
Rutgers University

Capstone Final Report

Automated Object Locating
System

Group 4
Team Members:
Evan Katims
Michael McLaughlin

Advisor:
Prof. Kristin J. Dana

1

1. Objective

Robust and fast paced object recognition plays a fundamental role in many
applications of robotics and computer vision. In our project, we make use
of a high definition camera attached to a mobile lego robot in order to
recognize and move to desired objects in a room. The main objective of our
project is to be able to extract important data from a surrounding scene
and through the use of corresponding point matches to templates,
determine exactly what objects are in the camera’s view. Once this data is
obtained the robot can automatically move to objects of our choice, while
recording its movement to later output to the user.

2. Procedure

2.1 Objects in the Scene

The first objective for our robot to complete is the recognition of all objects
in a specific scene, invariant of the background. This task is accomplished
by first taking a picture of the surrounding environment and extracting key
points of the image. These images are then related to a database of
templates for specific objects, as described in section 2.1.1. Once these key
points are found our algorithm compares the amount of key points detected
to a set number. It does this in order to determine if the matches are
simply coincidental outliers, which then can be discarded. If we require the
minimum number of point correspondences for a positive identification to
be around fifteen we dramatically reduce error in outputting false positive
identifications. After we iterate this process for all of the templates, we
output a list of what images are located in both the scene and our database.

2.1.1 Keypoint Detection

A keypoint is defined as a pixel location where there is an extreme change
in the gradient. Keypoint detection is essential for our implementation to
work. The first step in matching two images is to extract the crucial points
in a single image. We use David Lowes SIFT algorithm in order to
accomplish this. SIFT takes one input image and recognizes its keypoints,
then saves the location and description for use in the point match
algorithm. The point match algorithm is used to find the relationship
between the objects in a scene and the database of templates for the
objects. Point correspondences between the two are matched by computing
the dot products between unit vectors. We opted to do this instead of

2

computing Euclidean distances because the ratio of angles is a close
approximation to the ratio of Euclidean distances, and it is computed
significantly faster (this only holds true for small angles). We then matched
each descriptor in the first image to the appropriate pixel on the second
image. Once that is completed, the angle between the vector of dot
products is taken via the trigonometric function arccos. If that value is less
than distRatio then the two points are considered a match. Once the
iteration is complete for all keypoints the robot analyses the number of key
points to make an educated guess on what template the object in the scene
is best matched to.

2.2 Where is the Object?

The second objective of our robot expands upon our first objective, and
solves for the“Where is the object?” question. The first task that needs to
be completed is that the robot needs to take a picture in the scene and
analyse it. Then it needs to determine if the desired object is in the picture
by using the steps that were described in section 2.1. If the object is not
located within the scene, the program outputs a message saying that the
object was not detected. If the object is detected then the robot moves on
to the next step, which is to compute distance. We compute distance using
a method called binocular vision. This method uses the fact that parallel
images have horizontal epipolar lines, therefore corresponding points only
have movement in the horizontal direction. This displacement has an
inverse relationship with distance from the object, which is:

(F)⇥ (B)

(D)
(1)

Where,
F= Focal Length
B= Baseline Distance
D=Disparity

In order for this method to work it requires two parallel images. We
originally obtained two parallel images by having our robot take an image
from its original position and then move along the baseline so that the
second image is parallel to the first. The second method we used was to
rectify the images so that the images seemed like they were coming from
parallel cameras. The last method we used, and are currently using is
having our camera slide along the robot so that the camera is always
parallel to the object.

3

There were two major issues with our first design that significantly
decreased the precision of our distance calculations. One of the major
design flaws was that we were using a three wheeled robot with only
two-wheel drive. This caused imprecise movement of the lego robot, which
produced inaccurate results for the measurement of distances. Also, the
results varied greatly when our robot was on di�erent terrain (i.e. tile,
hardwood, carpet). In order to improve the precision of the robots
movements we designed a four-wheeled robot in which the wheels on the
same side (right or left) would move in unison. This eliminated the issue of
drag on certain wheels that was present in our previous design. Having four
wheels on our lego robot significantly reduced the error in the calculation of
distance.

