
Optical Music Recognition Application

Grady Low
Yung-Ho Chang

Group 3

30 April 2012

Abstract

The modern day smart phone processor is quickly approaching clock speeds of up
to 2GHz while possessing up to 1Gb of RAM. By contrast, the Apollo Guidance
Computer from the 1960s which had put man on the moon had a clock speed of
a 2.048MHz and 2048 words of RAM [9]. The average person possesses in his/her
pocket more processing power than all but the more recent computer desktops
built within the past ten years or so. And while optical music recognition has
been around since 1966 [2], it has never been able to take advantage of the massive
technological resource that resides within the current smartphone. This project
aims to develop an application within the iOS mobile operating system to convert
written data on a sheet of music into digital data which may be interpreted and
played by a computer or piano-playing robot. Computer vision is utilized to
process the image and do the recognition process.

Procedure

Figure 1: The flow chart shows graphically the process of optical music recogni-
tion. The image must go through these steps in order to be fully processed and
yield meaningful results.

Almost all forms of optical music recognition since its inception follow the
same general structure when it comes to realizing the objective. In short, optical

1

music recognition must have the following to be considered optical music recogni-
tion: Staff line detection and removal, musical object extraction, musical object
classification or recognition, and musical object interpretation.

Staff Line Detection

A staff is a set of five horizontal lines which determine the pitch of a note on
the sheet music. These lines cover the majority of the sheet music and are abso-
lutely crucial to the interpretation of music. However, staff lines pose a problem
to OMR systems because they connect and overlap with almost all the musical
objects on a given sheet of music. Therefore to simplify the recognition pro-
cess the staff lines need to be recognized and removed. To realize this task, the
OMR system creates a histogram of the number of black pixels which exist in
any given row. Because staff lines are always horizontal (given a perfect image),
the locations of staff lines are always given by the highest peaks of the histogram.

It would then seem fairly trivial to simply remove the staff lines after discov-
ering their locations, however this would separate objects into many different
pieces and cause far too much segmentation and create many avoidable prob-
lems. An algorithm that properly removes the staff lines would scan across the
rows of the staff lines, removing the existing black pixel if there are no black
pixels above nor below it. The reasoning behind this is that if a specific point
has a black pixel either above or below it, it likely is part of a bigger symbol.
However, if a specific point does not have a black pixel surrounding it, it can be
assumed to just be part of the staff line in empty space.

Figure 2: The histogram of black pixels is shown in red. Note that the highest
peaks of the histogram correspond to the location of the staff lines and show
where the staff lines need to be removed.

2

Musical Object Extraction

With the staff lines removed, the image then becomes a collection of disconnected
symbols and objects. A flood fill algorithm, much like the popular paint bucket
function present in most graphic editing software, could then be utilized to extract
each object. Every time the algorithm comes across a black pixel, it will run the
flood fill algorithm on that specific object, which will cause that object to become
white. This algorithm will save the shape of an object as well as the location of
the object. The entire extraction process produces a large linked list with all the
necessary data needed for the rest of the recognition process. By this step, the
sheet music has been completely processed and the result is a large collection of
data in form of objects that need to be identified and given meaning.

Figure 3: With the staff line removed, the flood fill algorithm is then applied to
every object within the page to extract data from each individual object. The
flood fill algorithm works by taking one seed pixel and moving away from that
seed until it detects the border of the object, then filling everything inside the
border with another color. The data is then processed in the next step of the
OMR system.

Musical Object Classification

The classification and recognition process makes up the bulk of the OMR system.
Certain objects such as the treble clef and bar lines may be recognized simply by
normalizing the object with the height of the staff lines and finding the size of the
object or by the ratio of its height versus its width. This takes advantage of their
unique shapes and is illustrated by Figure 2. However most objects require much
more advanced methods to be correctly and confidently classified. Two methods
were tested and tried throughout the course of the project.

3

Correlation

Template matching was utilized by following the method of calculating correlation
between a model and the image as shown in [5]. A correlation is defined by the
sum of the product of the image pixel values and the model pixel value. If the
correlation is high then the model and the image must be very similar. However
this method is heavily dependant on scale and so a SURF method was adopted
to take advantage of its scale-invariant and rotation-invariant properties so that
a more robust and flexible system could be implemented.

SURF

OpenCV’s implementation of SURF was utilized. SURF (Speeded Up Robust
Features) is an algorithm that creates descriptor vectors by finding the most
prominent features of an image and comparing that vector with another via Eu-
clidean distance to see how well they match together. The OpenCV function
cvExtractSURF automatically extracts good features for this implementation,
and findNaiveNearestNeighbor can be used as a crude way to measure the Eu-
clidean distance between two features which are being compared. The full in-
tricacies of the code can be seen in the appendix, but the general gist is that
OpenCV automatically generates the features we need for the comparisons, and
then finding the minimum squared distance between two vectors will lead to de-
termining whether or not the features match up well or not.

Note in Figure 2 that on the upper left portion of the image the Common Time
Signaturehas been segmented into three different objects. A technique has been
utilized from Bainbridge et al [1] regarding this issue and essentially the bounding
regions would be extended before template matching is performed.

Musical Object Interpretation

The word interpretation was found to be most fitting because after the OMR
system has correctly classified all the objects, by itself it cannot understand how
the piece flows together. The last step of OMR is for the system to understand
how to play back all the objects it had separated and classified. This involves
storing information such as note pitch and beat length within the notes and also
checking to see if the number of beats in each individual measure of music adds
up according to the time signature and more generally speaking that the rules of
music writing are being followed. This step also functions as a way of verifying
the results of the recognition process. There is a certain syntax that must be

4

followed when writing music and by recognizing this fact, the recognition rate
may be increased by eliminating certain choices. The system, at this final stage
of the OMR process, has processed the given input, extracted the meaningful
objects, assigned a meaning to those objects, and is ready to play the recognized
music.

Playback

Playback was originally realized by using the AVFoundation framework and
AVAudioPlayer class within iOS to play the notes. A sound is specified and
a play method is called to output the audio. This is a rather tedious method and
does not offer a lot of flexibility in playback, but still served as a relatively easy to
implement way to output audio. This method involves playing a sinusoid at cer-
tain frequencies which correspond to certain notes. Universally A4 (the A above
middle C on the piano keyboard) is defined as 440.0 Hz, with A3 (the A which is
located one octave below A4) being 220.0Hz, and so on and so forth. Every eight
notes constitutes an octave, and each octave contains 12 semitones of equal size.
With this information theoretically all the notes that can be played on the piano
can be generated with some symbol algebra involving logarithmic functions, with
some interpolations necessary to achieve more exact frequencies. AVAudioPlayer
needed to have an audio file in the library already loaded before the method call is
made, and the audio tones were all generated in MATLab (see appendix for code).

Frequency f of the nth key is given by: f(n) = (440)(2
n−49
12)

However, the open source SoundBankPlayer (developed by Matthijs Hollemans
and licensed under the terms MIT license) is a much more powerful class when
it comes to musical playback. It allows for a full 88 note representation without
needing 88 individual note files. The SoundBankPlayer can be seen as an middle
step between AVAudioPlayer and the ideal playback module, allowing convenient
playback.

Experimental Results

Figure 4 shows how the algorithm is negatively effected by low resolution images.
Many sample music sheets had to be omitted throughout the development process
because their low resolution were causing many problems that were solved upon
finding higher quality images.

5

Figure 4: The resolution of the image is 533 x 136. The resolution of the previous
images where the algorithms worked better was 912 x 391. When the input image
resolution was too low many random artifacts tended to appear on the page and
many symbols became skewed. It was experimentally determined that the target
image should be at least 900 pixels wide and should not have too many objects
on the page to avoid memory problems while still maintaining quality.

Discussion

Difficulties

While it may be rather juvenile, a rather legitimate source of frustration in the
project involved learning to use a Macintosh computer. Much time was dedicated
to wrestling with unresponsive controls, hotkeys that no longer worked, but most
importantly with the development software, Xcode. To develop software for iOS,
Apple requires all work to be done in Xcode, using the Objective-C language.
The learning curve was rather steep and frustrating at times.

Converting the MATLab code to Objective-C proved to be a large obstacle. MAT-
Lab is able to easily deal with large matrices and computations between them,
and so many functions and algorithms which were trivial to implement within
MATLab did not transfer over easily and caused many deadlines to be missed and
ultimately resulted in a considerable loss in efficacy. Moreover, Objective-C is
not the ideal platform for image processing, as all the images are resized relative
to the display and many outputs are distorted when working within Objective-C.
Many features that can be used for image recognition are lost in this process.

Lastly, when dealing with high resolution pictures, there were many times when
memory management was an unforeseen complication. This then caused certain
code to be recoded and better written or for the pictures to be downsampled so
the image sizes would be smaller, at the cost of losing quality and information.

6

Sources of Error

The project started under the assumption that the image to be read in was taken
under ideal situations: a perfectly rectangular sheet scanned at 300 DPI with
very high contrast and no extra noise. Yet reality is not so kind as to submit to
our assumptions and thus our sources of error came from anything that deviated
from our original assumption. If the paper was slightly rotated by even a few
degrees, the staff line detection histogram would be completely useless. If the
image had far too many shades of grey instead of binary black and white further
issues would come up. If there were random specks in the paper they would be
analysed, categorized, and add confusion to the outcome. The list goes on and
on, but hope is not all lost. There are plans for future work and extensions which
would provide solutions to these problems.

