
SUMMARY

CDI TYPE I: A Communications Theory Approach
to Morphogenesis and Architecture Maintenance

The assertion that biological systems are communication networks would draw no rebuke from
biologists – the termssignaling, communication, andnetworkare deeply embedded parts of the
biology parlance. However, the more profound meanings of information and communication are
often overlooked when considering biological systems. Information can be quantified, its flow
can be measured and tight bounds exist for its representation and conveyance between transmitters
and receivers in a variety of settings. Furthermore, communications theory is aboutefficientcom-
munication where energy is at a premium – as is often the case in organisms. But perhaps most
important, information theory allows mechanism-blind bounds on decisions and information flow.
That is, the physics of a system allows determination of limits thatany method of information
description, delivery or processing must obey.

Thus, rigorous application of communication theory to complex multi-cellular biological sys-
tems seems both attractive and obvious as an organizing principle – a way to tease order from
the myriad engineering solutions that comprise biologicalsystems. Likewise, study of biological
systems – engineering solutions evolved over eons – might yield new communication and com-
putation theory. Yet so far, a communications-theoretic approach to multi-cellular biology has
received scant, if any, attention. We therefore propose to explore this interdisciplinary intellectual
gap under the auspices of the NSF CDI program.

The intellectual merit of the proposed research lies incareful and rigorousexploration of
communications theory concepts applied to signaling between and within cells inmulti-cellular
networks. Energy consumption is a key feature in both biological networking problems and in the
formal specification of communications problems and for this reason we believe that a commu-
nications theory perspective may help illuminate biological mechanisms in specific areas such as
tissue biology, cancer biology, the biology of aging, and microbial ecosystems as well as other
areas where a formal network perspective may be appropriate. Likewise, we suspect that the exis-
tence proof provided by living things, in combination with acommunication-theoretic perspective,
can provide new approaches to biological and non-biological engineering problems.

Thebroader impact of developing an effective communications framework for biological sys-
tems which can both explain and predict the general behaviorof multi-cellular systems over time
is difficult to overestimate. The most obvious impact areas are embryology, development, aging
and age-related diseases such as cancer in biology, and distributed specification and assembly of
robust structures in engineering, but a multitude of other applications in biology and engineering
are clearly possible. A more modest, but still potentially profound and important impact of the
proposed work would be to delineate the limits of key biological communications methods. For
instance, are signaling methods such as chemical gradientsnecessary and sufficient to rigorously
explain tissue development, organization, maintenance and aging? For any given method can we
derive bounds on how much cells can possibly say to one another and how they might say it? We
expect the answers will be of great interest to both the multi-cellular biological community and the
communications theory community.
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1 Introduction

The assertion that biological systems are communication networks would draw no rebuke from biologists
– the termssignaling, communication, andnetworkare deeply embedded parts of the biology parlance.
However, the more profound meanings of information and communication are often overlooked when con-
sidering biological systems. Information can be quantified, its flow can be measured and tight bounds exist
for its representation and conveyance between transmitters and receivers in a variety of settings. Further-
more, communications theory is aboutefficientcommunication where energy is at a premium – as is often
the case in organisms. But perhaps most important, information theory allows mechanism-blind bounds on
decisions and information flow. That is, the physics of a system allows determination of limits thatany
method of information description, delivery or processingmust obey.

Thus, rigorous application of communication theory to complex multi-cellular biological systems seems
both attractive and obvious as an organizing principle – a way to tease order from the myriad engineering
solutions that comprise biological systems. Likewise, study of biological systems – engineering solutions
evolved over eons – might yield new communication and computation theory. Yet so far, a communications-
theoretic approach to multi-cellular biology has receivedscant, if any, attention. We therefore propose to
explore this interdisciplinary intellectual gap under theauspices of the NSF CDI program.

We begin with a roadmap to this multi- and inter-disciplinary proposal. Unlike area-specific work where
the general problems are understood and widely accepted, this proposal spans at least two major topics and
a number of subdisciplines within these major areas. Thus, rather than stating research goals and reviewing
previous work at the outset as is normally done, we have takena somewhat spiral approach. In section 2
we cover necessary background material while introducing the ideas underlying the proposed research. In
section 3 we begin to explore basic research questions and revisit them in increasing detail until descriptions
of specific mathematical biological communications problems can be considered. A brief review of related
prior work follows in section 4 and allows us to compare previous approaches to what we propose. Then in
section 5 our research goals are listed. We felt this organization would allow the widest range of readers to
more easily evaluate the proposed work.

It is also worth mentioning here that although we have deliberately taken a more communications theo-
retic approach to multi-cellular communication, we are aware of the many complexities inherent in and man-
ifested by real-world multi-cellular systems [1–21]. The PIs have experience deriving and applying mathe-
matical models of biological systems using a variety of descriptive (phenomenological) approaches [22–31]
and statistical machine learning (data-driven) approaches [32–50]. However, with this work, rather than
starting with observed phenomena and providingdescriptions[51], we seek to first establish inviolable
bounds on communication that all biological systems must obey and thereby makepredictionsabout what
biological systemsmustdo under basic physical assumptions. We will then circle back through heteroge-
neous, publicly available, Web-based databases and resources to identify existing (or uncover new) data,
information and knowledge that support our results, a process that will almost certainly suggest new exper-
iments designed to assess the validity of particularly important predictions. (See, for example, our previous
integrated computational-experimental studies [10,12,16,52–68].)

Or more simply put, we will seek basic physical models into which signaling schemes must fit and
then pursue their implications for the development and maintenance of form and function in multi-cellular
biological systems – that is, the communications theory aspects ofmorphogenesisand tissue architecture. Of
course, there exists a danger that simple models will only lead to trite conclusions. However, we will see in
later sections that with even minimal attention to modelingdetail, interesting organizational and operational
principles emerge that can guide biological experimentation and discovery.
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2 Background

2.1 Signaling in Biological Systems

Any organism composed of more than one cell is by definition a communications network. Such networks
span the range of complexity from microbial ecosystems suchas biofilms, microbiomes and bacterial mats
to animal and plant tissues, organs, organisms, populations and ecosystems. Two examples of multi-cellular
systems at the tissue- and organism-level are provided in FIGURE 1 to familiarize non-biologists with the
stunning complexity (and beauty) of biological matter at the cellular level. As if by magic, a seemingly non-
descript clump of cells becomes an organism through a sequence of distributed yet carefully choreographed
decisions. Signaling within and between cells is accomplished through a variety of chemical, electrical,
mechanical and other means so that individual cells can sense their cellular and non-cellular environment to
make appropriate functional and behavioral choices.

Figure 1: Photomicrographs of com-
plex biological systems comprised of
multiple heterogeneous intercommu-
nicating cells. LEFT: Adult mam-
mary gland tissue showing (a) part of
the ductal tree and (b) a cross-section
through the duct and acinus of a ter-
minal end bud. RIGHT: Development
of a Drosophilaembryo (gastrulation)
[69] starting from a cellular blastoderm
(upper left). Individual cells visible.