The improvement in the movement of the robot lead us to our next
issue. The cervos on the lego robot are not very precise. Even with the new
design, moving the entire robot to obtain parallel images exactly every time
was very di⌅cult and still created some errors. As with most technologies
you want to eliminate as much movement as possible to reduce the
possibility of errors. As discussed above it is very important to have
parallel images to obtain a correct measurement of distance. One of the
ways to fix this problem would be to automatically rectify images. We
could then take two images from any angle and obtain parallel images.
Image rectification is used to project two images onto a common plane that
is parallel to the center of the two cameras. After this is complete the pixel
motion between the two images lays on a horizontal line, where depth is
inversely proportional to disparity. Theoretically, this concept works
perfectly and would eliminate any error in movement that was causing an
inaccurate measurement of distance. However, due to time constraints we
needed to forfeit this idea because we kept receiving errors in the
rectification due to outliers that were being picked up in our point match
algorithm. For future work we would like to add a rectification toolbox to
our implementation in order to make distance measurements completely
accurate. With the issue of movement still at hand we redesigned the way
that we obtained parallel images. In order to repeatedly acquire the images
we designed an arm in front of the robot that held the camera and swung
back and forth. This replaced our movement of the entire robot to obtain
parallel images and was significantly more precise.

Now that we have two parallel images we can start to compute
distance. We will do this by using a point match algorithm as described in
2.2.1. Once the corresponding points were found we were able to use a
function that was obtained from experimental results, as described in 2.2.2.
The function relates the disparity in the point correspondences to the

4

actual distance the object is from the robot.

2.2.1 Point Match

When we used our original point match code it matched all similar
keypoints in the images. This means since the backgrounds of the two scene
pictures are so similar, a significant amount of keypoints were found in the
background that were not outliers, but are not useful for our dataset and
skewed the result for our template matching. In order to solve this problem
we compared both scene images to the templates of the specific image.
Each comparison gave us only point correspondences on the object. We
then took the mean and standard deviation in the vertical and horizontal
directions. With this information we were able to create a box around the
desired object in each of the image scenes. Then we were able to compare
the two scene images using points inside both boxes, so the points were on
the desired object. This algorithm eliminates all background noise and
allows us to find point disparity within the desired object.

2.2.2 Disparity vs Distance

This experiment was performed in order to create an equation that would
be able to directly output distance from two scene images. From the
equation above we can see that disparity and distance are related to each
other in binocular vision via the focal length of the camera and the baseline
movement. Since we are using the same webcam, held on a constant
640x480 image throughout the entire project, the focal length remains
constant but still unknown. For the baseline length, we opted to keep this
constant in order to eliminate this variable. This allows us to map disparity
and distance onto a standard linear representation.

The actual experiment involved taking parallel images of objects at
predetermined lengths and finding the disparity in the keypoints. The
distances varied from eighteen inches to fifty four inches in increments of
six. The experiment was repeated multiple times in order to eliminate any
human error that may have occurred at any individual data point. Once
the experimental data was vectorized we used MATLABs Polyfit() function
in order to give us two constants, A and B.

5

(a) Method 1 (b) Method 2

Figure 1: This figure shows the plot of the experimental results obtained
from the distance vs. disparity tests that were described in section 2.2.2.
The circles on the plot above describe the average pixel disparity at each
distance ran for several tests. From these points and the polyfit() function
we created a line of best fit for the data. The equation for the line is what we
use to compute distance in our “Where is the object” section. Since method
two provided more accurate results we decided to use that data to plot our
distance polynomial. The polynomial is as follows:

Y = (A⇥ x)� B

A= -0.3507
B= 65.3498

Y = (�0.3507⇥ x)� B (2)

Where,

This equation now allows us to find any distance given the disparity
between two parallel images.

3. Experimental Results

The completed result of our project was the ability of the lego robot to
recognize and move to desired objects while recording every move in order
to print out directions to the user as to where to find the objects. This
result uses all of the algorithms mentioned above to determine the location

6

and distance to each object. After a user inputs a list of objects, the robot
begins to take pictures of the surrounding scene and analyzes them for the
desired objects. Once an object is recognized the robot takes parallel
images in order to compute distance. Now the robot moves to the object
and then iterates the process in looking for the next object. If the object is
not within the robots vision, then the robot turns to obtain another view of
the surrounding environment until the next image is visible. During this
process the robot is recording every move it makes, so at the end it can
output directions to all of the objects. Once the last object is found the
robot outputs the directions that are needed to find all of the objects.