Future Work and Extension

Rectification

Since the project’s beginning there had been plans of implementing computer
vision in the form of image rectification in the project. The transformation re-
quired in rectification is obtained through 8 separate variables. These 8 variables
can be obtained by 4 distinct points, which each contribute 2 variables. This was
extremely easy to implement with MATLab functions maketform and imtrans-
form (See appendix for code). Essentially the code is solving a system of eight
linear equations to approximate eight values to get the transformation needed.
This feature has not been implemented within the iOS application due to it being
too time intensive to convert the code to Objective-C.

Figure 5: The four corners (selected in green) were chosen as points to estimate
the homography. The result gives an image with the original sheet music, but
now rendered horizontally and generally much more readable upon zooming in.

7

Figure 6: The performance of the rectification function, measured by how long
the function took in seconds to run versus the size of the image. The original
image size is 4320 x 3240, and subsequent downsampling does little to improve
the efficiency of the algorithm after the fourth iteration, as it seems to converge
to a value of approximately three seconds.

Refined Image Processing

There exist plans to improve the robustness of the program to combat the afore-
mentioned sources of error. Care needs to be taken, as the smallest of specks
can actually be a part of written music. For example, a small dot to the right of
a note increases the note length by half the original value, whereas a small dot
directly above or below the note actually decreases the note length, and a small
dot could easily be mistaken as noise by most filtering processes. It seemed to
make sense to include another image processing step after the recognition and
analysis portion of the program has been fully realized, as it should be easier
to distinguish between necessary and unnecessary information after the program
can guess what should or should not exist in the page.

Editable Music

Lastly the project has an end goal of achieving an editable sheet of music. This
feature deviates from the computer vision-centered focus of the project but is a
necessary feature of any music software. One of the main advantages of digitizing
music would be to be able to transpose the piece into a different key, as this is
a highly tedious process that could be easily done by a computer. Moreover

8

being able to change parameters such as tempo and instrument voices will also
be desirable features in any sort of musical application.

Synthesis Tool-kit for Playback

The playback portion of the project was originally planned to be realized by
utilizing the Synthesis toolkit Instrument Network Interface (SKINI). SKINI was
selected because it was designed to be MIDI compatible and accepts text as
input, while fully allowing the usage of many different instruments with many
easily variable parameters, such as dynamics and tempo.. The OMR application
would generate as an output MIDI note numbers (a number between 0 - 127 which
corresponds to a specific pitch), the note length (an eighth note, quarter note, half
note, etc.), and a tempo (which is fixed at 96 beats per minute for simplicity’s
sake unless otherwise specified) which would all be accepted and outputted in
any instrument and intensity desired. However, this feature did not manage to
make it into the project time frame but is expected to be incorporated in the
near future.

Current Trends in Robotics

Robotics has come a long way in the recent years. From commercial applications
such as an automated mobile vacuum cleaner to industrial advances in manufac-
turing to even military usage, the rate of growth for robotics has been nothing
short of amazing. Newer and newer technologies are always being tested and
developed to further advance the field of robotics and computer vision.

An example of particularly impressive applications of robotics lies in the field
of medical surgery . Minimally invasive surgery (MIS) is contrasted with open
surgery, opting to insert instruments into the patient’s body through a small in-
cision to perform the necessary operation. The advantages of MIS include faster
recovery, less physical trauma, more potential for teleoperation [4].

Surgeons are now able to utilize technology even more through the advances of
robotics and computer vision to aid in their MIS operations. The Wireless Hands-
Free Surgical Pointer (WHaSP) for MIS is a system developed which clearly
demonstrates the usefulness of computer vision in the medical field.

During a minimally invasive surgical operation, both the surgeon instructor and
the assistant trainee have to utilize both hands to operate surgical instruments.
Furthermore, each person often has their own display monitor which displays vi-
tal information from their instruments during the surgery. If both surgeons were
both experts, there would be no problem. However, for pedagogical purposes,

9

this is far from ideal. To aid in the training of MIS surgeons, the WHaSP system
was developed as a way for the instructor to point to multiple video monitors
without removing his/her hands from the instruments [8]. This system would
need to combine and utilize data from the headset trackers and the displays used
within the operating room to benefit the users. By tracking the headsets worn
by the instructor surgeon, a new way is opened for training newer surgeons in
the field of MIS.

In addition to research such as the WHaSP system, much work is being done for
the tracking of intrabody instruments. Current methods such as optical tracking
and electromagnetic tracking respectively require line of sight and lack of interfer-
ence from the many metallic instruments within the operating room. Therefore
an idea was proposed which would combine multiple sensors and data into one
integrated tracking system to enhance the current method of intrabody instru-
ment tracking [4].

As impressive as MIS is, it is not the end all be all of medical surgery advance-
ment. MIS removes all hand eye coordination due to the surgeons no longer being
able to see the physical points of contact and also the surgeons are deprived of
force feedback from their instruments. To further complicate things, many in-
struments used in MIS have very limited degrees of freedom and range of motion
due to how they have to fit through a very small incision to enter the body. To
address this issue, researchers are working on designing miniature modular in
vivo robots to increase the efficiency of MIS [7]. The complete system composes
of three separate modules: a camera with 2 degrees of freedom (DoFs), a retrac-
tion robot with 2 DoFs, and a manipulator with 6 DoFs. While the modules
themselves has not be fully manufactured, initial research shows that the theory
behind this concept is sound and the camera which has been manufactured does
indeed work as intended.

MIS suffers from another condition, but this condition is extremely common
in the world. Surgeons working in MIS suffer fatigue, much like many other
humans doing any sort of physical labor. Robotics replacing humans in doing
repetitive manual tasks has been around as long as the concept of robotics has
been, but to replace something as complicated as MIS is truly an impressive feat.
By combining position and imaging, researchers are able to keep the error of a
ceiling mounted robotic arm under 1.3mm [6]. This process of combining data
and utilizing computer vision (including the manipulation of various rotational
matrices) allows for up to four ceiling mounted mechanical arms to perform com-
plicated processes in an automated fashion.

Lastly, exciting work is being done in the field of microsurgery, as well as the
field of MIS. Microsurgery is simply defined as surgery requiring a microscope,

10

which in turn indicates a need for extreme precision. Some microsurgery opera-
tions requires manipulation of structures as small as 10 micrometers (such as the
thin retinal internal limiting membrane), but normal human surgeons typically
do not have precision needed, having involuntary hand motion that ranges to
several hundred micrometers [3]. The Micron handset aims to improve precision
by employing the same method of image stabilization in a camera and actuates
its own tip to balance the involuntary human hand movements. This handset
would be able to differentiate between the most minute hand movements and
give unprecedented control to surgeons operating in delicate operations.

Medical practices has progressed so much in recent times directly due to the
advances in robotics and computer vision. To think that there are currently de-
vices that can help a surgeon manipulate the smallest of structures would simply
be unfathomable even a few years ago. Without a doubt, robotics and computer
vision will continue to augment the capabilities of our doctors and surgeons in
the future, and contribute to the saving of countless lives.

References

[1] D. Bainbridge and T.C. Bell. Dealing with superimposed objects in optical
music recognition. In Image Processing and Its Applications, 1997., Sixth
International Conference on, volume 2, pages 756 –760 vol.2, jul 1997.

[2] Michael Kassler. Optical character-recognition of printed music: A review of
two dissertations. Perspectives of New Music, 11(1):pp. 250–254, 1972.

[3] R.A. MacLachlan, B.C. Becker, J. Cuevas Tabare ands, G.W. Podnar, L.A.
Lobes, and C.N. Riviere. Micron: An actively stabilized handheld tool for
microsurgery. Robotics, IEEE Transactions on, 28(1):195 –212, feb. 2012.

[4] Hongliang Ren, D. Rank, M. Merdes, J. Stallkamp, and P. Kazanzides. Mul-
tisensor data fusion in an integrated tracking system for endoscopic surgery.
Information Technology in Biomedicine, IEEE Transactions on, 16(1):106 –
111, jan. 2012.

[5] Florence Rossant. A global method for music symbol recognition in typeset
music sheets. Pattern Recognition Letters, 23(10):1129 – 1141, 2002.

[6] C. Staub, A. Knoll, T. Osa, and R. Bauernschmitt. Autonomous high pre-
cision positioning of surgical instruments in robot-assisted minimally inva-
sive surgery under visual guidance. In Autonomic and Autonomous Systems
(ICAS), 2010 Sixth International Conference on, pages 64 –69, march 2010.

11

[7] G. Tortora, A. Dimitracopoulos, P. Valdastri, A. Menciassi, and P. Dario. De-
sign of miniature modular in vivo robots for dedicated tasks in minimally inva-
sive surgery. In Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME
International Conference on, pages 327 –332, july 2011.

[8] C. D. W. Ward, A. L. Trejos, M. D. Naish, R. V. Patel, and C. M. Schlachta.
The whasp: A wireless hands-free surgical pointer for minimally invasive
surgery. Mechatronics, IEEE/ASME Transactions on, PP(99):1 –9, 2012.

[9] M. Williamson. Aiming for the moon: the engineering challenge of apollo.
Engineering Science and Education Journal, 11(5):164 – 172, oct 2002.

Appendix

MATLab Rectification Code

I = imread(’IMG_0004.jpg’);

% I = downsample(I,2) % downsamples the image and reduces size

% have to redo ginput after downsampling

tform = maketform(’projective’,[273 1059; 1773 423; 3963 987; 2979 2445],...