Signals can be conveyed using chemicals (hormones, cytokines, growth factors, ions, drugs, small
molecules, neurotransmitters, peptides, proteins, lipids, carbohydrates), mechanical forces, pressure, tem-
perature, light, electrical potentials and magnetic flux. Stimuli may trigger various responses occurring over
different time scales such as an alteration in cell metabolism, a change in cell membrane voltage, activation
of gene expression (transcription in the nucleus) and cell locomotion, to name a few. Often such signal trans-
duction involves a sequence of biochemical or other reactions whereby one molecular species is converted
to another which in turn constitutes the input for the next reaction. This sequence of events is often called
a signaling pathwayand the collection of intercommunicating pathways resultsin signaling networks. The
behavior of a given signaling pathway and hence signaling networks may be modulated by different stimuli.
(A variety of Web-based portals have been developed to help navigate and understand the vast body of work
on cellular interpretation of signals in context-dependent manners – see, for example [70–72].)

Although this basic network analogy can be pursued at a number of levels, from ecosystems to popula-
tions to organisms to organs to tissues to cells to molecules, we will focus on cells as the fundamental unit of
organization. There are a number of reasons for this choice with perhaps the most obvious being that cells
are discrete entities with clearly definable boundaries. Furthermore, cells are specialized, self-contained,
self-powered, sensing and communication platforms that organize themselves into myriad complex systems.
In addition, since elucidating the full repertoire and function(s) of the molecular components of cells is an
integral part of genome biology and an important component of many other fields, a careful investigation of
the form and function of tissues comprised by cells seems a reasonable next step and one which has so far
received considerably less attention. We will also focus primarily on epithelial tissue because it exemplifies
the interplay between morphogenesis, architecture, and disease, a feature that has been demonstrated most
comprehensively for the mammary gland where studies have shown that its cells communicate in spatially
precise ways to both attain structure (morphogenesis) and maintain structure in the face of various insults,
both gross and genetic [73–80].
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2.2 Mechanics of Intercell Signaling

Intercellular communication occurs through mechanisms and structures mediated by the cell membrane. A
gap junctionis an area of apposed cell membranes containingconnexons, proteins that bridge the extracel-
lular space between two cells and allow the cytoplasm of one cell to communicate directly with that of the
other via chemical and/or electrical means. Some categories of chemical signals, for example a gas such as
nitric oxide, simply diffuse across the cell membrane into the cytoplasm and then, possibly, into the interior
of a membrane-bound intracellular organelle (nucleus, mitochondrion, lysosome, endoplasmic reticulum)
where they effect a response.

In receptor-mediated signaling – perhaps the most important form of communication between cells in
a tissue – chemical signals, often small protein ligands such ashormones, diffuse through some medium
and bind to a specific protein located in the cell membrane. Alternatively, the signal might reduce the
concentration of specific ligands local to the target cell. In either case, the ligand-receptor complex mediates
the transmission of extracellular signals to the interior of a cell. The reverse process (sometimes using the
same structures, sometimes not) conveys intracellular signals to the exterior. Receptor-mediated signaling
involving hormones can be roughly divided intoendocrine: a signal which travels through some extracellular
medium to distant cells,paracrine: a signal received only by cells in the same vicinity,autocrine: a signal
received by cells of the same type or the sender cell itself, and juxtacrine: a signal which travels along or
through the cell membrane and is received by the sender cell itself or a physically adjacent cell.

A cell interacts dynamically and reciprocally with its cellular and non-cellular environments at many
levels. Locally within its niche, a cell responds and is responsive to neighboring cells, the extracellular
matrix, and soluble factors. In a tissue, cells/niches are influenced by myriad hormonal and chemical signals.
The systemic milieu affects the tissue and this in turn is affected by external environmental influences.
Overall, endocrine, paracrine, autocrine and juxtacrine signals are chemical signals that play critical roles
in communication within and between layers of this organizational hierarchy. Also, as might be expected in
biological systems where evolution parsimoniously reusesand adapts basic themes to fit different purposes,
communications methods can be assemblages or cascades of more basic methods – such as auditory signal
transduction in hair cells which incorporates mechanical,chemical and electrical means to relay sound
stimuli to nerve fibers.

Our particular focus will be on the communications aspects of form and function development in multi-
cellular systems (morphogenesis). However our overall goal will be to understand the capabilities and limi-
tations of information transfer within multi-cellular systems. To this end, we now provide a brief overview
of relevant communications theory concepts.

2.3 A Communications Theory Primer

Shannon theory [81–84] enables specification of two inviolable bounds – the lowest information rate needed
to faithfully represent a message source, and the highest rate of reliable message delivery through some
medium under transmission energy constraints. These bounds are thesource entropy rateand thechannel
capacity, respectively. Rate distortion theory[83, 84], specifies how much information is necessary to
approximate an information source under some fidelity criterion when a complete source specification is too
large. These basic communications ideas (and associated bounds) fall under the general topic ofinformation
theoryand are applicable to any scenario comprised of message sources, channels through which messages
can be conveyed, and receivers that care about the messages.This use of the plural – sources, channels
and receivers – is deliberate. Information theory, and the maturing area of network information theory, deal
with all manner of intercommunicating elements [84]. However, we will confine ourselves here to the basic
concepts with a single source, channel and receiver.

Entropyis a measure of what one does not know about a given random observableX having probability
densityfX(x). Entropy is formally defined as

H(X) = −
∑

x

fX(x) log fX(x) (1)
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for discreteX and as an integral for continuousX. The base of thelog() determines the units; i.e., if natural
log is used, the units are “nats” while if base2 is used, the units are “bits.” Besides having a number of
desirable and intuitive mathematical properties, the definition is completely consonant with thermodynamic
entropy via statistical mechanics. Furthermore, the idea can be extended toentropy rateif X is a time-
varying correlated stochastic sequence rather than a single random variable.

For discreteX, mappingX to Y compactly and losslessly is calledsource codingand the associated
landmark result is that for any number of code bits per symbolR (called a code rate) which exceeds the
source entropyH(X), we can find a code which losslessly encodes the message sourceX. From a resource
use perspective, it is often useful to makeR as small as possible. However, the converse to the coding
theorem states that ifR < H(X) then loss is inevitable. Thus, we have a first inkling of what the term
mechanism blindimplies. The coding theorem states that any rate aboveH(X) can be achieved losslessly
and that any rate below cannot. The mechanism by which one might build good codes is not relevant to the
bounds obtained through the coding theorem and thus frees usfrom having to consider the details of each
possible coding method. But perhaps the most important point of the coding theorem is the converse, which
keeps us from seeking the “perpetual motion” solution of coding rates below the source entropy.

Understanding information delivery leads to the concept ofmutual information– the amount ofinfor-
mationobservations ofZ provide aboutY . The formal definition is rather intuitive:

I(Y ;Z) = H(Y ) − H(Y |Z) (2)

or the average amount by which knowingZ reduces the initial uncertainty about (entropy of)Y . In a
communications context, we often assume causalityY → Z, in which case the stochastic mapping from
random variableY to random variableZ is called the communicationschannel.