Figure 2: The three pictures above are the lego robot running through the
algorithm to find all of the objects. The robot first scans the scene for
the flakes. Once found, the robot moves to the ’Flakes’ and records the
movement. The next object that is located is the ’Nestle’. After the robot
moves to the ’Nestle’, it searches for the last object which is the ’Lysol’.
After all of the objects are found the robot outputs the path that it took to
find the objects.

7

3.1 “Objects in the Scene” Experimental Results

The following pictures are automatically taken by the robot when, “Objects
in the Scene” button is pressed.

Figure 3: These images show our first task of the robot, which is to find all of
the objects in the scene that match objects in our codebook. As you can see
the program cycles through the scene and compares it to each of the images
of our objects located in the codebook. If enough point correspondences are
found then the program outputs a list of all the objects that it found.

8

3.2 “Where is the Object?” Experimental Results

The following pictures are automatically taken by the robot.

Figure 4: The images above show the progression of steps that our robot
cycles through to obtain the distance to a certain object in the scene. The
first step is taking an image of the surrounding environment. Once that
image is taken it is compared to the template of the object that the user
desires. If enough point correspondences are found then the camera moves
to its parallel location and takes a second image. Next, the robot finds key
points in this image. Through this process the robot is saving the location
of the keypoints in order to create a box around the object. Now that we
have a box around the object in each scene, we compare the parallel images
with each other. The algorithm looks for point correspondences only within
both boxes.

9

(a) Method 1 (b) Method 2

Figure 5: This figure shows the experimental results obtained from several
trials of the “Where is the object?” algorithm. We placed an image at thirty
nine inches from the robot and recorded each trial’s computed distance. In
method one, you can see the results were clearly less accurate and unpre-
dictable. The outliers that caused this error are due to inconsistencies in the
turning of the robot. If the robot under turns in its movement towards ob-
taining parallel images, then the outputted distance is closer than the actual
distance. If the robot over turns its movement towards obtaining parallel
images, then the outputted distance is further than the actual distance. In
method two only the camera is moving, and this greatly reduced the error
in finding the correct distance. The remaining error is due to the fact that
we are not using high quality servos, therefore the spinning rotation is not
always exact.

4. Discussion

4.1 Di�culties and Sources of Error

One of the di⌅culties that was associated with this project was running out
of memory in MATLAB. If we used a higher quality image MATLAB ran
out of available memory and crashed when we were running our algorithms.
Unfortunately, this lead to some sources of error when detecting keypoints
in an image. With high quality images the number of keypoints is much
greater, which leads to more accuracy in labeling an image. Another benefit
of higher quality images is that we would be able to have better object
recognition at further distances. At our current picture quality our robot
can recognize objects up to approximately six feet from the camera. At any
further distance an object viewed from the webcam is too small to

10

distinguish keypoints, therefore making it unable to be identified. Our
objective was to find a reasonable picture quality that would give us an
adequate amount of point matches. The code also needed to run e⌅ciently
as well as successfully. For us that happy medium was a 640x480 picture.
Any lower quality picture spared time at the cost of keypoints and any
higher quality image either took too long to run or crashed MATLAB.

Figure 6: These figures show the experimental results that were outputted
from numerous tests involving the picture quality. As per the figure, as the
picture quality increases the number of keypoints detected in the object also
increases. However, in increasing the quality of the picture, the time the code
takes to extract keypoints greatly increases. For the purpose of our project
we determined that the best image size that would give us an acceptable
amount of keypoints in a reasonable amount of time was 960x720.

11

Another di⌅culty in our project was that the servos on the lego robot
are not incredibly precise. Since our code is highly dependent on the
acquisition of parallel images, any stray from exact parallel images results in
an error in the calculation of distance. We found that sometimes our robot
would not fully turn the required distance to obtain parallel images due to
a jam in the pivot of the third wheel. Through many tests we found that it
was very hard to repeat results when the robots movement was completely
dependent on the servos and wheel rotation. One of the things that
improved our results was the material that the robot was moving on. If the
robot was on carpet some of the wheels began to drag, whereas when we
tested on tile or hardwood, our results were much more accurate. In order
to improve these results we created our four wheeled robot. This robot was
much less e�ected by the terrain and moved significantly more accurately.