[0 0; 1 0; 1 1; 0 1]);

% the coordinates are obtained by using ginput and clicking on the corners

% of the sheet. Maketform then maps those points to corners on a square of

% length 1.

[B] = imtransform(I,tform,’bicubic’,’size’,size(I)+[250 50 0],’fill’,255);

figure, subplot(1,2,1), imshow(I), axis on

subplot(1,2,2), imshow(B), axis on

MATLab Tone Generation Code

Fs = 1000; % Samples per second

% Remember that samples needs to be double frequency for Nyquist

toneFreq = 440; % Tone frequency, in Hertz

nSeconds = 1; % Duration of the sound

y = sin(linspace(0,nSeconds*toneFreq*2*pi,round(nSeconds*Fs)));

%sound(y,Fs); % Play sound at sampling rate Fs

wavwrite(y,Fs,8,’440.wav’); % Save as an 8-bit, 1 kHz signal

Xcode ApplicationDelegate.m

#import "ApplicationDelegate.h"

#import "MainViewController.h"

12

@implementation ApplicationDelegate

@synthesize window;

@synthesize viewController;

#pragma mark -

#pragma mark Application lifecycle

/*!

* @discussion Override point for customization after application launch.

*/

- (BOOL)application: (UIApplication *)application didFinishLaunchingWithOptions: (NSDictionary *)launchOptions

{

(void)application;

(void)launchOptions;

[window addSubview: viewController.view];

[window makeKeyAndVisible];

return YES;

}

/*!

* @discussion Sent when the application is about to move from active to

* inactive state. This can occur for certain types of temporary

* interruptions (such as an incoming phone call or SMS message)

* or when the user quits the application and it begins the

* transition to the background state.

* Use this method to pause ongoing tasks, disable timers, and

* throttle down OpenGL ES frame rates. Games should use this

* method to pause the game.

*/

- (void)applicationWillResignActive: (UIApplication *)application

{

(void)application;

}

/*!

* @discussion Use this method to release shared resources, save user data,

* invalidate timers, and store enough application state

* information to restore your application to its current state

* in case it is terminated later.

* If your application supports background execution, called

13

* instead of applicationWillTerminate: when the user quits.

*/

- (void)applicationDidEnterBackground: (UIApplication *)application

{

(void)application;

}

/*!

* @discussion Called as part of transition from the background to the

* inactive state: here you can undo many of the changes made on

* entering the background.

*/

- (void)applicationWillEnterForeground: (UIApplication *)application

{

(void)application;

}

/*!

* @discussion Restart any tasks that were paused (or not yet started) while

* the application was inactive. If the application was previously

* in the background, optionally refresh the user interface.

*/

- (void)applicationDidBecomeActive: (UIApplication *)application

{

(void)application;

}

/*!

* @discussion Called when the application is about to terminate.

* See also applicationDidEnterBackground:.

*/

- (void)applicationWillTerminate: (UIApplication *)application

{

(void)application;

}

#pragma mark -

#pragma mark Memory management

/*!

* @discussion Free up as much memory as possible by purging cached data

* objects that can be recreated (or reloaded from disk) later.

*/

14

- (void)applicationDidReceiveMemoryWarning: (UIApplication *)application

{

(void)application;

}

/*!

* @discussion Called when the object is freed by the Objective-C runtime

*/

- (void)dealloc

{

[viewController release];

[window release];

[super dealloc];

}

@end

XCode fastmatch.m

//

// fastmatch.m

// OpenCV-iPhone

//

// Created by Yung-Ho Chang on 4/9/12.

// Copyright (c) 2012 __MyCompanyName__. All rights reserved.

//

#import "fastmatch.h"

#include "MyCvPoint.h"

@implementation fastmatch

-(Boolean) FastMatchTemplate:(const IplImage *) source: (const IplImage*) target: (NSMutableArray *) foundPointList: (NSMutableArray *) confideenceList{

BOOL findMultipleTargets = true;

int matchPercentage = 70;

int numMax = 4;

int numDownPyrs = 4;

int searchExpansion =15;

IplImage *target_temp, *source_temp;

printf("larger source.width=%d source.height=%d target.width=%d target.height=%d\n\n", source->width, source->height, target->width, target->height);

//resize source if target is larger

if((source->width<target->width) ||(source->height<target->height)){

printf("a\n");

int target_width = target->width, target_height = target->height;

15

while((source->width<target_width) ||(source->height<target_height)){

target_height = target_height/2;

target_width = target_width /2;

}

target_temp = cvCreateImage(cvSize(target_width, target_height), IPL_DEPTH_8U, 1);

cvResize(target, target_temp, CV_INTER_LINEAR);

}

else{

target_temp = cvCloneImage(target);

}

source_temp = cvCloneImage(source);

printf("resize over\n");

if(source->depth != target_temp->depth || source->nChannels != target_temp->nChannels){

target_temp = cvCreateImage(cvGetSize(target), IPL_DEPTH_8U, 1);

cvCvtColor(target, target_temp, CV_BGR2GRAY);

cvThreshold(target_temp, target_temp, 128, 255, CV_THRESH_BINARY|CV_THRESH_OTSU);

}

CvSize sourceSize = cvGetSize(source_temp);

CvSize targetSize = cvGetSize(target_temp);

int depth = source->depth;

int numChannels = source->nChannels;

//Create copies of images so we can modify

IplImage* sourceCopy = cvCloneImage(source_temp);

IplImage* targetCopy = cvCloneImage(target_temp);

//Down pyramid

for(int count = 0; count< numDownPyrs; count++){

//soruce image part

sourceSize.width /=2;

sourceSize.height/=2;

IplImage* smallSource=NULL;

smallSource = cvCreateImage(sourceSize, depth, numChannels);

cvPyrDown(sourceCopy, smallSource, CV_GAUSSIAN_5x5);

cvReleaseImage(&sourceCopy);

sourceCopy = cvCloneImage(smallSource);

16

cvReleaseImage(&smallSource);

targetSize.width/=2;

targetSize.height/=2;

IplImage* smallTarget =NULL;

smallTarget = cvCreateImage(targetSize, depth, numChannels);

cvPyrDown(targetCopy, smallTarget, CV_GAUSSIAN_5x5);

cvReleaseImage(&targetCopy);

targetCopy = cvCloneImage(smallTarget);

cvReleaseImage(&smallTarget);

}

//perfrom the match on shrunken images

CvSize smallTargetSize = cvGetSize(targetCopy);

CvSize smallSourceSize = cvGetSize(sourceCopy);

CvSize resultSize;

resultSize.width= smallSourceSize.width-smallTargetSize.width+1;

resultSize.height=smallSourceSize.height-smallTargetSize.height+1;

IplImage *result = cvCreateImage(resultSize, IPL_DEPTH_32F, 1);

cvMatchTemplate(sourceCopy, targetCopy, result, CV_TM_CCOEFF_NORMED);

//release memory

cvReleaseImage(&sourceCopy);

cvReleaseImage(&targetCopy);

//find top match locations

NSMutableArray *locations = [[NSMutableArray alloc] initWithCapacity:numMax];

//CvPoint *locations[numMax];

printf("location\n");

[self MultipleMaxLoc: result :locations :numMax];

cvReleaseImage(&result);

//search the large image at return locations

sourceSize = cvGetSize(source_temp);

targetSize = cvGetSize(target_temp);

printf("size = %d\n", [locations count]);

17

//create a copy of source in order to adjust ROI for search

IplImage *searchImage = cvCloneImage(source_temp);

for(int currMax =0; currMax<numMax; currMax++){

//transform point ot its coressponding point in larger image

MyCvPoint *temp = [locations objectAtIndex:currMax];

//CvPoint *temp = locations[currMax];

int temp_x = temp.getX*(int)pow(2, numDownPyrs);

int temp_y = temp.getY*(int)pow(2, numDownPyrs);

temp_x+= targetSize.width/2;

temp_y+= targetSize.height/2;

[temp setX:temp_x];

[temp setY:temp_y];

[locations replaceObjectAtIndex:currMax withObject:temp];

printf("location area\n");

const MyCvPoint *searchPoint = [locations objectAtIndex:currMax];

//if we are searching for multiple targets and we have found a target or multiple targets, we don’t search at same locations again

if([foundPointList count] != 0 && findMultipleTargets)

{

Boolean thisTargetFound = false;

int numPoint = [foundPointList count];

for(int currPoint = 0; currPoint<numPoint; currPoint++)

{

const MyCvPoint *foundPoint = [foundPointList objectAtIndex:currPoint];

if(abs(searchPoint.getX-foundPoint.getX)<=searchExpansion*2 &&abs(searchPoint.getY-foundPoint.getY)<=searchExpansion*2){

thisTargetFound=true;

break;

}

}

//if current targe is found, continue to next point

if(thisTargetFound)

{

continue;

}

}

printf("location2\n");

//Set source image’s ROI to slightly larger than target image, center at current point

CvRect searchRoi;

searchRoi.x = searchPoint.getX-(target_temp->width)/2-searchExpansion;

searchRoi.y = searchPoint.getY-(target_temp->height)/2-searchExpansion;

searchRoi.width=target_temp->width+searchExpansion*2;

18

searchRoi.height=target_temp->height+searchExpansion*2;