The data processing theorem– I(X;Y ) ≥ I(X; g(Y )) – will prove extremely useful. It states that
no amount of “processing” (represented by the functiong()) can increase the mutual information between
X and Y . That is, all the information we can possibly obtain aboutX is contained inY and loosely
speaking the best we can do is to preserve it. The data processing theorem seems particularly important
when considering multi-cellular biological systems sincethe constituent units, cells, can be machines of
dizzying complexity. However, in conveyance of information betweencells, the theorem applies no matter
what the cellular complexity and therein lies its simplifying utility.

Mutual information also allows quantitative consideration of continuous sourcesX which do not have
finite descriptions. For example, a finite number of bits cannot exactly represent every real number on the
interval [0, 1] and we must accept some error. If we quantify the error with adistortion measured(x, q(x))
whereq(x) is a finite representation ofx, we can then ask how many bits per source symbol,R(ǫ), are
required on average to represent aninformation sourceX under an average acceptable distortion constraint
ǫ. Rate distortion theorytells us that

R(ǫ) = min
q(),E[d(X,q(X))]≤ǫ

I(X; q(X)) (3)

Just as important, rate distortion theory also tells us thatany coding rate belowR(ǫ) results in unacceptable
average distortion.

Perhaps the most famous information theoretic result is thechannel capacity theorem which states that
the maximum rate at which information can be deliveredreliably (error free) over a channel defined by the
probabilistic mappingfZ|Y (z|y) is

C = max
fY (),EY ≤P

I(Y ;Z) (4)

in bits per channel use. The maximization is over the channelinput distributionfY () subject to an input
energy constraintEY < P sinceY is assumed to represent a real physical quantity. Similar tothe source
coding theorem and rate distortion theory, the converse states that if a transmission rateR > C is attempted,
error is unavoidable. This result, in combination with the source coding theorem whereY is derived via
codingX (or q(X) if X is continuous) implies that forH(X) < C, reliable transmission is possible – and
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impossible ifH(X) > C. Once again it is important to note that the result is mechanism blind. The best
coding and transmission methods are either error free or they are not.

There are, of course, caveats. The source coding theorem andthe channel capacity theorem are asymp-
totic in nature. The bounds assume coding and transmission done over an infinite number of symbols. Put
another way, for any finite number of symbols, the probability of error is non-zero for any non-trivial chan-
nel. However, the convergence toward zero probability of error is exponential in sequence length, so this
issue if often more technical than practical. Furthermore,we will not (at least at first) seek to posit actual
coding methods for biological systems, but rather, seek inviolable bounds based on the physics which all
multi-cellular systems must obey.

Another caveat concerns channels with feedback. Homeostatic (and other) feedback mechanisms abound
in biological systems. If the channel is memoryless (where previous channel inputs do not affect future out-
puts) the capacity theorem holds even if the receiver provides feedback to the source. However, for channels
with memory, the feedback capacity can exceed the bound of equation (4). This issue is often addressed by
modifying signal representations so that from the perspective of the transformed system, the channel (or a
decomposed channel ensemble) is again memoryless.

This possible need for signal transformations leads to the last topic in this primer – the concept of a
signal space. It is often convenient to represent signalss(t) ass(t) =

∑

k skφk(t) where thesk are the
projectionsof the signals(t) onto theorthogonal basis functions{φk(t)}. Just as we represent a point in
physical space using three perpendicular (orthogonal) coordinates (also calleddegrees of freedom), we can
represent functions as projections onto sets of orthogonalfunctions. The idea can be extended to joint space-
time signal variations as well. The utility of a signal spaceapproach stems from both how signals propagate
through channels and in how source signals are represented in terms of information. Notably, signal space
methods are used in combination with equation (4) to derive Shannon’s famous Gaussian channel capacity
theorem and its extension to channels with memory.

2.4 A Multi-Cellular Communication Framework

In the multi-cellular biological context, a message can be any information the environment, a sender cell (or
group of cells) seeks to convey. The most fundamental and ubiquitous intercellular communication method
is chemical signaling whereby cells produce signaling agents that are selectively sensed by specialized
receiver structures on the same or other cells. Developmentof signal space models for the temporal and
spatial variation of such signals is relatively straightforward. Chemical properties of ligands and receptors
as well as genetic features (such as splice variants of a gene) also constitute degrees of freedom that might
be amenable to some form of signal space representation. Thechannel is the physics that allows transport
of signaling agents as well as the set of actuators between where the message resides (transmitting cell(s))
and where action is taken (receiving cell(s)).

Identification of specific biological signaling agents and molecular mechanisms is a daunting experi-
mental task and one which already consumes a significant partof the research community. However, though
such details are necessary to understand (and influence – i.e., pharmacologically) specific biological sys-
tems, the beauty of a communications theory approach is thatthe detailed methods by which information
is conveyed do not affect the bounds on how much information there is or how rapidly it can be reliably
delivered. Put another way, in pursuing a communications-theoretic approach to biological signaling, we
need not assume that biological systems practice any particular style of coding or transmission. Rather,
communications theory places fundamental limits onanymethod biological systems use to perform infor-
mation transfer. Once the physical substrate is described,communications theory providesmechanism-blind
bounds.

The signal to noise ratio (SNR) is a simple but illustrative example of mechanism-blindness in telecom-
munications theory. For a channel described byr(t) = s(t) + w(t) wheres(t) is the information-bearing
signal,w(t) is noise andr(t) is the received signal, there is an infinity of potential signal and receiver struc-
tures to carry information over the channel. However, ifw(t) is white Gaussian noise, communications
theory tells us that the figure of merit is the energy carried by signals(t) relative the noise energy in the
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signal space occupied bys(t) – the SNR [84–87]. The detailed structure of the receiver andsignal do not
affect the theoretical bounds on information flow.

A variety of similar bounds exist for networks of communicating elements [84]. It is this generality and
implicit reduction of complexity that constitutes the power of a communications-theoretic lens. Therefore,
by analyzing channel physics and using energy-efficiency asan organizing principle, communications theory
may help refine and extend our understanding of multi-cellular communications and its role in morphogen-
esis, tissue maintenance, aging and disease – all complex systems where in health, cells communicate in
spatially precise ways to reliably develop and maintain tissue structures.

3 Research Plan

3.1 The Limits of Cellular Conversations

The most obvious question regards how information is coded and delivered in multi-cellular systems. The
ubiquity of diffusive signaling agents suggests that elaborating the details of various diffusion channels
– including those with multiple signaling species and multiple spatially distinct receptors – is necessary to
help answer questions about how rapidly information can be reliably delivered via diffusion and also suggest
signaling mechanisms (diffusive or otherwise) which can beexplicitly sought (or ruled out) by experimental
biologists.

For instance, understanding the capacities of diffusive channels could illuminate known phenomena in
tissue development such as the occurrence of repeatably abrupt boundaries amidst a more gently varying
spatial profile ofmorphogenic(shape inducing) signaling agents [88]. The usual explanation of such behav-
ior is that cells are endowed with special processing capabilities (particular thresholds and nonlinearities,
for instance [88, 89]). In contrast, a communications theory analysis provides that either the appropriate
information can be reliably delivered to cells in the requisite spatially specific manner or it cannot. Thus,
communications theory may help illuminate the surprising robustness observed in most developing systems
even amid the tangle of known and emerging microbiological detail about cell behavior. That is, even the
complex “black boxes” that are cells are subject to the data processing theorem. Without the right informa-
tion at the right time in the right place, no amount of processing can make development reliable.