Our four wheeled robot showed a great deal of improvement over the
three wheeled bot, but still had a large source of error when moving along
the baseline to obtain parallel images. Our first idea to remove this error
was to use image rectification on two images. With more time we would
have been successful in using an image rectification algorithm. However, we
would obtain errors every so often due to the fact that we were picking up
outliers in the surrounding scene. Improvements could be made into our
point matching algorithm that would eliminate all errors using image
rectification. To replace image rectification we decided that a motorized
arm that held the camera in front of the robot that moves in a parellel
plane would accomplish our goal. This addition greatly reduced error from
our first design and created near perfect results every time.

Over the past few weeks we were also able to add a mapping system
onto our robot. The idea behind this is that the user can choose numerous
objects from a list that it would like the robot to map out. Once the robot
has the list it will search the surrounding area for the closest object. When
the closest object is found the robot will proceed to move to the first object
where it will take another image of the surrounding scene and move to the
next closest object. This process will iterate until all of the images are
found. Throughout the whole process the robot will record all of the steps
it takes so it will be able to output the final map of shortest distance to all
the objects to the user.

5. Current Trends in Robotics

Computer vision is currently a broad field and is extremely popular in
todays research. The ability to have a computer analyze images as a human

12

would is an extremely useful task, yet it is not a trivial one. The base of
many automated technologies relies on the initial task of being able to
distinguish the di�erence between objects in a scene. This is why a large
amount of research is currently being done on this topic. Technology is
constantly improving and research into computer vision is playing a huge
part of this. Computer vision is currently being applied to technology such
as navigation, video surveillance, medical analysis, and industrial robots
just to name a few.

One of the largest areas of concern around the world, especially in the
United States, is the protection of its citizens. Credit card fraud, theft,
image tampering, and terrorism are among the largest areas of threats that
relate directly to a countrys citizens. It is important as a nation to strive
towards improving its monitoring systems in these areas in order to try to
limit and prevent the damages theses crimes have against the people of this
or any nation. Research into computer vision provides a great way to
automatically analyze data faster and more e⌅ciently than most humans
can.

In order to develop these complicated algorithms, we need to first look
at simpler cases such as object recognition and template matching. In the
past five years a lot of research has gone into improving how objects are
detected. One of the issues that was originally presented in object
recognition with template matching was that there is not a huge di�erence
between certain objects. For example, a tire on a car is very di�erent than
a tire on a bus, but when run through basic template matches the computer
may believe that they are the same image. This presents a huge error when
the precision of recognizing exactly what image is being displayed is
important. Nima Razavi, Juergen Gall and Luc Van Gools paper on
Scalable Multi-class Object Detection introduces a way to improve the
accuracy in determining the di�erence between similar objects. When
looking at an object they not only look at the object in question, but also
its location and surrounding features. In setting up a probability function
to compare the images to several di�erent templates, the algorithm can
vote for the template that has the highest odds of providing a match. Now,
this is a very low level objective, but forms a strong base for future work.

Now that we have discussed the improvements that are being made in
recognizing images, a new problem presents itself. Being able to detect
images with a high precision is very important, but doing this robustly and
quickly is just as important. If it takes an algorithm minutes to find a
match, then there is little use for this algorithm in a real world scenario.
Research into improving template matching for the use of object detection
and facial recognition has become a very popular field in computer vision.

13

Researcher, Alexander Sibiryakov from ASL (Electronics and Vision) Ltd,
recently wrote a paper, Fast and High-Performance Template Matching
Method, which goes into the importance of a robust and fast paced method
of template matching. He was able to o�er an improved method to
template matching by applying probability to analyze di�erent gradients as
well as Lp- and Hamming distances of an image to come up with a
prediction at the best match possible. His method not only o�ers an
improvement in speed, but also opens doors into new research into what he
describes as, the ability to design a rotation and scale invariant method
using multiple geometrically transformed templates.