//make sure ROI doesn’t extend outside

if(searchRoi.x<0){

searchRoi.x=0;

}

if(searchRoi.y<0){

searchRoi.y=0;

}

if((searchRoi.x+searchRoi.width)>(sourceSize.width-1)){

int numPixelsOver=(searchRoi.x+searchRoi.width)-(sourceSize.width-1);

searchRoi.width-=numPixelsOver;

}

if((searchRoi.y+searchRoi.height)>(sourceSize.height-1)){

int numPixelsOver=(searchRoi.y+searchRoi.height)-(sourceSize.height-1);

searchRoi.height-=numPixelsOver;

}

cvSetImageROI(searchImage, searchRoi);

printf("search larger image\n");

//perform the search on larger images

resultSize.width = searchRoi.width-target_temp->width+1;

resultSize.height= searchRoi.height-target_temp->height+1;

result = cvCreateImage(resultSize, IPL_DEPTH_32F, 1);

printf("cvmatchtemplate start\n");

cvMatchTemplate(searchImage, target_temp, result, CV_TM_CCOEFF_NORMED);

printf("cvmatchtemplate end\n");

cvResetImageROI(searchImage);

//find the best match location

double minValue, maxValue;

CvPoint minLoc, maxLoc;

cvMinMaxLoc(result, &minValue, &maxValue, &minLoc, &maxLoc, NULL);

maxValue*=100;

//transform point back to original image

maxLoc.x+= searchRoi.x + target_temp->width/2;

maxLoc.y+= searchRoi.y+target_temp->height/2;

cvReleaseImage(&result);

19

printf("matchPercentage area\n");

if(maxValue>=matchPercentage){

//add point to the list

MyCvPoint *temp2;

temp2 = [[MyCvPoint alloc] init:maxLoc.x :maxLoc.y];

[foundPointList addObject:temp2];

NSNumber *num = [NSNumber numberWithDouble:maxValue];

[confideenceList addObject:num];

if(! findMultipleTargets){

break;

}

}

}

if([foundPointList count]==0){

printf("\nTarget was not found to reuqired confidence of %d.\n",matchPercentage);

[locations release];

cvReleaseImage(&searchImage);

cvReleaseImage(&target_temp);

cvReleaseImage(&source_temp);

return false;

}

[locations release];

cvReleaseImage(&searchImage);

cvReleaseImage(&target_temp);

cvReleaseImage(&source_temp);

return true;

}

-(void) MultipleMaxLoc:(const IplImage*) image: (NSMutableArray*) locations:(int) numMax{

//locations = [[NSMutableArray alloc] initWithCapacity:numMax];

printf("Multi start\n");

for(int count=0; count<numMax; count++){

MyCvPoint *start_temp;

start_temp = [[MyCvPoint alloc] init:0 :0];

[locations addObject:start_temp];

}

//create array for track maxima

double maxima[numMax];

for(int i=0; i<numMax; i++){

20

maxima[i] = 0.0;

}

//extract raw data for analysis

float* data;

int step;

CvSize size;

cvGetRawData(image, (uchar**)&data, &step, &size);

step/= sizeof(data[0]);

printf("getData end\n");

for(int y=0; y<size.height; y++, data= data+step)

{

//printf("y\n");

for(int x=0; x<size.width;x++)

{

//printf("x\n");

for(int j=0; j<numMax; j++){

//printf("j data[x]=%f maxima[j]=%f\n", data[x], maxima[j]);

if(data[x] > maxima[j]){

for (int k=numMax-1; k>j; k--) {

printf("k=%d, k-1=%d\n", k, k-1);

maxima[k]=maxima[k-1];

[locations exchangeObjectAtIndex:k withObjectAtIndex:k-1];

}

//insert value

maxima[j] = (double) data[x];

MyCvPoint *temp;

temp = [[MyCvPoint alloc] init:x :y];

[locations replaceObjectAtIndex:j withObject:temp];

printf("ha\n");

break;

}

}

}

21

}

printf("end\n");

}

@end

XCode MainViewController.m

#import "MainViewController.h"

#import <opencv/cv.h>

#import "note.h"

#import "fastmatch.h"

#import "MyCvSurfPoint.h"

#import "MyCvSurfPoint2.h"

#import "Myfloat.h"

#import "MyIpl.h"

#import "MySheet.h"

#import <QuartzCore/CABase.h>

@implementation MainViewController

@synthesize theimageView, choosePhoto, takePhoto, test;

//Music playback function

#pragma mark -

#pragma mark OpenCV Support Methods

- (IplImage *)CreateIplImageFromUIImage:(UIImage *)image {

CGImageRef imageRef = image.CGImage;

CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

IplImage *iplimage = cvCreateImage(cvSize(image.size.width, image.size.height), IPL_DEPTH_8U, 4);

CGContextRef contextRef = CGBitmapContextCreate(iplimage->imageData, iplimage->width, iplimage->height,

iplimage->depth, iplimage->widthStep,

colorSpace, kCGImageAlphaPremultipliedLast|kCGBitmapByteOrderDefault);

CGContextDrawImage(contextRef, CGRectMake(0, 0, image.size.width, image.size.height), imageRef);

CGContextRelease(contextRef);

CGColorSpaceRelease(colorSpace);

IplImage *ret = cvCreateImage(cvGetSize(iplimage), IPL_DEPTH_8U, 3);

22

cvCvtColor(iplimage, ret, CV_RGBA2BGR);

cvReleaseImage(&iplimage);

return ret;

}

// NOTE You should convert color mode as RGB before passing to this function

- (UIImage *)UIImageFromIplImage:(IplImage *)image {

NSLog(@"IplImage (%d, %d) %d bits by %d channels, %d bytes/row %s", image->width, image->height, image->depth, image->nChannels, image->widthStep, image->channelSeq);

CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

NSData *data = [NSData dataWithBytes:image->imageData length:image->imageSize];

CGDataProviderRef provider = CGDataProviderCreateWithCFData((CFDataRef)data);

CGImageRef imageRef = CGImageCreate(image->width, image->height,

image->depth, image->depth * image->nChannels, image->widthStep,

colorSpace, kCGImageAlphaNone|kCGBitmapByteOrderDefault,

provider, NULL, false, kCGRenderingIntentDefault);

UIImage *ret = [UIImage imageWithCGImage:imageRef];

CGImageRelease(imageRef);

CGDataProviderRelease(provider);

CGColorSpaceRelease(colorSpace);

return ret;

}

-(IplImage *) CreateIplImageFromUIImageGray: (UIImage *) input_image{

IplImage *temp = [self CreateIplImageFromUIImage:input_image];

IplImage *result = cvCreateImage(cvGetSize(temp), IPL_DEPTH_8U, 1);

cvCvtColor(temp, result, CV_BGR2GRAY);

cvThreshold(result, result, 90, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);

cvReleaseImage(&temp);

return result;

}

//init

- (void)playArpeggioWithNotes:(NSMutableArray*)notes delay:(double)delay

{

if (!playingArpeggio)

{

playingArpeggio = YES;

arpegioNotes = [notes retain];

arpeggioIndex = 0;

arpeggioDelay = delay;

arpeggioStartTime = CACurrentMediaTime();

}

23

}

- (void)startTimer

{

timer = [NSTimer scheduledTimerWithTimeInterval: 0.05 // 50 ms

target: self

selector: @selector(handleTimer:)

userInfo: nil

repeats: YES];

}

- (void)stopTimer

{

if (timer != nil && [timer isValid])

{

[timer invalidate];

timer = nil;

}

}

- (void)handleTimer:(NSTimer*)timer

{

if (playingArpeggio)

{

// Play each note of the arpeggio after "arpeggioDelay" seconds.

double now = CACurrentMediaTime();

if (now - arpeggioStartTime >= arpeggioDelay)

{

NSNumber* number = (NSNumber*)[arpegioNotes objectAtIndex:arpeggioIndex];

[player noteOn:[number intValue] gain:0.4f];

++arpeggioIndex;

if (arpeggioIndex == [arpegioNotes count])

{

playingArpeggio = NO;

[arpegioNotes release];

arpegioNotes= nil;

}

else // schedule next note

{

arpeggioStartTime = now;

}

}

24

}

}

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil

{

if ((self = [super initWithNibName:nibNameOrNil bundle:nibNameOrNil]))

{

playingArpeggio = NO;

// Create the player and tell it which sound bank to use.

player = [[SoundBankPlayer alloc] init];

[player setSoundBank:@"Piano"];

// We use a timer to play arpeggios.

