z(Z 3970 : (58)

k=1 i=0
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Similarly to the linear case, for 1 +2¢ — a— 8 > 0, we can prove the following lower bound
usable in the R.H.S. of (58):

i k=1 ) 2
VP -1 1+2¢g—a—f—2q0
> (Z ey | = QU (59)
k=1 =0

For 1 4+2¢ — a— 8 > 0, we have

v

v

v

1/2
where ¢g := /
o

J k-1 \/F'iq_l 2
2|2 (k — i)a/2kB/230 jab

k=1 \:=0
P EJ: et i 1
326j2q5 —\ & (k _ Z)O‘/2 kB
2 XJ: fa-1 i Gkt )1
325]2q5 p ka/2 — (1 _ Z/k)a/? kB
p J g-1 k-1 g1 2
3 k / (@/k)— .\ 1
320520 L k2 Jo (1= z/k)e” LB
i _ 2
N AN
326j2q5 ; (ka/2 A Wdy k_ﬂ
C()P J 20—a—f C()P J 2¢—a—p .
32(57.7'2(1516_2kq 232(57]2(15 ) ™ dx (fOI'_] 22) (60)

coP j1+2q—a—ﬂ _ 9l+2¢—a-p
326]'2(15 1_+_2q_a,_ﬁ

Q(j1+2q—a—,3—24(5), (61)
q—1 2
1y7)/2dy> > 0. Note that the inequality in (60) holds for any value of
—_ y 67

2q — a — f. This establishes (59).
Now we proceed with two cases.

Case 1. § < 1.

In this case, we choose ¢ such that

142¢g—a—p—2¢ > 0. (62)

Then by (59) and (62), there exists some P > 0 such that for any 7,

M

N VP ! ’
21 —)al2kB[233 8 2 P.

=0
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Then by (58), for any 7, any R < S (%) is achievable. Without loss of generality, this means
that any R < S (0%) is achievable with power constraint P, for any single source-destination
pair. Furthermore, R-r? is an achievable network transport with power constraint Pj,:,;, which
tends to infinity as r — oo.
Case 2. 1 <6< 3.

In this case we choose ¢ such that

1+3¢—a—8—2¢6 > 0. (63)

Then by (59) and (63), we have

. 2

1 = VP!

q 1 - — 14+3¢g—a—p—2qd

r 1213'1%5 UQ;(Z; (1) kP 3 jae Q(r ) =00, asr— oo.
= 1=

This means that an arbitrarily large network transport is achievable with a fixed total power

constraint Piyq- O

4.5 A transport capacity of Q(n) is achievable in planar networks,
and feasible rates

First we show what is achievable in a regular planar network.

Proof of Theorem 3.2. We consider a regular planar network where every node £ is a source,
with its destination dy chosen as one of its four nearest neighbors.

Each node independently generates its codebook with Gaussian distribution with variance
P = P4 — ¢, where ¢ > 0. Every destination looks for the signals transmitted by its source,
treating all the other transmissions as Gaussian noise. Hence any rate R, satisfying the following
is achievable for every source-destination pair (¢, dy):

e 2P
e <5 (02(%5)P+02) ’

provided c(7y,0)P is an upper bound on the interference, i.e.,

—2Ypid

e ¢ P
a(1,0)P> > ——
iEN pidl
1£4,dy

: (64)

We now show this bound to be true irrespective of the number of nodes n in N.
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For the case v = 0 and 6 > 1, this follows from the summability of the right hand side of
(64) for § > 1, since, irrespective of the number n of nodes in N,

P o
> o < ax (zzz% || & dmdy>
ieN 0 i

itldy
20 T
< .
S 4x (2 25—1+45—4)P

VAN

166% + (27 — 16)5 — T
- (0—1)(26 —1)
< e, 9)P.