Both of the processes described above can be combined into a
technology that can be implemented within real world applications.
Terrorism is unfortunately something that takes place in our world each
and every day. The United States have created watch lists in order to keep
authorities on high alert of major criminals and terrorists. Often times it is
very hard for law enforcement to recognize the people that are on these
lists. P.J. Phillips recent research shows that computers often times
outperform humans on facial recognition, especially when the humans are
observing people in di�erent shades of light and from di�erent angles. If a
system can be presented that would e�ectively analyze a real time camera
for criminals or terrorists, many lives could be saved and crimes stopped.

Rama Chellappa of the University of Maryland, Pawan Sinha of
Massachusetts Institute of Technology, and P. Jonathon Phillips of National
Institute of Standards and Technology have recently discussed the steps
that are required to provide successful comparisons to watch lists. In their
paper, Face Recognition By Computers and Humans, they discuss the
importance of being able to verify identities as well as compare people to
watch lists via facial recognition sequences. They stress that several steps
must be taken in order to successfully create a system that accomplishes the
goal of matching a picture of a person to a known identity. One of the more
important steps is being able to take one angle of a person and synthesize
new images from the reconstructed 3D models. This must be done in order
to be able to recognize people from all angles. Another important problem
is that people age. If the last known picture of a criminal was from ten
years ago, then the current systems would have issues recognizing the face.
Some improvements can be made by prediction using the craniofacial
growth model. As these technologies are developed even further, there will
be more successful algorithms that can perform facial recognition. This
system is good for recognizing criminals however, the technology is still not
advanced enough to obtain accurate results from a distance further than
tens of meters away. Also, the ability to analyze videos quickly enough to

14

the point where these people may be stopped is still a little bit behind. As
we become more advanced in our technologies the field of computer vision
will continue to grow and it will be easier to connect these methods that
were described above into an e⌅cient algorithm.

One unique aspect of computer vision is that it is always growing and
there is always room for improvement. When research into computer vision
first started, scientists were trying to figure out certain basic steps such as
recognizing the di�erence between a person and a horse. Once that task
was completed, it opened up new doors into now finding the di�erence
between a car tire and a bus tire, which lead into researching faster and
more e⌅cient ways to do the comparison. With each problem that is solved
in computer vision a new problem is brought to light. This is what makes
computer vision such a large area of interest in the world of technological
advances. There is always room for improvement and always new doors
that are opened.

References

[1] Nima Razavi, Juergen Gall and Luc Van Gools. Scalable Multi-class
Object Detection. In Computer Vision Papers, CVPR 2011.

[2] R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edition,
2004.

[3] Alexander Sibiryakov. Fast and High-Performance Template Matching
Method. In Computer Vision Papers , CVPR 2011.

[4] E. Trucco and A. Verri.Introductory Techniques for 3-D Computer
Vision . Prentice Hall, Inc., Upper Saddle River, New Jersey, first
edition edition, 1998.

[5] Chellappa, R. and Sinha, P. and Phillips, P.J.Face Recognition by
Computers and Humans . In Computer Journal , 2010. IEEE Workshop,
pages 46-55, 2010.

[6] P.J. Phillips et al.FRVT 2006 and ICE 2006 Large Scale Results, IEEE
Trans.Pattern Analysis and Machine Intelligence , forthcoming; DOI
10.1109/TPAMI.2009.59

15

function Parallel=BackUp()

% Check Robot

if verLessThan('RWTHMindstormsNXT', '3.00');

 error(strcat('ROBOT NOT CONNECTED OR TOOLBOX NOT SET TO PATH'));

end

%% Constants and so on

TableLength =200; %620 is a foot % in degrees of motor rotations

Ports = [MOTOR_A; MOTOR_C]; % motorports for left and right wheel

DrivingSpeed = -40; %Speed of Motors

%% Open Bluetooth connetion

h = COM_OpenNXT('bluetooth.ini');

COM_SetDefaultNXT(h);

%% Initialize motor-objects:

mStraight = NXTMotor(Ports);

mStraight.SpeedRegulation = false; % not for sync mode

mStraight.Power = DrivingSpeed;

mStraight.TachoLimit = TableLength;

mStraight.ActionAtTachoLimit = 'Brake';