Consider then that tissues form communities of intercommunicating cells – intricately organized three-
dimensional structures from bacterial mats to mammalian epithelia [90–93]. How do such ensembles main-
tain structure and function even under environmental insults? It is well known that many signaling agents
and associated receptors are not “orthogonal” in that a receptor may bind more than one type of ligand.
Indeed, such “cross-talk” between receptors and ligands isa hallmark of signaling networks. Response
overlap implies signal interference that could disrupt signals which convey architectural information. Or
perhaps overlap enhances signaling through multi-cell cooperation. By investigating the network informa-
tion theoretic bounds [84] on what cells and groups of cells can possibly say to one another, we can narrow
the possibilities for system connectivity, and perhaps even anticipate connections between components of
multi-cellular communities that may have previously been obscured or overlooked.

Furthermore, examining communications issues in a multi-cellular biology context might also pro-
vide new network information-theoretic insights especially for such modern contrivances as sensor net-
works [94–96] which arguably operate under similarly severe energy constraints. Specifically, network
information theory is as yet only partially understood and multi-cellular biological systems have had ages
to optimize performance under the common constraint of energy usage. Cellular systems of decision mak-
ing components exhibit remarkable resilience - a tradeoff between efficiency and persistence, constancy and
change, and predictability and unpredictability. Under normal circumstances, an adult tissue tolerates distur-
bance without collapsing into a qualitatively different state and can withstand shocks and rebuild itself when
necessary. Perhaps in trying to understand how cells communicate within a community, some biomemitic
opportunities for human-engineered systems could become evident.
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3.2 What Do Cells Talk About?

Suppose we can obtain a reasonable understanding of bounds on signaling rates between cells in a multi-
cellular community. A number of vital structural/functional questions immediately follow. For instance,
in a mammary epithelium, how does a given cell know it is part of an acinus and needs to secrete milk
into the lumen and not in the other direction? How do genotypically malignant breast cells know to behave
“normally” when placed in an appropriate three-dimensional tissue microenvironment [93, 97–99]. These
sorts of questions – of which there are many examples from bacterial mats to organisms with billions of
cells – are at heart, the developmental biology question. How is a “complex” structure elaborated from a
single cell and maintained and how is spatial/architectural information conveyed.

Much effort has been devoted to the study of pattern formation and the emergence of complexity in
biology (reviewed in [88, 89, 100–102] and for a recent experimental and computational study of tissues
see [103, 104]). Nonetheless, we know of no study that asks what rate of information flowbetween cells is
necessary to allow cells to develop and maintain a complex functioning structure. Specifically, cells assess
their environments, and based on incoming information makedecisions. A large (and rapidly increasingly)
number of these decisions can be probed experimentally using modern biological methods. Via source
coding (including rate distortion theory) these decisionscan be quantified to some number (sayB) of bits, a
variable which depends upon the circumstances.

TheseB bits might require delivery by some deadlineT (as when a cell has to decide its fate) or may
need refreshing at some average rateR in order to perform one of2B possible behaviors. That is, cells of
an organism respond to their environments by behaving in different ways. Furthermore, even in a strictly
developmental context after fate has been decided, isolated cells express themselves differently than when
they are part of a community and over time [92,105]. So, information is constantly collected for appropriate
decision making, at least in healthy cellular communities.Thus, simply speaking, the rate of information
flow into a cell must be at leastB/T where a deadline must be met, orRB when a series of behavioral
decisions must be made.

A communications framework then allows us to ask whether thesignaling rates culled from the physics
of known biology comport with the spatially-specific limitsimposed by the signaling physics or whether
other mechanisms must be invoked. Can a given cell possibly receive the information it needs under given
channel assumptions or does the information required greatly exceed the system capacity? Such studies
will almost certainly enhance understanding and suggest new avenues of exploration in experimental multi-
cellular biology.

There are also specific biological questions about tissues that lend themselves to a communications
theory framework. Does the lowest information rate needed to faithfully represent a message source (source
coding) and the highest rate of reliable message delivery through some medium (channel capacity) change
during the generation (development and morphogenesis), maintenance (regeneration and replacement), and
decline (aging) of the biological system? For these disparate tissue-level processes, how much information is
necessary to approximate an information source under some fidelity criterion given that the complete source
specification is extremely large (rate distortion theory)?Is the progressive decline in cell and tissue form
and function seen in aging a consequence of a reduction in thefidelity of transmission, increasing lack of
knowledge about a message (capacity diminution), inability to encode a message compactly and losslessly
(source coding)? Do these phenomena vary from cell to cell? Could the loss of resilience of a multi-cellular
system with age and/or in disease be due to the transmission of information with increasingly higher levels
of loss and/or error? Is a diseased multi-cellular system one where the signal space is distorted through
mutations in signal-producing genes?

It is also possible to pose the abstract question. Rather than seeking to explain how known biology
achieves complex structure, we might ask in general what minimal information flows are necessary between
identically programmed units which must cooperate to become an arbitrary structure. Is there some minimal
information flow necessary to support such a given function?What are the requisite signaling methods? This
question is similar to one asked in “amorphous computing” and pattern formation studies [106,107] but ours
will be an information-theoretic as opposed to computational approach.
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3.3 What Can a Cell Say?

Diffusion of signaling agents through some medium is a ubiquitous form of intercellular communication.
However, manufacture of signaling compounds can be metabolically costly. A moderate-sized100-amino
acid signaling molecule requires approximately400 ATP to manufacture [108] which is significant even in
comparison to an elevated6 × 104 ATP/sec total energy budget during cell replication (E. Coli [109]) since
many signaling molecules must be produced. Furthermore, the receptor structures sensitive to signaling
agents also require energy for upkeep and operation (a feature only coming to be appreciated recently in
telecommunications systems with modern sensor networks [94]).

Interestingly, communications theory suggests that the ubiquity of chemical signaling in multi-cellular
biology is not accidental. It can be shown thatinscribed-mattercommunication – of which chemical sig-
naling is an instance – is often stunningly more energy-efficient than electromagnetic (or acoustic) methods
in a surprising variety of contexts [110–112]. Notably, such messaging is not limited to passive diffusion
methods in biological systems but is also prominent in active forms. For instance, tactile communication
through filopodial extension [11], cell migration [88,102]and perhaps most obviously, sexual reproduction
all constitute forms of inscribed-matter messaging. Each requires energy not only to compose the message
but also to deliver and to interpret it as well. With energy efficiency as a driver for many aspects of evolution,
the various forms of inscribed-matter messaging in multi-cellular systems thus warrant close inspection.

We can begin by asking a simple and precise question. How rapidly can information be reliably sent
over adiffusion channel? Here we examine two facets of the problem which we think provide some insight
into how cells may (or may not) communicate over distance in complex tissues and organisms.