Next consider the case v > 0. Then

—2Ypid, P o ) oo oo
> < 4x (226‘2% /] e—”@”y””dxdy) P
i=1 L J0

iEN Pid,
i#b,d,
2¢ 27 —2v
ax[——— 4+ )P
1—e2r 2y
4(1+ 4v)e " — 4e=7

29(1 — e~27)
< 02(77 5)P

IN

e~ P

f P < Pipa,
o (% (5)P n 02) , Ior every 1~ < d
establishing the result of Theorem 3.2. O

Hence the total achievable transport capacity is n- S (

Proof of Theorem 3.3. Note that the maximum distance that a signal has to travel on any
hop is p. This can used to lower bound the received signal strength. Moreover, we can prove
that the total interference at any node j is bounded as follows:

Using the fact that for any dy > pmin,

Pmm

1
drdf
N Wﬂmm/j;/ d2+r2—2rd0(:030)‘5r %

we have for y =0 and § > 1,

E < / / —<xdxdf
25— 20
N pZ] 7Tpm1n f’mln Ma

i#]

22—|—25
- - p
pmm(5 - 1)
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and for v > 0,

SreP 1P T e
—7 J fmin

2
T Prin

4426 0

u e 2%
1426 o

pmin

IN

min
23+2667’7pmin

1426
Y Prmin

The rest of the proof follows as above in Theorem 3.2. O

Proof of Theorem 3.4. Suppose that n source-destination pairs are randomly chosen as
follows: Choose 2n points, (a1, as, ... ,,a,) and (b, bs, ... ,,by,), randomly (uniformly i.i.d.) in
the domain of the regular planar network, which is a square of side y/n — 1. Now let s, and d
be the nodes (which are located only at integral coordinates (7, j) with 1 <4,j < /n) nearest
to ag and by, respectively. Then the n source-destination pairs are (s, dy). (Since a node may
serve as a source for several destinations, or as a destination for several sources, the definition
of feasible rate in Section 3.1 has to be modified appropriately).

To route the traffic, we follow the scheme of [8]. Construct an axis parallel mini-square of
side length 1 centered around each node. These mini-squares will play the role of the “cells”
considered in [8]. Packets for a source-destination pair (s;,d;) will be relayed from node to
node in the order that the straight line joining a, and b, intersects the mini-squares. (Diagonal
hops occur with probability zero). Thus, each straight line (a;,b;) passing through a mini-
square means that the node in the mini-square has to relay that route’s traffic to one of its four
nearest neighbors.

Note that the straight lines {(as, b¢) : 1 < £ < n} are i.i.d. (indeed this is the reason for
resorting to this construction of source-destination pairs). Also, the probability that a straight

line passes through a given mini-square is less than c4/ 10%, for some constant c. Using the

dimension bounds in [8] in the uniform weak law of large numbers of Vapnik-Chervonenkis
[26], it follows that Prob(Every mini-square has no more than ¢’v/nlogn straight lines passing
through it) — 1, as n — oo. Now suppose that every source-destination pair carries a traffic

of rate less than C,Rnﬁ. Then Prob(Every node needs to send no more than rate Ry, to one

of its four nearest neighbors) — 1, as n — oc.

However, as already shown in the proof of Theorem 3.2, in a regular planar network, every
node can indeed send at a fixed positive rate R, > 0 to any one of its four nearest neighbors.

Thus a rate of c,f% can indeed be supported for all the source-destination pairs simul-
taneously, with probability approaching one as n — oc.

Finally, since there are n sources, and the mean distance between a source and its destination
is 2(y/n), it follows that a transport capacity of §( Jlgﬂ) is supported, again with probability
approaching 1 as n — oo. O
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4.6 Networks with transport capacity Cr = O(n’) for 1 < § < 2
under low attenuation, and the optimality of coherent multi-
stage relaying with interference cancellation

We now exhibit networks that allow a ©(n?) scaling law under low attenuation.