%% Rotate

 mStraight.SendToNXT();

 mStraight.WaitFor();

%% Close Bluetooth connection

COM_CloseNXT(h);

function Parallel=CamBack()

% Check Robot

if verLessThan('RWTHMindstormsNXT', '3.00');

 error(strcat('ROBOT NOT CONNECTED OR TOOLBOX NOT SET TO PATH'));

end

%% Constants and so on

TableLength = 135; % in degrees of motor rotations

Ports = [MOTOR_B]; % motorports for left and right wheel

DrivingSpeed = -20; %Speed of Motors

%% Open Bluetooth connetion

h = COM_OpenNXT('bluetooth.ini');

COM_SetDefaultNXT(h);

%% Initialize motor-objects:

mCamera = NXTMotor(Ports);

mCamera.SpeedRegulation = false; % not for sync mode

mCamera.Power = DrivingSpeed;

mCamera.TachoLimit = TableLength;

mCamera.ActionAtTachoLimit = 'Brake';

%% Rotate

 mCamera.SendToNXT();

 mCamera.WaitFor();

%% Close Bluetooth connection

COM_CloseNXT(h);

function Parallel=Camera()

% Check Robot

if verLessThan('RWTHMindstormsNXT', '3.00');

 error(strcat('ROBOT NOT CONNECTED OR TOOLBOX NOT SET TO PATH'));

end

%% Constants and so on

TableLength = 135; % in degrees of motor rotations

Ports = [MOTOR_B]; % motorports for left and right wheel

DrivingSpeed = 20; %Speed of Motors

%% Open Bluetooth connetion

h = COM_OpenNXT('bluetooth.ini');

COM_SetDefaultNXT(h);

%% Initialize motor-objects:

mCamera = NXTMotor(Ports);

mCamera.SpeedRegulation = false; % not for sync mode

mCamera.Power = DrivingSpeed;

mCamera.TachoLimit = TableLength;

mCamera.ActionAtTachoLimit = 'Brake';

%% Rotate

 mCamera.SendToNXT();

 mCamera.WaitFor();

%% Close Bluetooth connection

COM_CloseNXT(h);

function[First Second Third counterone countertwo

counterthree]=ComparePicture(Template, Object, Item, First, Second,

Third , counterone, countertwo, counterthree)

vid = videoinput('winvideo',1, 'RGB24_640x480');

start(vid);

im = getsnapshot(vid);

figure,imshow(im);

imwrite(im,'Center.png')

[box,~,Number, meanPointC]=Pointmatch('Center.png', Template);

if (Item(1)==1&&Item(2)==0&&Item(3)==0)

while(Number>10)

FindCenter(meanPointC)

vid = videoinput('winvideo',1, 'RGB24_640x480');

start(vid);

im = getsnapshot(vid);

figure,imshow(im);

imwrite(im,'Image0.png')

[box1,A1,num1, meanPoint1]=Pointmatch('Image0.png', Template);

fprintf(Object); fprintf('Found \n');

Camera()

vid = videoinput('winvideo',1, 'RGB24_640x480');

start(vid);

im = getsnapshot(vid);

figure,imshow(im);

imwrite(im,'Image1.png')

[box2,A2,num2, meanPoint2]=Pointmatch('Image1.png', Template);

[Amin Bmin]=Pointmatch1('Image0.png', 'Image1.png',box1,box2);

Amean=[mean(Amin(1,:))];

Bmean=[mean(Bmin(1,:))];

Disparity= abs(Amean-Bmean);

value=Disparity(1)

A= -0.2124; B=47.8232;

DistanceMoving=A*(value)+B

First

First=floor(DistanceMoving)

Straight(First)

CamBack()

BackUp()

break

end

 if(Number<10)

 TurnRight()

 counterone=counterone +1;

 Item=[1 0 0]

 if ((strcmpi(Template,'LysolClose2.jpg')==1))

 [First Second Third counterone countertwo

counterthree]=ComparePicture('LysolClose2.jpg', 'Lysol', Item,First,

Second, Third, counterone, countertwo, counterthree);

 elseif ((strcmpi(Template,'Flakes1.jpg')==1))