The diffusion equation in an isotropic medium is

∂ρ

∂t
= D∇2ρ (5)

whereD is the diffusion coefficient, a measure of how rapidly a diffusing species can flow as function
of concentration gradients (∇ρ). Equation (5) is linear and time-invariant, so assuming variable-separable
solutions we obtain a complex exponential fundamental solution

g(x, y, z, t) = e−k2tej
√

k2
xDxej

√
k2

yDyej
√

k2
zDz (6)

wherek2 is some positive constant (for stability in time) andk2
x +k2

y +k2
z = k2. Linearity allows us to form

ρ(x, y, z, t) =

∫

dk

∫

Z(k)
R(kx, ky, kz)e

−k2tejkx

√
Dxejky

√
Dyejkz

√
Dzdkxdkydkz (7)

for some complex functionR(kx, ky, kz) whereZ(k) is the region wherek2
x + k2

y + k2
z = k2.

For simplicity, consider one dimension and a specific initial condition of ρ(x, t = 0) = δ(x) which
corresponds to an impulse of signaling agent concentrationinjected into the system atx = t = 0. This leads
to

δ(x) =

∫ ∞

−∞
R(k)ejk

√
Dxdk

which impliesR(k) = 1
2π

. Thus, the impulse response is the well-known Gaussian diffusion profile

h(x, t) =

∫ ∞

−∞
R(k)e−k2tejk

√
Dxdk =

1√
4πDt

e−
x2

4Dt u(t) (8)

whereu(t) is the unit step function. The Fourier transform ofh(x, t) has magnitude

|H(x, f)| =
1√

8Dπf
e−

q

πfx2

D (9)
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and characterizes the effect of a time-varying point-source at the origin on a receiver at positionx.
To explicitly compute channel capacity, a few more steps arenecessary – receptor noise levels must

be determined (see [113–115] and section 3.4 for details) and considered in light of signaling molecule
manufacture energy budgets. Furthermore, we have deliberately ignored issues such as signal degradation,
active transport, mediated transport or multiple interacting signaling species, to mention only a few [108].
Nonetheless, the forms of equation (8) and equation (9) are telling. Specifically, we see as with any “wireless
channel” that signal strength decreases with increasing distancex. However, this diminution is particularly
severe – the impulse response of equation (8) is doubly exponential in distancex as opposed to the power law
dependence of an acoustic or electromagnetic system. In addition, equation (9) shows that bandwidth also
decreases exponentially with distance. A diminution of bandwidth serves to decrease the number of degrees
of freedom available for communication and even further depresses capacity with increasing distance. These
features can be seen in FIGURE 2 for step applications of signal at biologically relevant diffusivitiesD,
distancesr, and signal application timesT in seconds.

Figure 2: Normalized signal concentration ver-
sus distancer from a steadily applied point source
(in three dimensions).D = {10−8, 10−7, 10−6}
cm2/sec. Typical eukaryotic cells diameters are on
the order of tens of micrometers (µm). Notice sharp
decrease in concentration with increasing distance
and with shorter application timeT = 1s and smaller
diffusivities,D. Ordinate:ρ(r, T )/ρ(10µm, T ).
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A communications theory lens suggests that the channel physics heavily penalizes long distance com-
munication via simple diffusion. Furthermore, imposing temporal structure on signals carries a significant
penalty as well. This latter point speaks directly to the question of whether gradients convey information via
time-variation [88,89] and implies that if simple diffusion is the transport method, then static or very slowly
varying gradients may be the most likely signaling method, even over relatively short distances. We must
close, however, with a caveat. Unless signaling agents are “gettered” with antagonists (as in synaptic clefts)
or the signaling interval is long enough to restore pre-signaling conditions, the diffusion channel is far from
memoryless. Thus, the implicit potential for capacity-increasing feedback must be considered.

3.4 What Can a Cell Hear?

The cascades of cellular events that can be evoked by signalsare daunting in both their complexity and
variety [116]. However, signal cascades are themselves communications channels which convey degraded
versions of the information present at the cell’s boundary.Thus, by considering only the information present
at the initial receptor sites (some of which may be internal for species which diffuse through the cell mem-
brane) and applying a communications theory perspective (via the coding, channel and data processing
theorems) we can reasonably ask:what can a cell possibly hear?

The fundamental event at a ligand-receptor complex is the binding of the ligand. At the molecular level,
the process is stochastic owing both to diffusion and to the ligand-receptor kinetics. Furthermore, a given
ligand may have multiple binding states at a receptor. However, for simplicity we will assume receptor
occupation is a binary random variableX and that the probabilityp a receptor is occupied is some mono-
tone increasing function of the ligand concentrationρℓ [113–115]. The exact relationship betweenp andρℓ

depends on a number of factors, including the ligand-receptor kinetics, which could in principle be calcu-
lated or measured. Further, we will assume that if a cell carriesN receptors, sampling at some time instant
providesN iid binary random variablesXi [115]. Finally, assume that the receptors are indistinguishable so
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that the effective information variable accessible to the cell is the number of bound receptor sitesK, which
for largeN is approximately Gaussian with meanNp and varianceNp(1 − p).

To obtain a measure of the amount of information that could theoretically be conveyed through the
ensemble ofN receptors, we seek the maximum mutual information betweenρℓ and theXi. However, if
we assumep is an invertible function ofρℓ we can equivalently seek

C = max
fP (p),EP

I(K;P ) = max
fP (p),EP

H(K) − EP

[

1

2
log (2πeNp(1 − p))

]

(10)

wherefP (p) is the input distribution (invertibly related toρℓ) andEP is an “energy constraint” onp related
to the signal manufacture cost of producing a ligand concentrationρℓ at the receptor array. We note that the
signal might be the particular ligand, but it might also be anenzyme which affects the native concentration
of the ligand local to the target receptors.

For simplicity, we first ignore the energy constraint on signal manufacture and assume that any distri-
bution onp is admissible. ForfP (p) uniform andN large, the marginal distribution onK is almost exactly
uniform itself. Thus, we can say (approximately) that

C ≥ log N −
∫ 1

0

1

2
log (2πeNp(1 − p)) dp =

1

2
(log N − 0.837) =

(

1

2
log2 N − 0.6

)

bits. (11)

For a relatively largeN = 105 receptors [115,117,118], a sequence of measurements couldconvey about8
bits of information per measurement on average. For a more conservativeN = 1000 [113], over4 bits per
measurement is theoretically possible.

If the ligand concentrationρℓ could be changed as rapidly as desired and the interval between measure-
ments were governed only by receptor activation/deactivation times, perhaps many observations could be
made per second per signaling agent. (Nicotinic-cholinergic receptors, for instance, operate on a tens of mil-
liseconds time scale [119,120].) Thus, the incoming data rate to a cell could in principle be hundreds of bits
per second. In light of this observation, it is easy to imagine single cells as information-gathering engines
– as may have been useful in a free-foraging evolutionary past, as may have been re-used in multi-cellular
developmental contexts, and perhaps as may be used by, say, malignant cells that rip free of their moorings.