[self startTimer];

}

return self;

}

#pragma mark -

#pragma mark Utilities for intarnal use

-(IplImage *) cvSubImage:(IplImage *) img : (int) x: (int) y: (int) width: (int) height{

CvRect r;

IplImage *sub = cvCreateImage(cvSize(width, height), img->depth, img->nChannels);

r = cvRect(x, y, width, height);

cvSetImageROI(img, r);

sub = cvCloneImage(img);

r=cvRect(0, 0, img->width, img->height);

cvSetImageROI(img, r);

return sub;

}

//For Surf usage

-(double) compareSURFDescriptors:(const float*) image1Descriptor: (const float*) image2Descriptor: (int) descriptorscount: (float) lastMinSquaredDistance{

double totalCost =0;

for (int i =0; i<descriptorscount; i+=4) {

float descriptor1[4] = {image1Descriptor[i+0], image1Descriptor[i+1], image1Descriptor[i+2], image1Descriptor[i+3]};

float descriptor2[4] = {image2Descriptor[i+0], image2Descriptor[i+1], image2Descriptor[i+2], image2Descriptor[i+3]};

float descriptor3[4] = {descriptor2[0]-descriptor1[0], descriptor2[1]-descriptor1[1], descriptor2[2]-descriptor1[2], descriptor2[3]-descriptor1[1]};

totalCost += descriptor3[0]*descriptor3[0]+descriptor3[1]*descriptor3[1]+descriptor3[2]*descriptor3[2]+descriptor3[3]*descriptor3[3];

if(totalCost>lastMinSquaredDistance)

25

break;

}

return totalCost;

}

-(int) findNaiveNearestNeighbor:(const float*) image1Descriptor:(const CvSURFPoint*) image1KeyPoint:(CvSeq*) image2Descriptors:(CvSeq*) image2KeyPoints {

int descriptorCount = (int)(image2Descriptors->elem_size/sizeof(float));

//numeric_limits<double>::max() = 1.79769*pow(10,308)

double minSquaredDistance = 1.79769* pow(10, 308);

double lastMinSquaredDistance = 1.79769* pow(10, 308);

int neighbor;

for(int i =0; i<image2Descriptors->total; i++){

const CvSURFPoint* image2KeyPoint = (const CvSURFPoint*) cvGetSeqElem(image2KeyPoints, i);

const float* image2Descriptor = (const float*) cvGetSeqElem(image2Descriptors, i);

if (image1KeyPoint->laplacian!= image2KeyPoint->laplacian){

continue;

}

double squaredDistance =[self compareSURFDescriptors:image1Descriptor :image2Descriptor :descriptorCount :lastMinSquaredDistance];

if(squaredDistance<minSquaredDistance){

neighbor =i;

lastMinSquaredDistance = minSquaredDistance;

minSquaredDistance = squaredDistance;

}

else{

if(squaredDistance<lastMinSquaredDistance){

lastMinSquaredDistance = squaredDistance;

}

}

}

if(minSquaredDistance<0.7*lastMinSquaredDistance){

return neighbor;

}

return -1;

}

-(void) temposort: (IplImage *) source: (note*) source_note{

//printf("tempsort start\n");

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

26

CvMemStorage *storage = cvCreateMemStorage(0);

UIImage *gclef = [UIImage imageNamed:@"GClef.jpg"];

UIImage *quarter = [UIImage imageNamed:@"quarter_note.jpg"];

UIImage *half = [UIImage imageNamed:@"half_note.jpg"];

//convert to Ipliamge

IplImage *temp_GClef = [self CreateIplImageFromUIImageGray:gclef];

IplImage *temp_quarter = [self CreateIplImageFromUIImageGray:quarter];

IplImage *temp_half = [self CreateIplImageFromUIImageGray:half];

CvSeq *GClef_keypoints, *quarter_keypoints, *half_keypoints;

CvSeq *GClef_descriptors, *quarter_descriptors, *half_descriptors;

CvSURFParams params = cvSURFParams(500, 1);

cvExtractSURF(temp_GClef, 0, &GClef_keypoints, &GClef_descriptors, storage, params, 0);

cvExtractSURF(temp_quarter, 0, &quarter_keypoints, &quarter_descriptors, storage, params, 0);

cvExtractSURF(temp_half, 0, &half_keypoints, &half_descriptors, storage, params, 0);

//using cvExtractSurf

CvSeq* image1Keypoints;

CvSeq* image1Descriptors;

CvSeq* image2Keypoints;

CvSeq* image2Descriptors;

//only value with a hessian greater than 500 are consider as keypoint

cvExtractSURF(source, 0, &image1Keypoints, &image1Descriptors, storage, params, 0);

cvExtractSURF(temp_half, 0, &image2Keypoints, &image2Descriptors, storage, params,0);

//find matching keypoint in both image

NSMutableArray *matchlist1= [[NSMutableArray alloc] init];

NSMutableArray *matchlist2 = [[NSMutableArray alloc] init];

NSMutableArray *gclefmatchlist = [[NSMutableArray alloc] init];

NSMutableArray *quartermatchlist = [[NSMutableArray alloc] init];

NSMutableArray *halfmatchlist = [[NSMutableArray alloc] init];

for(int i=0; i<image1Descriptors->total; i++){

const CvSURFPoint* image1KeyPoint = (const CvSURFPoint*) cvGetSeqElem(image1Keypoints, i);

const float* image1Descriptor = (const float*) cvGetSeqElem(image1Descriptors, i);

int nearestNeighbor = [self findNaiveNearestNeighbor:image1Descriptor :image1KeyPoint :image2Descriptors :image2Keypoints];

int nearest_gclef = [self findNaiveNearestNeighbor:image1Descriptor :image1KeyPoint :GClef_descriptors :GClef_keypoints];

int nearest_quarter = [self findNaiveNearestNeighbor:image1Descriptor: image1KeyPoint:quarter_descriptors :quarter_keypoints];

int nearest_half = [self findNaiveNearestNeighbor:image1Descriptor :image1KeyPoint :half_descriptors :half_keypoints];

MyCvSurfPoint* check;

CvSURFPoint* check_point;

27

if(nearest_gclef!= -1){

check_point = (CvSURFPoint*) cvGetSeqElem(GClef_keypoints, nearest_gclef);

check = [[MyCvSurfPoint alloc] init_point:check_point->pt];

[gclefmatchlist addObject:check];

}

if(nearest_quarter !=-1){

check_point = (CvSURFPoint*) cvGetSeqElem(quarter_keypoints, nearest_quarter);

check = [[MyCvSurfPoint alloc] init_point:check_point->pt];

[quartermatchlist addObject:check];

}

if(nearest_half !=-1){

check_point = (CvSURFPoint*) cvGetSeqElem(half_keypoints, nearest_half);

check = [[MyCvSurfPoint alloc] init_point:check_point->pt];

[halfmatchlist addObject:check];

}

if(nearestNeighbor == -1){

continue;

}

MyCvSurfPoint *temp_surfPoint;

CvSURFPoint* temp_s = (CvSURFPoint*) cvGetSeqElem(image1Keypoints, i);

temp_surfPoint = [[MyCvSurfPoint alloc] init_point:temp_s->pt];

MyCvSurfPoint *temp_surfPoint2;

CvSURFPoint* temp_s2 = (CvSURFPoint*)cvGetSeqElem(image2Keypoints, nearestNeighbor);

temp_surfPoint2 = [[MyCvSurfPoint alloc] init_point:temp_s2->pt];

[matchlist1 addObject:temp_surfPoint];

[matchlist2 addObject:temp_surfPoint2];

}

//find maxima of matches

int count_queue[3]={[gclefmatchlist count], [quartermatchlist count], [halfmatchlist count]};

int count_queue_max = count_queue[0];

for(int count = 0; count<3; count++){

if(count_queue[count]>count_queue_max){

count_queue_max = count_queue[count];

}

}

//calculate ratio and display

NSMutableString *type;

28

type = [NSMutableString stringWithString:@"Don’t know\n"];

if([gclefmatchlist count] == count_queue_max){

type = [NSMutableString stringWithString:@"Gclef\n"];

printf("surf count=%d, counti=%d counti1=%d\n", [matchlist1 count], image1Descriptors->total, GClef_descriptors->total);

int center_x = source_note.getX;

if(center_x >= 0.1*source->width){

type = [NSMutableString stringWithString:@"Quarter or Half Note\n"];

}

}

if([quartermatchlist count] ==count_queue_max){

type = [NSMutableString stringWithString:@"Quarter or Half Note\n"];

printf("surf count=%d, counti=%d counti1=%d\n", [matchlist1 count], image1Descriptors->total, quarter_descriptors->total);

}

if([halfmatchlist count] == count_queue_max){

type = [NSMutableString stringWithString:@"Quarter or Half Note\n"];

printf("surf count=%d, counti=%d counti1=%d\n", [matchlist1 count], image1Descriptors->total, half_descriptors->total);

}

//There has been problem since the low resolution of images, causes each note has low number of descriptors

//It has been difficult to determine which is half note and which is whole note.