 [First Second Third counterone countertwo

counterthree]=ComparePicture('Flakes1.jpg', 'Flakes',Item,First, Second,

Third, counterone, countertwo, counterthree);

 elseif ((strcmpi(Template,'Nestle1.jpg')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('Nestle1.jpg', 'Nestle',Item,First, Second,

Third, counterone, countertwo, counterthree);

 end

 end

end

if (Item(1)==1&&Item(2)==1&&Item(3)==0)

 while(Number>10)

FindCenter(meanPointC)

vid = videoinput('winvideo',1, 'RGB24_640x480');

start(vid);

im = getsnapshot(vid);

figure,imshow(im);

imwrite(im,'Image0.png')

[box1,A1,num1, meanPoint1]=Pointmatch('Image0.png', Template);

fprintf(Object); fprintf('Found \n');

Camera()

vid = videoinput('winvideo',1, 'RGB24_640x480');

start(vid);

im = getsnapshot(vid);

figure,imshow(im);

imwrite(im,'Image1.png')

[box2,A2,num2, meanPoint2]=Pointmatch('Image1.png', Template);

[Amin Bmin]=Pointmatch1('Image0.png', 'Image1.png',box1,box2);

Amean=[mean(Amin(1,:))];

Bmean=[mean(Bmin(1,:))];

Disparity= abs(Amean-Bmean);

value=Disparity(1)

A= -0.2124; B=47.8232;

DistanceMoving=A*(value)+B

Second=floor(DistanceMoving)

Straight(Second)

CamBack()

BackUp()

break

end

 if(Number<10)

 TurnRight()

 countertwo=countertwo +1;

 Item=[1 1 0]

 if ((strcmpi(Template,'LysolClose2.jpg')==1))

 [First Second Third counterone countertwo

counterthree]=ComparePicture('LysolClose2.jpg', 'Lysol', Item,First,

Second, Third, counterone, countertwo, counterthree);

 elseif ((strcmpi(Template,'Flakes1.jpg')==1))

 [First Second Third counterone countertwo

counterthree]=ComparePicture('Flakes1.jpg', 'Flakes', Item,First, Second,

Third, counterone, countertwo, counterthree);

 elseif ((strcmpi(Template,'Nestle1.jpg')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('Nestle1.jpg', 'Nestle', Item,First, Second,

Third, counterone, countertwo, counterthree);

 end

 end

end

 if (Item(1)==1&&Item(2)==1&&Item(3)==1)

 while(Number>10)

FindCenter(meanPointC)

vid = videoinput('winvideo',1, 'RGB24_640x480');

start(vid);

im = getsnapshot(vid);

figure,imshow(im);

imwrite(im,'Image0.png')

[box1,A1,num1, meanPoint1]=Pointmatch('Image0.png', Template);

fprintf(Object); fprintf('Found \n');

Camera()

vid = videoinput('winvideo',1, 'RGB24_640x480');

start(vid);

im = getsnapshot(vid);

figure,imshow(im);

imwrite(im,'Image1.png')

[box2,A2,num2, meanPoint2]=Pointmatch('Image1.png', Template);

[Amin Bmin]=Pointmatch1('Image0.png', 'Image1.png',box1,box2);

Amean=[mean(Amin(1,:))];

Bmean=[mean(Bmin(1,:))];

Disparity= abs(Amean-Bmean);

value=Disparity(1)

A= -0.2124; B=47.8232;

DistanceMoving=A*(value)+B

Third=floor(DistanceMoving)

Straight(Third)

CamBack()

BackUp()

clc

fprintf('The Robot turned %4.2f degrees clockwise in order to find the

first object. \n',counterone*30)

fprintf('The first Movement was %4.2f inches Straight. \n',First)

fprintf('The Robot turned %4.2f degrees clockwise in order to find the

second object. \n',countertwo*30)

 fprintf('The second Movement was %4.2f inches Straight. \n',Second)

 fprintf('The Robot turned %4.2f degrees clockwise in order to find the

third object. \n',counterthree*30)

 fprintf('The third Movement was %4.2f inches Straight. \n',Third)

 fprintf('The Robot centers the camera on the object once it is found.\n')

 fprintf('At the end of each movement, the robot reverses 4 inches. \n')

break

end

 if(Number<10)