However, in a multi-cellular system, the maximum theoretical input rate is only a part of the whole
picture.ρℓ is driven by other cells and though the data rate present justafter surface receptors can be theo-
retically large, our previous consideration of the diffusion channel suggests that driving signal concentration
levels rapidly over distance can be metabolically prohibitive. What may be a severe mismatch between
sending and receiving capabilities in multi-cellular systems is interesting and will be explored.

Ultimately, deriving the channel capacity will require “closing the loop” by explicitly modelingp(ρℓ).
A direct approach is possible and will be pursued, but the results may depend strongly on specifics of the
ligand-receptor kinetics among other highly variable and perhaps difficult to isolate and measure parameters.
However, as in other areas of communication theory, it is often possible to find useful bounds under basic
physical assumptions – such as receiver noise temperature and the worst case nature of white Gaussian
processes for additive channels [83,84]. Thus, part of our work will be investigation of bounds and bounding
processes for the biological noise processes we consider – such as receptor noise.

3.5 Cells As Relays and Routers

If diffusion has limited range as a signaling method, then how do cells many cell-lengths away intercom-
municate in spatially precise ways? The most obvious alternative mechanism to passive diffusion is active
mixing. However, such mixing is usually chaotic which can destroy spatially specific information neces-
sary for tissue architecture development and maintenance.A more spatially stable alternative might have
individual cells relay information by up-regulating theirproduction of signaling compounds in response to
incoming signals. However, up-regulation of a signal constitutes processing and by the data processing
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theorem, the information content of the up-regulated signal can only degrade the input information. This
leads to a version of a well-studied communications problem– the relay channel. We intend to formulate
the relay channel in a multi-cellular communications context and also to identify instances of relay channels
in biology [121].

Relay channels figure prominently in human-engineered systems such as sensor networks [94–96]. Like-
wise, distributed sensing can be a primary function of some tissues and systems (inflammatory response,
immune system). Via the Sleppian-Wolf theorem [84] information theory provides a basic analytic frame-
work. However, from the perspective of implementation, thestudy of such biological systems in general
and paracrine, autocrine and juxtacrine signaling in particular could reveal new ways of thinking about the
sensing problem. Similarly, the detection and response to DNA damage is both a cell- and tissue-level phe-
nomenon, so exploring the signaling involved in this critical function may provide insights about the design
and construction of resilient systems – as one would like sensor networks to be.

Relaying might also be directed as opposed to diffuse. That is, the spatial differentiation seen in devel-
oping organisms suggests the possibility that cells can release signaling agents anisotropically to produce or
enhance spatial specificity. The idea that cells might behave effectively asrouters is at once both obvious
and exciting. Obviously cells have structure and orientation themselves. A hair cell has stereocilia at one
end and neural contacts at the other. Neurons have axons and dendrites. Mammary epithelial cells secrete
milk on only on the lumen side of an acinus. However, the notion that an individual cell (or a small group)
during morphogenesis might receive incoming signals and route information in spatially distinct ways like
a router seems an interesting line of research to pursue.

Also, keeping an open mind about information transfer mechanisms is certainly necessary. For instance,
it is known that sense organ precursor cells in developing Drosophila can forge direct long range contact
with other cells by extending filopodia [11]. Simple diffusion and cell-cell relay methods have been ruled
out experimentally. This delightfully direct method of communication is extremely spatial-specific, but at
the metabolic cost of constructing and extending the filopodia. Additionally, once this possibility of gross
motion in the service of communication is broached, a numberof other phenomena spring to mind. The
epithelial-mesenchymal transition (EMT) is a cellular program characterized by loss of cell adhesion and
increased cell mobility that is highly spatially specific and essential for numerous developmental processes.
The initiation of tumor metastasis, a process that involvesinvasion, has many phenotypic similarities to
EMT, including loss of cell-cell adhesion. Since nature is seldom frivolous with energy, it will be interesting
to analyze these and other phenomena as communications problems under energy constraints.

3.6 A Signal Space for Structural Information

One of the key problems in biology is how a genetic code (alongwith initial conditions imprinted on an
ovum) is reliably elaborated into a complete organism. However, as scientists and engineers, we are often
presented with the reverse problem – to determine the amountof information necessary to code specific
structures – and it is tempting to simply apply that familiarmethodology. Thus, standard signal space
methods might be employed to represent any tissue volume, much as Fourier transforms, wavelets or any
number of other orthogonal methods might be used to represent the image in a photograph.

Communications theorists often seek “minimal” representations subject to some distortion measure.
However, discovering such representations among the infinity of possibilities for even “simple” problems
like image coding seems more art than science. It seems especially daunting in the context of directly
discovering the tissue-structure component of genetic codes. So instead, we initially plan to view known
biology-driven approaches through a communications theory lens, and then examine other possible repre-
sentations of structure based on known physics and observedbehavior [102].

As one example, themorphogenic gradientis an accepted (if somewhat mysterious) mechanism in
developmental biology whose discovery garnered the 1995 Nobel Prize in Medicine [88]. The basic premise
is that during development, external gradients of signaling agents (morphogens) signal the clump of cells
which comprise the blastula and cause it to differentiate into various precursor structures as the first step
toward gastrulation. The implication is that the cells recursively impose their own morphogenic gradients
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on the developing embryo and the process drives formation ofthe mature organism. A reasonably large
literature has developed around this basic idea in the mathematical biology literature [89]. However, to
our knowledge, there is no morphogenic gradient analog to the notion of signal space – a corresponding
“structure space” accessible using morphogenic gradientsas the basic operator. Thus, it is unclear what
range of structures can be elaborated by morphogenic gradients even in the absence of signaling noise.

We will therefore seek suitable decomposable mathematicalrepresentations for structures. Previous
work in this general area [100, 122] has had limited success,and a brute force approach (using forms of
vector quantization, for instance) might also be attemptedbut would have the same problems as finding
suitable basis sets for images. Thus, one of our first investigations will be to consider models based explicitly
on morphogenic gradients and known developmentalprimitivessuch as proliferation, migration, folding,
branching, apoptosis and the like [102]. Of course, any approach that includes potentially iterative non-linear
operations (such as folding) literally invites chaos. However, the incredible reliability of development in
biological systems gives us hope that should there be chaos,there must also be some mechanism which can
be included in any candidate “structure space” approach that can keep incipient chaos tightly in check. That
is, successful development provides a clear existence proof of reliable code-to-structure transformations –
even though almost certainly a dash of genetic chaos drives evolution.

The true utility of a structural space, however, lies in how it can be used to quantify the information
content of structures. That is, we suspect that analogous tothe development of communications theory,
determining some space of “elaborable structures” along with a decomposable mathematical description,
and considering it in the context of intercellular signaling capacity, should allow us to express the infor-
mation necessary to reliably encode structures and aid our understanding of the mechanisms by which
multi-cellular systems could recover from environmental insults. Thus, whether we succeed in developing
a powerful structure space method or not, we plan to apply a communications theory lens to the candidates
we do consider.