//I have create a code that check the how thick is the black pixel, if it is <10% of image height then it is half note, if it is then it is a quarter note

if([type isEqualToString:@"Quarter or Half Note\n"]){

IplImage *type_temp = [source_note getImg];

int image_width = [source_note getW];

int image_height =[source_note getL];

int center_x = image_width/2;

int darkpixelcount = 0;

int darkwhiteocc = 0;

int whtiedarkocc = 0;

int current=0, previous=-1;

for(int temp_count = 0; temp_count<image_height; temp_count++){

CvScalar check = cvGet2D(type_temp, temp_count, center_x);

if(check.val[0]==0){

current = 1;

darkpixelcount++;

}

if(check.val[0]==255){

current = 0;

darkpixelcount=0;

}

if(previous==1 && current==0){

29

darkwhiteocc++;

}

if(previous==0 && current==1){

whtiedarkocc++;

}

previous = current;

}

if(darkpixelcount <= image_height*0.1|| whtiedarkocc>1){

type = [NSMutableString stringWithString:@"Half Note\n"];

if(darkwhiteocc>=4){

type = [NSMutableString stringWithString:@"Gclef\n"];

}

}

else{

type = [NSMutableString stringWithString:@"Quarter Note\n"];

//Detecting Bar

//During our testing, there seem that bar share same feature with quarter and half note, which often it got group with them. By contrast the width of extracted image, we able to identify the bar line.

if(darkpixelcount >=0.6*image_height){

type = [NSMutableString stringWithString:@"Bar line\n"];

}

if(darkwhiteocc>=4){

type = [NSMutableString stringWithString:@"Gclef\n"];

}

}

}

//locating missing gclef

if([type isEqualToString:@"Quarter Note\n"] || [type isEqualToString:@"Half Note\n"]){

IplImage *type_temp2 = [source_note getImg];

int image_width = [source_note getW];

int image_height =[source_note getL];

int center_x = image_width/2;

int darkpixelcount = 0;

int darkwhiteocc = 0;

int whtiedarkocc = 0;

int count_distance_bot = 0;

int count_distance_top = 0;

Boolean bol_check_top= false;

Boolean bol_check_bot= false;

30

int current=0, previous=-1;

for(int temp_count = 0; temp_count<image_height; temp_count++){

CvScalar check = cvGet2D(type_temp2, temp_count, center_x);

if(check.val[0]==0){

current = 1;

darkpixelcount++;

}

if(check.val[0]==255){

current = 0;

darkpixelcount=0;

}

if(previous==1 && current==0){

darkwhiteocc++;

}

if(previous==0 && current==1){

whtiedarkocc++;

}

if(temp_count==0 && current==1){

bol_check_top = TRUE;

}

if(temp_count>image_height*0.5 && whtiedarkocc==1){

bol_check_bot = TRUE;

}

if(bol_check_bot){

count_distance_bot++;

}

if(bol_check_top){

count_distance_top++;

}

if(darkwhiteocc == 2){

bol_check_top = FALSE;

}

if(whtiedarkocc==2){

bol_check_bot = FALSE;

}

previous = current;

}

if([type isEqualToString:@"Quarter Note\n"])

{

if(whtiedarkocc==1){

int temp_pix_y = source_note.getMaxY- (darkpixelcount/2);

[source_note setPitch_y:temp_pix_y];

31

}

if(darkwhiteocc==1){

int temp_pix_y = source_note.getMinX +(darkpixelcount/2);

[source_note setPitch_y:temp_pix_y];

}

}

if([type isEqualToString:@"Half Note\n"]){

if(count_distance_top>count_distance_bot){

int temp_pix_y = source_note.getMinY- (count_distance_top/2);

[source_note setPitch_y:temp_pix_y];

}

else{

int temp_pix_y =source_note.getMaxY-(count_distance_bot/2);

[source_note setPitch_y:temp_pix_y];

}

}

}

[source_note setType:type];

cvReleaseMemStorage(&storage);

[pool release];

}

-(IplImage *) mypaint: (IplImage *) img :(NSInteger) r: (NSInteger) c{

//Convert to binary

IplImage *im_bw = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);

cvThreshold(img, im_bw, 90, 255, CV_THRESH_BINARY);

IplImage *bw_out = cvCloneImage(im_bw);

int M = bw_out->width;

int neighbor_offsets[4]= {-1, M, 1, -M};

NSMutableArray *active_pixels;

active_pixels = [[NSMutableArray alloc] init];

int temp_loc = r*M+c+1;

[active_pixels addObject:[NSNumber numberWithInt:temp_loc]];

CvScalar s = cvScalar(255,0,0,0);

while([active_pixels count]!=0){

NSMutableArray *active_temp;

32

active_temp =[[NSMutableArray alloc] init];

for(int count=0; count<[active_pixels count]; count++){

int temp_loc2 = [[active_pixels objectAtIndex:count] intValue];

int temp_r = 0;

if(temp_loc2>M){

temp_r=temp_loc2/M;

}

int temp_c = temp_loc2-M*temp_r;

cvSet2D(bw_out, temp_r, temp_c, s);

//The new active pixels list is the set of neighbbors of current list

//Paintbuckets

for(int M_count =0; M_count<4; M_count++){

int temp = neighbor_offsets[M_count]+temp_loc2;

[active_temp addObject:[NSNumber numberWithInt:temp]];

}

}

[active_pixels removeAllObjects];

for(int count2=0; count2<[active_temp count]; count2++){

int check = [[active_temp objectAtIndex:count2] intValue];

int check_r=0;

if(check>M){

check_r = check/M;

}

int check_c = check-M*check_r;

if(check_c < bw_out->width && check_r < bw_out->height && check_c>=0 && check_r>=0)

{

//remove from active_pixels list pixels that are already 1.

//We keep the flood fill operation "inside" of white boundaries

CvScalar Check_s = cvGet2D(bw_out, check_r, check_c);

if(Check_s.val[0]== 0){

[active_pixels addObject:[NSNumber numberWithInt:[[active_temp objectAtIndex:count2] intValue]]];

}

}

}

[active_temp release];

//Remove duplicates from the list

33

NSArray *copy = [active_pixels copy];

NSInteger index = [copy count] -1;

for(id object in [copy reverseObjectEnumerator]){

if([active_pixels indexOfObject: object inRange: NSMakeRange(0, index)]!=NSNotFound){

[active_pixels removeObjectAtIndex:index];

}

index--;

}

[copy release];

}

IplImage *bw_out2= cvCreateImage(cvSize(bw_out->width, bw_out->height), IPL_DEPTH_8U, 1);

cvCopy(bw_out, bw_out2, NULL);

cvResetImageROI(bw_out);

return bw_out2;

}

-(void)imageProc {

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

if(theimageView.image) {

cvSetErrMode(CV_ErrModeParent);

//create grayscale IplImage from UIImage

/*IplImage *img_color = [self CreateIplImageFromUIImage:theimageView.image];

IplImage *img = cvCreateImage(cvGetSize(img_color), IPL_DEPTH_8U, 1);

cvCvtColor(img_color, img, CV_BGR2GRAY);

cvReleaseImage(&img_color);

//Convert gray scale to binary

cvThreshold(img, img, 90, 255, CV_THRESH_BINARY);

*/

UIImage *grace = [UIImage imageNamed:@"wordlesstwinkle.jpg"];

IplImage *img = [self CreateIplImageFromUIImageGray:grace];

int temp [img->height];

int count=0;

//Count number of black pixel in each row

for(int y=0; y < img->height; y++){

for(int x=0; x < img->width; x++){

CvScalar s = cvGet2D(img, y, x);

if(s.val[0]==0){

count =count+1;

34

}

}

temp[y]=count;

count=0;

}

MySheet *sheet= [[MySheet alloc] init_note];

//Remove staff line

for(int tempcount=0;tempcount<img->height-1; tempcount++){

if(temp[tempcount]>0.5*img->width){

[sheet addstaff:tempcount];

for(int tempcount2=0; tempcount2<img->width; tempcount2++){

uchar * ptr2 = cvPtr2D(img, tempcount, tempcount2, NULL);

if(ptr2[0] < 127){

uchar * ptr21 = cvPtr2D(img, tempcount-1, tempcount2, NULL);

uchar * ptr22 = cvPtr2D(img, tempcount+1, tempcount2, NULL);

if(ptr21[0]>127||ptr22[0]>127){

CvScalar s2 = cvScalar(255,0,0,0);

cvSet2D(img, tempcount, tempcount2, s2);

}

}

}

}

}

IplImage * temp_image = cvCloneImage(img);

IplImage *imagedata[1000];

//Recount the black pixel;

for(int i = 0; i < temp_image->height; i++){

for(int j=0; j < temp_image->width; j++){

CvScalar scheck= cvGet2D(temp_image, i, j);

if(scheck.val[0]==0){

count = count+1;

temp_image = [self mypaint:temp_image: i: j];

imagedata[count-1]=temp_image;

}

}

}

IplImage *difference [1000];

note *note_data[1000];

temp_image = cvCloneImage(img);

35

//Extraction

int max_x, max_y, min_x, min_y;

IplImage *temp_note;

for(int k=0; k < count; k++){

max_x =0; max_y=0; min_x = temp_image->width; min_y=temp_image->height;

difference[k] = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);

if(k==0)

{

for(int diff_y=0; diff_y<temp_image->height; diff_y++){

for(int diff_x=0; diff_x<temp_image->width; diff_x++){

CvScalar check_diff=cvGet2D(temp_image, diff_y, diff_x);

CvScalar check_diff2=cvGet2D(imagedata[0], diff_y, diff_x);

if(check_diff.val[0]==0 && check_diff2.val[0]==255){

CvScalar img_pix = cvScalar(0, 0, 0, 0);

if(diff_x>=max_x){

max_x = diff_x;

}

if(diff_x<=min_x){

min_x = diff_x;

}

if(diff_y>=max_y){

max_y = diff_y;

}

if(diff_y<=min_y){

min_y = diff_y;

}

cvSet2D(difference[k], diff_y, diff_x, img_pix);

}

else{

CvScalar img_pix2 = cvScalar(255, 0, 0, 0);

cvSet2D(difference[k], diff_y, diff_x, img_pix2);

}

}

}

note_data[k]=[[note alloc] initWithCoord:max_x :min_x :max_y :min_y];

temp_note = [self cvSubImage:difference[k]: min_x: min_y: [note_data[k] getW]: [note_data[k] getL]];

[note_data[k] setImg:temp_note];

cvReleaseImage(&temp_note);

}

else

{

for(int diff_y2=0; diff_y2<img->height; diff_y2++){

36

for(int diff_x2=0; diff_x2<img->width; diff_x2++){

CvScalar check_diff3=cvGet2D(imagedata[k], diff_y2, diff_x2);