Proof of Theorem 3.6. We consider the case of one source-destination pair, where the
source node is located at 0 and the destination node is located at nf. Let the n — 1 relay nodes
be located at %, i = 1,2,... ,n — 1. Then by Theorem 3.11, the following rate is achievable

AL S
i il _V ik
R < 1I§nj1£ns o2 i (izo (]0 . 7;9)5) ) (65)
with
P
PLo=—— 0<i<k<
ik (k _ i)a’ =1 =N,

o —

where 1 < o < 3 — 264 is some constant and P’ := P;,q is such that the power constraint

for every node is satisfied.
Similarly to (54), we can prove the following lower bound on the R.H.S. of (65):

d — \/ﬁ i _ -3—a—200
Z (Z (k—i)"‘/Q(j"—i”V) = Q0 )-

k=1 1=0

If 3 —a— 2606 > 0, then the minimum over 1 < j < n occurs at j = 1, and is positive. Thus a
positive rate is achievable provided one can satisfy 3 — a — 20 > 0, as well as o > 1.

To satisfy the above inequalities, we simply choose any small € > 0, and consider a network
with 6 := : — e. Then we choose o = 1 4 €). Such a network can provide a fixed positive
rate from source 0 to destination n, irrespective of n. Since the distance between source and
destination is n’, it yields a transport capacity of Q(n?).

To show the optlmahty of this order, we now prove that O(n?) is also an upper bound. First
we note that the total power received by all the other nodes, from any candidate source node
7, is bounded:

Jj—1 n j—1 n
Pind md Pmd I)ind 49
2 i A g S G 2 g S BT <

=0 i=7+1 =0 '7 i=j+1 'j)

Hence, if we take the cut-set around the candidate source node j and apply Lemma 4.1, it
follows that the achievable rate is bounded above. Noting that the source-destination distance
is at most n?, we have O(n?) as an upper bound on the optimal scaling for this one source case.

Hence ©(n?) is the optimal scaling. It is achieved by coherent multi-stage relaying with
interference cancellation, which is therefore the optimal strategy for information transmission
in the networks. (|
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5 Concluding remarks

We have examined the problem of how much information can be transported over wireless
networks, and what are the optimal strategies for doing so. In the best tradition of information
theory, one wishes to determine the ultimate limits to what is achievable without presupposing
that packets destructively “collide” if they are from nearby transmitters, or that they can
be received only if signal-to-interference ratio is large, etc. The difficulty is that a multitude
of nodes can cooperate in very complicated and sophisticated ways, and standard modes of
cooperation such as broadcast, multiple-access, or relaying, only scratch the surface. They do
not begin to exhaust the realm of the possible. Also, even simple networks, such as the three
node relay channel, or the two-by-two interference cannel, are unsolved to date.

We make progress in this area by asking for less. Instead of studying just the capacity
region, which is the set of all vectors of feasible rates, we study the distance-weighted sum of
rates » | Ry- py, which we have called the transport capacity. There is a second sense in which we
ask for less. We study scaling laws for the transport capacity as the number n of nodes in the
network grows. The preconstant in the scaling law is of course important, but it is secondary
to the rate of growth. In any case, we provide bounds for the preconstant for every n, thus
characterizing the optimal achievable, at least in some scenarios. Finally, distance plays an
explicit role in our theory in that we explicitly model signal attenuation.

Two broad results may be worthy of note. When either there is absorption (y > 0), or
the path loss exponent ¢ > 3, O(n) is an upper bound on the transport capacity of all planar
networks. This upper bound can be realized in regular planar networks by multi-hop operation,
which is consequently the optimal strategy for the nodes to cooperate, at least up to order.
Packets need only be relayed from node to node, with all interference simply being regarded
as noise at each hop. This mode of operation is currently the subject of much attention in the
protocol development community.

In contrast, when there is absolutely no absorption (7 = 0) and the attenuation is very low
with path loss exponent % < 0 < 1, there are networks where the transport capacity is @(n%_g).
The strategy which realizes this, and which is consequently an optimal strategy, is coherent
multi-stage relaying with interference cancellation: At each stage of relaying, all upstream nodes
coherently transmit, and all receivers use interference cancellation at each stage. An achievable
rate, superior to earlier results, is given for the Gaussian multiple relay channel with a single
source-destination pair employing such a strategy.

Open questions abound. What happens for intermediate values of the path loss exponent,
when there is absolutely no absorption, is still unresolved. Our channel model is simplistic.
Much remains to be done.
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