3.7 Scaling

Although cell membrane-bound ligand-receptor channels are important in the exchange of information be-
tween the interior and exterior of cells, ligand-receptor complexes perform similar functions when present
in the membranes of intracellular organelles such as the nucleus, mitochondria, lysosomes, and endoplas-
mic reticulum. While there is only one nucleus per cell, there many more copies of the other organelles.
Thus, the ideas we develop for intercellular signaling willalmost certainly have application tointracellular
signaling as well. Likewise, the assemblages of tissues that comprise organisms are also communications
networks as are populations and ecologies. We view such questions as potential targets of opportunity de-
pending upon the success of our multi-cellular inquiries. That is, the potential for communications theory
as a scale-spanning organizing principle deserves at leastsome attention as part of this study.

3.8 Mining the Biological Info-Space

Standard biophysical, biochemical, molecular biology andcell biology experimental techniques permit
many aspects of the structure and behavior of receptors to bemeasured and monitored over time (the binding
of ligands, conformational changes, the generation of second messengers, etc.). New technologies are push-
ing the boundaries so that, for example, behavior can be measured at the level of individual cells as opposed
to populations of cells. Clearly the potential applicationof emerging techniques to our problem area is excit-
ing and we will keep a close watch on such methods and relevantresults. However, direct experimentation
is not the only avenue open to exploration of biological systems.

For instance, consider the following questions: Is the information conveyed by one mouse cell to another
mouse cell the same as that transmitted by one human cell to another? Within a given species, what infor-
mation does one cell type convey to another? We can attempt toanswer the first question using comparative
genomics, for example, by utilizing readily available whole genome and proteome sequence data [123–126]
to determine whether the mouse genome encodes the same type and/or number of signaling molecules as
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the human genome. The second question can be addressed usingfunctional genomics, for example, by
performing retrospective analyses of transcript profilingdata housed in public repositories [127,128] to de-
termine whether a human mammary gland epithelial cell expresses the same type and/or number of signaling
molecules as a human brain cell. Such questions can be answered for “normal,” “senescent,” and “tumor”
cells as well as cells treated with drugs or other agents. As discussed earlier, ligand-receptor interactions are
key to intercellular communication but under some circumstances, one or the other but not both components
of the system may be expressed by a cell type. For example, communication may be subverted (or perverted)
if a given receptor is present in the cell membrane but the ligand is not expressed.

A ligand-receptor complex does not exist in isolation but issubject to numerous control and feedback
mechanisms from channels of the same or different type. Public resources dedicated to signaling and other
molecules, pathways and networks [70–72,129–132] will allow us to collate and organize information about
signaling mechanisms and agents. Web-based text analysis tools [133–135] should facilitate our ability
to distill existing research and formulate general concepts that will allow us to start addressing concepts
such as channels and signal space in realistic ways. Although some mutations in signaling proteins may
inactivate the molecule so that it is unable to function properly, others may alter its effectiveness to transmit
a signal without loss and/or error. For example, the abilityof a receptor to transmit information may be
enhanced, diminished or conditioned on some other factors.By examining the basic biology of engineered
and naturally occurring [136] mutations, we may be able to uncover the relevance of our communication
theory ideas to health and disease.

In addition to the public and Web-based resources and databases mentioned above, we will perform more
sophisticated analyses of molecular sequence (protein, DNA, RNA), molecular profiling (gene expression),
biomedical text and organismal phenotype data as and when needed using a variety of software and tools,
including many with which we are already familiar [32–50].

4 Previous Applications of Information Theory to Biology

There are a variety communications/information theory applications to biological systems and the literature
is far too broad to reasonably survey here. Nonetheless, it seems useful to describe general classes of
previous work and provide examples so as to place what we propose in better context. To start, the broadest
application of communications theory to biology is somewhat “thermodynamic” in nature and applied at
the molecular/genetic level. Such work (e.g., [137–141]) typically draws quantitative analogies between
chemical energy changes and system information gain or loss. In contrast, another class of work considers
nearly explicit communications analogs in biological systems (e.g., [142–145]).

The neural transmission and storage of information (as typified by [146, 147]) has also been of great
interest. Neuroscience has perhaps the longest association with communications theory, perhaps because
information theory and the physics of neural transmission were roughly simultaneous intellectual break-
throughs [81, 82, 148–152]. Recently, communications theory – in the form of model parameter estimation
– has been successfully applied to studying brain function [153–155], allowing researchers to infer behav-
ioral states from multiterminal recordings, a holy grail ofsorts. Sensorineural transduction and coding has
also held a particular fascination for communications scientists. Probably the most relevant to our pro-
posed work is the study of source-channel matching done in sensory transduction (see [156] for a review)
which examines the behavior of sensorineural systems in an information theoretic way without trying to
force mainstream communications theory onto biology. Thatis, sometimes channel-matched but uncoded
transmission is optimal [157] (or near-optimal which seemsfar more important to living systems than true
optimality [156]).

Arguably, the most successful application of communications theory ideas to biology has been genomics
research [141]. The inherently digital representation of information in molecular sequences (DNA, RNA,
protein) allows comparisons across the entire biome, a feature which can be of clinical significance. For
instance, a recent information-theoretic analysis was performed to measure the joint effect of a high fre-
quency germline genetic variant of the p53 tumor suppressorpathway and gender on clinical cancer phe-
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notypes [158]. Though we will certainly make use of such biome-wide associations as part of our work,
our approach is perhaps more literal and based on the physicsof interaction as opposed to abstractions of
interaction.

The work closest in spirit to what we propose is a recent studyof chemotaxis – the ability of a motile
single-celled organism to seek greater concentrations of nutrients [159,160]. Using an information-theoretic
rate distortion approach [160] seeks to understand the decisions cells make (in terms of chemotactic mo-
tion) using available concentration gradient information. The underlying premise is that the environment
communicates with the cell through variations in nutrient concentration via surface receptors. This commu-
nication results in readily measurable cellular decisionswhereby cells move toward greater concentration
of the sensed nutrients. The marriage of mutual informationand rate distortion theory along with channel
physics and measurable response pursued in [160] is exactlythe sort of approach we hope to use in our
proposed multi-cellular studies.

5 Research Goals

We can now formally state our research goals:

• Study the fundamental communications physics of intercellular signaling

• Derive capacity/distortion bounds for intercellular communication

• Derive capacity/distortion bounds for signalingacrosscell membranes

• Explore biological implications of communications-theoretic bounds

• Exercise theory on web-mined biological data

• Study intercellular information flow as it relates to tissuemorphogenisis, maintenance and aging

• Explore biomimesis for distributed sensor and auto-assembly networks

• Explore the scaling properties of a communications theory framework

We also expect to identify appropriate experimental preparations and techniques that can be used to not only
test our results, but that could form the basis of subsequentlarger efforts in which communications theory
is used as an explicit tool for biological system exploration. (Also see section 7.)

6 Research Impact

Assuming success, the broader impact of developing an effective communications framework for biological
systems which can both explain and predict general multi-cellular network behavior is difficult to overesti-
mate. Certainly such a framework would be pivotal in quantifying the process by which genetic codes are
translated into organisms or understanding disease and aging as information network disorders. Likewise,
distributed specification and assembly of robust structures in engineering as well as a multitude of other
applications in biology and engineering are clearly possible.