CvScalar check_diff4=cvGet2D(imagedata[k-1], diff_y2, diff_x2);

if(check_diff3.val[0]==255 && check_diff4.val[0]==0){

CvScalar img_pix3 = cvScalar(0, 0, 0, 0);

if(diff_x2>=max_x){

max_x = diff_x2;

}

if(diff_x2<=min_x){

min_x = diff_x2;

}

if(diff_y2>=max_y){

max_y = diff_y2;

}

if(diff_y2<=min_y){

min_y = diff_y2;

}

cvSet2D(difference[k], diff_y2, diff_x2, img_pix3);

}

else{

CvScalar img_pix4 = cvScalar(255, 0, 0, 0);

cvSet2D(difference[k], diff_y2, diff_x2, img_pix4);

}

}

}

note_data[k]=[[note alloc] initWithCoord:max_x :min_x :max_y :min_y];

temp_note = [self cvSubImage:difference[k]: min_x: min_y: [note_data[k] getW]: [note_data[k] getL]];

[note_data[k] setImg:temp_note];

cvReleaseImage(&temp_note);

}

}

IplImage *data_temp;

data_temp = [note_data[0] getImg];

int index_num =5;

//index 0 = gclef, 5 = half note, 8 = quarter note

img = cvCloneImage(difference[index_num]);

[self temposort:difference[index_num] : note_data[index_num]];

37

NSMutableString *tempString = [note_data[index_num] getType];

NSLog(@"Type=%@\n", tempString);

for(int count_temp=0; count_temp< count;count_temp++){

[self temposort:difference[count_temp]: note_data[count_temp]];

[note_data[count_temp] setDiff:difference[count_temp]];

[sheet addNote:note_data[count_temp]];

tempString = [note_data[count_temp] getType];

}

[sheet sort];

[sheet getPitchlist];

NSMutableArray *pitcharray=[[NSMutableArray alloc] init];

for(int count =0; count <[sheet getSize]; count++){

note *temp_note = [sheet getNote:count];

[pitcharray addObject:[NSNumber numberWithInt:[temp_note getPitch]]];

}

[self playArpeggioWithNotes:pitcharray delay:0.06];

NSMutableArray *MyUIImag = [[NSMutableArray alloc] init];

for(int temp_count=0; temp_count<[sheet getSize]; temp_count++){

IplImage *UI_temp = [sheet getImageAtIndex:temp_count];

IplImage *image = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 3);

for(int y2=0; y2<UI_temp->height; y2++) {

for(int x2=0; x2<UI_temp->width; x2++) {

char *p = image->imageData + y2 * image->widthStep + x2 * 3;

*p = *(p+1) = *(p+2) = UI_temp->imageData[y2 * UI_temp->widthStep + x2];

}

}

[MyUIImag addObject:[self UIImageFromIplImage:image]];

}

UIImageView *animationView =[[UIImageView alloc] initWithFrame:CGRectMake(0, 0, 320, 460)];

//animationView.backgroundColor =[UIColor purpleColor];

animationView.animationImages = MyUIImag;

animationView.animationDuration =20;

animationView.animationRepeatCount=0;

[animationView startAnimating];

[self.view addSubview:animationView];

[animationView release];

38

/*

// Convert black and whilte to 24bit image then convert to UIImage to show

IplImage *image = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 3);

for(int y2=0; y2<img->height; y2++) {

for(int x2=0; x2<img->width; x2++) {

char *p = image->imageData + y2 * image->widthStep + x2 * 3;

*p = *(p+1) = *(p+2) = img->imageData[y2 * img->widthStep + x2];

}

}

cvReleaseImage(&img);

theimageView.image = [self UIImageFromIplImage:image];

cvReleaseImage(&image);

printf("done\n");

*/

}

[pool release];

}

#pragma mark -

#pragma mark IBAction

-(IBAction) test:(id) sender

{

[self performSelectorInBackground:@selector(imageProc) withObject:nil];

}

-(IBAction) getPhoto:(id) sender

{

UIImagePickerController *picker = [[UIImagePickerController alloc] init];

picker.delegate = (id)self;

if((UIButton *) sender == choosePhoto)

{

picker.sourceType = UIImagePickerControllerSourceTypeSavedPhotosAlbum;

}

else

{

39

picker.sourceType = UIImagePickerControllerSourceTypeCamera;

}

[self presentModalViewController:picker animated:YES];

}

#pragma mark -

#pragma mark UIViewControllerDelegate

/*!

* @discussion Implement loadView to create a view hierarchy programmatically,

* without using a nib.

*/

/*

- (void)loadView

{}

*/

/*!

* @discussion Implement viewDidLoad to do additional setup after loading the

* view, typically from a nib.

*/

- (void)viewDidLoad

{

//[super viewDidLoad];

if(![UIImagePickerController isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])

{

takePhoto.hidden = YES;

}

}

-(void) imagePickerController:(UIImagePickerController *) picker didFinishPickingMediaWithInfo:(NSDictionary *)info{

[picker dismissModalViewControllerAnimated:YES];

theimageView.image = [info objectForKey:@"UIImagePickerControllerOriginalImage"];

}

/*!

* @discussion Override to allow orientations other than the default portrait

* orientation.

*/

- (BOOL)shouldAutorotateToInterfaceOrientation: (UIInterfaceOrientation)interfaceOrientation

{

return (interfaceOrientation == UIInterfaceOrientationPortrait);

}

40

/*!

* @discussion Release any cached data, images, etc that aren’t in use.

*/

- (void)didReceiveMemoryWarning

{

[super didReceiveMemoryWarning];

}

/*!

* @discussion Release any retained subviews of the main view.

*/

- (void)viewDidUnload

{}

/*!

* @discussion Called when the object is freed by the Objective-C runtime

*/

- (void)dealloc

{

[super dealloc];

}

@end

XCode MyCvPoint.m

//

// MyCvPoint.m

// OpenCV-iPhone

//

// Created by Yung-Ho Chang on 4/11/12.

// Copyright (c) 2012 __MyCompanyName__. All rights reserved.

//

#import "MyCvPoint.h"

@implementation MyCvPoint

-(id) init:(int)input_x :(int)input_y{

x = input_x;

y = input_x;

return self;

}

41

-(int) getX{

return x;

}

-(int) getY{

return y;

}

-(void) setX:(int) input_x{

x = input_x;

}

-(void) setY:(int) input_y{

y=input_y;

}

@end

XCode MyCvSurfPoint2

//

// MyCvSurfPoint2.m

// OpenCV-iPhone

//

// Created by Yung-Ho Chang on 4/28/12.

// Copyright (c) 2012 __MyCompanyName__. All rights reserved.

//

#import "MyCvSurfPoint2.h"

@implementation MyCvSurfPoint2

-(id) init_point:(CvSURFPoint *)input_point{

point = input_point;

return self;

}

-(CvSURFPoint*) getSurfPoint{

return point;

}

-(void) setPoint:(CvSURFPoint*) input_Point{

point = input_Point;

}

@end

42

XCode Myfloat.m

//

// Myfloat.m

// OpenCV-iPhone

//

// Created by Yung-Ho Chang on 4/28/12.

// Copyright (c) 2012 __MyCompanyName__. All rights reserved.

//

#import "Myfloat.h"

@implementation Myfloat

-(id)init_float:(float *)input_temp{

temp = input_temp;

return self;

}

-(float*) getfloat{

return temp;

}

-(void) setfloat:(float *)input_temp{

temp = input_temp;

}

@end

XCode MyIpl.m

//

// MyIpl.m

// OpenCV-iPhone

//

// Created by Yung-Ho Chang on 4/29/12.

// Copyright (c) 2012 __MyCompanyName__. All rights reserved.

//

#import "MyIpl.h"

@implementation MyIpl

-(id)init_Ipl:(IplImage *)input_image{

image = cvCloneImage(input_image);

return self;

}

43

-(IplImage*) getIpl{

return image;

}

-(void) setIpl:(IplImage *)input_image{

image = cvCloneImage(input_image);

}

-(int) getheight{

return image->height;

}

-(int) getwidth{

return image->width;

}

@end

XCode MySheet.m

//

// MySheet.m

// OpenCV-iPhone

//

// Created by Yung-Ho Chang on 4/29/12.

// Copyright (c) 2012 __MyCompanyName__. All rights reserved.

//

#import "MySheet.h"

#import "MyIpl.h"

#import "note.h"

@implementation MySheet

-(id) init_note{

notes = [[NSMutableArray alloc] init];

staff = [[NSMutableArray alloc] init];

staff_inv=0;

return self;

}

-(void) addstaff:(int)input_staff{

[staff addObject:[NSNumber numberWithInt:input_staff]];

//printf("added\n");

[self findStaffinv];

}

-(void) findStaffinv{

44

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSMutableArray *staff_inv_temp = [[NSMutableArray alloc] init];

NSMutableArray *inv = [[NSMutableArray alloc] init];

staff_inv_temp = [staff mutableCopy];

if([staff count]>1){

while ([staff_inv_temp count]>1) {

NSNumber *temp_NS = [staff_inv_temp objectAtIndex:0];

NSNumber *temp_NS2 = [staff_inv_temp objectAtIndex:1];

NSNumber *temp_inv = [NSNumber numberWithInt:[temp_NS2 intValue]-[temp_NS intValue]];

[inv addObject:temp_inv];

[staff_inv_temp removeObjectAtIndex:0];

}

NSNumber *check1;

NSNumber *countNS = [NSNumber numberWithInt:1];

NSMutableArray *type = [[NSMutableArray alloc] init];

NSMutableArray *countNum = [[NSMutableArray alloc] init];

//[type addObject:[staff objectAtIndex:0]];

//printf("find mode, invcount=%d\n", [inv count]);

for(int temp =0; temp<[inv count]; temp++){

check1 = [inv objectAtIndex:temp];

//printf("mode check1=%d\n", [check1 intValue]);

NSInteger check_index = [type indexOfObject:check1];

if(NSNotFound == check_index){

//printf("not found\n");

[type addObject: check1];

[countNum addObject:countNS];

}

else{

NSNumber *newNS = [countNum objectAtIndex:check_index];

int value = [newNS intValue];

newNS = [NSNumber numberWithInt:value+1];

[countNum replaceObjectAtIndex:check_index withObject:newNS];

}

}

NSNumber *max = [NSNumber numberWithInt:0];

//printf("max started=%d\n", [max intValue]);

for(int temp2=0; temp2 < [countNum count]; temp2++){

check1 = [countNum objectAtIndex:temp2];

//printf("max check1=%d", [check1 intValue]);

if([max intValue]<[check1 intValue]){

//printf("in max\n");

max = [NSNumber numberWithInt:[check1 intValue]];

45

}

}

//printf("max=%d\n", [max intValue]);

NSInteger check_index2 = [countNum indexOfObject:max];

staff_inv = [[type objectAtIndex:check_index2]intValue];

}

//printf("staff_inv=%d\n", staff_inv);

[pool release];

}

-(void) addNote:(note *)input_note{

[notes addObject: input_note];

}

-(IplImage*)getImageAtIndex:(int)input_index{

note *temp_note = [notes objectAtIndex:input_index];

IplImage *tempIpl = cvCloneImage(temp_note.getDiff);

return tempIpl;

}

-(int) getSize{

return [notes count];

}

-(note*) getNote:(int)input_index{

return [notes objectAtIndex:input_index];

}

-(void) sort{

NSMutableArray *temp_Notes = [[NSMutableArray alloc] init];

NSMutableArray *temparray = [[NSMutableArray alloc] init];

NSMutableArray *temp_Notes2 = [[NSMutableArray alloc] init];

NSMutableArray *pitchlist = [[NSMutableArray alloc] init];

[pitchlist addObject:[NSMutableString stringWithString:@"A"]];

[pitchlist addObject:[NSMutableString stringWithString:@"B"]];

[pitchlist addObject:[NSMutableString stringWithString:@"C"]];

[pitchlist addObject:[NSMutableString stringWithString:@"D"]];

[pitchlist addObject:[NSMutableString stringWithString:@"E"]];

[pitchlist addObject:[NSMutableString stringWithString:@"F"]];

[pitchlist addObject:[NSMutableString stringWithString:@"G"]];

temp_Notes2 = [notes mutableCopy];

int range_height_min = 0;

int range_height_max = 0;

int staffcount=-5;

int trig = 0;

46

int Gfound = 0;

while([notes count]>0){

for(int count =0; count<[notes count]; count++){

note *temp_note = [notes objectAtIndex:count];

NSMutableString *temp_type = [temp_note getType];

if([temp_type isEqualToString:@"Gclef\n"]){

Gfound = 1;

staffcount+=5;

range_height_min = temp_note.getY-temp_note.getL;

range_height_max = temp_note.getY+temp_note.getL;

if(range_height_min<0){

range_height_min = 0;

}

if(range_height_max>temp_note.getDiff->height){

range_height_max =temp_note.getDiff->height;

}

[temp_Notes addObject:temp_note];

[notes removeObjectAtIndex:count];

break;

}

if(Gfound==1 && temp_note.getMinY<range_height_max && temp_note.getMaxY<range_height_max){

if(![temp_type isEqualToString:@"Bar line\n"]){

int pitc_y = temp_note.getPitch_y;

int temp_pitch = [[staff objectAtIndex:staffcount] intValue];

int distance = pitc_y -temp_pitch;

int pitch_index = 5;

int octive = 5;

int key = 77;

NSMutableString *newpitch;

if(distance>0){

for(int count2 =0; distance>staff_inv/2; count2++){

int fill = (double)staff_inv/(double)2+3;

if(pitch_index==0){

pitch_index = 6;

octive --;

}

if(pitch_index==2||pitch_index==5){

key--;

}

else{

key=key-2;

47

}

pitch_index--;

distance -= fill;

}

newpitch = [pitchlist objectAtIndex:pitch_index];

[temp_note setLetter:newpitch];

[temp_note setOCtive:octive];

}

else{

for(int count2 =0; distance>staff_inv/2; count2++){

int fill = (double)staff_inv/(double) 2+3;

if(pitch_index==6){

pitch_index = 0;

octive++;

}

if(pitch_index==1||pitch_index==4){

key++;

}

else

{

key = key+2;

}

pitch_index++;

distance += fill;

}

newpitch = [pitchlist objectAtIndex:pitch_index];

[temp_note setOCtive:octive];

[temp_note setLetter:newpitch];

[temp_note setPitch2:key];

}}

[temparray addObject: temp_note];

[notes removeObjectAtIndex:count];

count--;

}

else{

if(Gfound==1){

trig = 1;

Gfound=0;

break;

}

continue;

}

}

48

if(trig ==1){

//bubble sort

for(int i = ([temparray count]-1); i>0; i--){

for(int j=1; j<=i; j++){

note *sort_temp = [temparray objectAtIndex:j-1];

note *sort_temp2 = [temparray objectAtIndex:j];

if([sort_temp getMinX] > [sort_temp2 getMinX]){

[temparray exchangeObjectAtIndex:j-1 withObjectAtIndex:j];

}

}

}

for(int count3 = 0; count3<[temparray count]; count3++){

[temp_Notes addObject:[temparray objectAtIndex:count3]];

}

[temparray removeAllObjects];

trig = 0;

}

}

//bubble sort

for(int i = ([temparray count]-1); i>0; i--){

for(int j=1; j<=i; j++){

note *sort_temp = [temparray objectAtIndex:j-1];

note *sort_temp2 = [temparray objectAtIndex:j];

if([sort_temp getMinX] > [sort_temp2 getMinX]){

[temparray exchangeObjectAtIndex:j-1 withObjectAtIndex:j];

}

}

}

for(int count3 = 0; count3<[temparray count]; count3++){

[temp_Notes addObject:[temparray objectAtIndex:count3]];

}

[temparray removeAllObjects];

notes = [temp_Notes mutableCopy];

}

-(void)getPitchlist{

for(int temp_count =0; temp_count<[notes count]; temp_count++){

note *temp_note = [notes objectAtIndex:temp_count];

NSLog(@"%@\n", [temp_note getletter]);

}

}

@end

49

XCode note.m

//

// note.m

// OpenCV-iPhone

//

// Created by Yung-Ho Chang on 4/9/12.

// Copyright (c) 2012 __MyCompanyName__. All rights reserved.

//

#import "note.h"

@implementation note

-(int) getX{

return center_x;

}

-(int) getY{

return center_y;

}

-(int) getW{

return width;

}

-(int) getL{

return length;

}

-(void) setX:(int)input_x{

center_x = input_x;

}

-(void) setY:(int)input_y{

center_y = input_y;

}

-(void) setW:(int)input_w{

width = input_w;

}

-(void) setL:(int)input_l{

length = input_l;

50

}

-(IplImage *) getImg{

return note_image;

}

-(void) setImg:(IplImage *) input_img{

note_image = cvCloneImage(input_img);

}

-(id) initWithCoord:(int)max_x:(int)min_x:(int)max_y:(int)min_y{

note_min_x = min_x;

note_min_y = min_y;

note_max_x = max_x;

note_max_y = max_y;

int temp_w = max_x-min_x;

int temp_l = max_y-min_y;

if(temp_w<=0){

temp_w=1;

}

if(temp_l<=0)

{

temp_l = 1;

}

int temp_x = min_x + temp_w/2;

int temp_y = min_y + temp_l/2;

[self setX:temp_x];

[self setY:temp_y];

[self setW:temp_w];

[self setL:temp_l];

return self;

}

-(void) setPitch2:(int)input_pitch{

pitch = input_pitch;

}

-(NSMutableString*) getType{

return type;

}

-(int) getPitch{

return pitch;

}

-(void) setType:(NSMutableString *)input_string{

type = [input_string mutableCopy];

}

51

-(int) getMinX{

return note_min_x;

}

-(int) getMaxX{

return note_max_x;

}

-(int) getMinY{

return note_min_y;

}

-(int) getMaxY{

return note_max_y;

}

-(void) setDiff:(IplImage *)input_image{

difference = cvCloneImage(input_image);

}

-(IplImage*) getDiff{

return difference;

}

-(void) setPitch_y:(int) input_y{

pitch_y = input_y;

}

-(int) getPitch_y{

return pitch_y;

}

-(NSMutableString*) getletter{

return pitch_letter;

}

-(void) setLetter:(NSMutableString *)inputLetter{

pitch_letter = [inputLetter copy];

}

-(int) getOctive{

return octive;

}

-(void) setOCtive:(int)input_int{

octive = input_int;

}

@end

52