We expect this work will interest both communications theorists and multi-cellular biologists. Likely
communications theory journals include IEEE Transactionssuch asInformation TheoryandCommunica-
tionsor the more biologically orientedBiomedical EngineeringandSystems Man and Cybernetics. Likely
biological journals includeCell, Developmental Biology, Journal of Theoretical Biology, Biophysical Jour-
nal and widely-read high-impact multidisciplinary journals such asPLoS Biology, Nature andScience.

Finally, it is worth mentioning that we envision this proposal as the first in a series under the CDI
program which builds a moderately large, diverse and cohesive team of communications theorists and ex-
perimental biologists. That is, the ultimate goal is to helpcreate a new scientific discipline which integrates
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biology and communications theory via biophysics. This first step will explore the subject and lay solid
theoretical groundwork which can then inform and enhance bench biological experimentation.

7 Educational Impacts

As a general rule, biologists are not trained in communications theory, and communications theorists are not
trained in biology or biophysics. In fact, the classical relationship between biology and physics – of which
communications theory is a descendant – has arguably been one of mutual distrust:

“ ... but I happen to know that most biologists consider the physicists’ obsession with certainty
and correctness to be exasperatingly childish and evidenceof their limited mental capacities.
Physicists, in contrast, consider tolerance of uncertainty to be an excuse for second-rate exper-
imentation and a potential source of false claims.”R. Laughin,A Different Universe [161].

Only relatively recently have portions of communications and information theory begun to take hold on the
larger biological research enterprise, but as previously discussed, the most prevalent applications have been
statistical and inferential as opposed to as explicit as we propose – where interactions between biological
elements are modeled as information flows and the actions taken by cells as formal decisions all quantified
using the machinery of communications theory.

Should communications theory prove an effective organizing principle for studying multi-cellular bio-
logical systems, the ultimate goal would be to teach multi-cellular biology from a communications theory
standpoint [137] andvice versa– that is, make communications theory part of the biologicaleducation
mainstream. There would then be an obvious need for a cohort of students, graduate and undergraduate,
whose training explicitly spanned the divide between biology and communications theory. However, with
a single grant of this size, it is not credible to claim anything as large as a program or “cohort” could be
produced. Nonetheless, we envision this grant as the first ina series and have therefore thought reasonably
carefully about the educational component writ larger thana few supported graduate students.

At the undergraduate level, Rose will develop a senior levelelective course on biological communication
geared toward communications theory concentrators and at the graduate level he and Mian will knit together
offerings from biology and communications theory to develop a coherent course of study in multi-cellular
biological communications. We also plan to develop an introductory course in biological communications
theory for biologists – most likely as a seminar at first – which can serve as a cross pollination vehicle for
biologists and communications scientists. As part of this effort, Rose plans to conduct what might called
“mini sabbaticals” during the summers with various developmental biologists at key laboratories, not only
to gain first hand experience with modern experimental cellular biological techniques, but also to understand
how best to infect young biologists with formal communications theory concepts.

8 Results from Prior NSF Support

Christopher Rose has served as PI and co-PI on a number of previous NSF grants; (PI) NCR-9206148
[162], CCR-98-14104 [163] and CCR-99-73012 [164]; (co-PI)NCR-9506505 [165], NCR-97-29863 [166],
ITR/CCR-00-85986 [167], ITR/CCR 02-05362 [168], NeTS-0434854 [169], NeTS-0435370 [170] and
CNS-0716400 [171]. The work completed on these grants has addressed a broad range of problems as-
sociated with optimizing the use of radio resources in communications systems. Call admission for wireless
systems was studied in [172–175]. Fundamental algorithms for paging and registration of mobile nodes were
established in [176–187]. Recent work has been focused on understanding the U-NII [163, 188, 189], op-
portunistic transmission methods and associated deliveryprotocols [190–192], and developing interference
avoidance methods for a variety of communications problems[193–220] as well as non-standard communi-
cations models [110–112, 221, 222]. The work described in [111] is featured on the NSFDiscoveriesweb
page. Most recentlyI. Saira Mian and Rose collaborated on the exploratory grant CCF-0703708[223], one
result of which is the material and approach of the current proposal.
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Coordination Plan

The PI (Rose) is a communications theorist with a backgroundin biophysical theory and experimentation.
The Co-PI (Mian) is a physical chemist and biologist with a strong computational biology background.
We both have experience deriving and applying mathematicalmodels of biological systems using a variety
of descriptive (phenomenological) approaches [22–31] andstatistical machine learning (data-driven) ap-
proaches [32–50]. Our complementary skills are important,but equally important is enough disciplinary
overlap to allow more fruitful collaboration than were a communications theorist vaguely interested in biol-
ogy paired with a biologist vaguely interested in communication theory. That is, the PIs speak a common
“technical tongue.”

Aside from obvious and necessary telephone and Internet collaboration methods, we also plan to meet
quarterly, face-to-face, to discuss results and plan subsequent research. Some of these meetings (summer)
will include extended visits by Rose at Mian’s home institution (LBNL) which is a primary nexus of activity
on the architectural aspects mammary epithelium in health and disease. We suspect that the meeting format
will be short (i.e., morning or afternoon) workshops on the topics where interested parties could attend
and contribute if desired. Should this model prove especially successful and other researchers at other
institutions/laboratories wish to join the effort, largerworkshops might be planned.

In addition, we will build a Web site using Wiki software MediaWiki [224]. The project wiki will have
multiple pages and sections and serve as the main vehicle fordescribing and disseminating the results of the
proposed research. Users will be able to freely download experimental/technical details, primary/processed
data, positive (and negative) results, and conclusions.

In order to facilitate collaboration and sharing among the project personnel as well as with members of
the biomedical, scientific and engineering community and/or general public, other second generation web-
based communities and hosted services relevant to the research will be created, notably social networking
services (the building and verifying of communities of people who share interests and activities pertinent
to the proposed research) and “folksonomies” (collaborative tagging or the practice and method of creating
and managing collaboratively tags to annotate and categorize content). This seems especially important in
light of our desire to cobble together a community of researchers interested in applying communications
theory to multi-cellular systems as well as those seeking tolearn how such techniques might be applied to
their own biological (or engineering) research. The wiki will support registered logins with scoped adminis-
trative access. User groups will be utilized in combinationwith administrative scoping to ensure that project
personnel can edit and publish documents in the appropriatesections of the site.

It should be noted that our focus is fundamental and exploratory research at the interface of communi-
cation theory and multi-cellular biology rather than the formulation of novel algorithms and robust software
implementing them. Thus, we will use open-source and freely-available tools, software, and resources for
any data modeling and analysis we might need to perform. Similarly, our aim is to submit results for pub-
lication in both high impact scientific/engineering journals as well as open access journals. In all cases, we
will make complete methods, software, data and results available as supplementary material.
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Stochastic context-free grammars for tRNA modelling.Nucleic Acids Res, 22:5112–5120, 1994.

[34] A. Krogh, I.S. Mian, and D. Haussler. A hidden Markov model that finds genes inE. coli DNA.
Nucleic Acids Res, 22:4768–4778, 1994.
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