 TurnRight()

 counterthree=counterthree +1;

 Item=[1 1 1]

 if ((strcmpi(Template,'LysolClose2.jpg')==1))

 [First Second Third counterone countertwo

counterthree]=ComparePicture('LysolClose2.jpg', 'Lysol', Item,First,

Second , Third, counterone, countertwo, counterthree);

 elseif ((strcmpi(Template,'Flakes1.jpg')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('Flakes1.jpg', 'Flakes', Item,First , Second,

Third, counterone, countertwo, counterthree);

 elseif ((strcmpi(Template,'Nestle1.jpg')==1))

 [First Second Third counterone countertwo

counterthree]=ComparePicture('Nestle1.jpg', 'Nestle', Item,First , Second,

Third , counterone, countertwo, counterthree);

 end

 end

end

function []= CreatePath(Object1,Object2,Object3)

Item=[1 0 0]

First=0; Second=0; Third=0;

counterone=0; countertwo=0; counterthree=0;

if ((strcmpi(Object1,'Lysol')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('LysolClose2.jpg', 'Lysol',Item,First ,

Second , Third, counterone, countertwo, counterthree);%,CountObject)

elseif ((strcmpi(Object1,'Flakes')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('Flakes1.jpg', 'Flakes',Item,First , Second ,

Third,counterone, countertwo, counterthree);%,CountObject)

elseif ((strcmpi(Object1,'Nestle')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('Nestle1.jpg', 'Nestle',Item,First , Second ,

Third,counterone, countertwo, counterthree);%,CountObject)

end

Item=[1 1 0]

if ((strcmpi(Object2,'Lysol')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('LysolClose2.jpg', 'Lysol',Item,First ,

Second , Third,counterone, countertwo, counterthree);%,CountObject)

elseif ((strcmpi(Object2,'Flakes')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('Flakes1.jpg', 'Flakes',Item,First , Second ,

Third,counterone, countertwo, counterthree);%,CountObject)

elseif ((strcmpi(Object2,'Nestle')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('Nestle1.jpg', 'Nestle',Item,First , Second ,

Third,counterone, countertwo, counterthree);%,CountObject)

end

Item=[1 1 1]

if ((strcmpi(Object3,'Lysol')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('LysolClose2.jpg', 'Lysol',Item,First ,

Second , Third,counterone, countertwo, counterthree);%,CountObject)

elseif ((strcmpi(Object3,'Flakes')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('Flakes1.jpg', 'Flakes',Item,First , Second ,

Third,counterone, countertwo, counterthree);%,CountObject)

elseif ((strcmpi(Object3,'Nestle')==1))

[First Second Third counterone countertwo

counterthree]=ComparePicture('Nestle1.jpg', 'Nestle',Item,First , Second ,

Third,counterone, countertwo, counterthree);%,CountObject)

end

function [Amin,Bmin] = Pointmatch1(image1, image2,box,box2)

% Find SIFT keypoints for each image

[im1, des1, loc1] = sift(image1);

[im2, des2, loc2] = sift(image2);

distRatio = 0.6;

des2t = des2'; % Precompute matrix transpose

for i = 1 : size(des1,1)

 dotprods = des1(i,:) * des2t; % Computes vector of dot products

 [vals,indx] = sort(acos(dotprods)); % Take inverse cosine and sort

results

 % Check if nearest neighbor has angle less than distRatio times 2nd.

 if (vals(1) < distRatio * vals(2))

 match(i) = indx(1);

 else

 match(i) = 0;

 end

end

% Create a new image showing the two images side by side.

im3 = appendimages(im1,im2);

% Show a figure with lines joining the accepted matches.

figure('Position', [100 100 size(im3,2) size(im3,1)]);

colormap('gray');

imagesc(im3);

hold on;

cols1 = size(im1,2);

A=[];B=[];

for i = 1: size(des1,1)

 if (match(i) > 0)

 A=[A [loc1(i,2) ; loc1(i,1)]];

 B=[B [loc2(match(i),2);loc2(match(i),1)]];

 end

end

Amin=[];Bmin=[];

for i = 1: size(des1,1)

 if match(i) > 0 && loc1(i,2)>box(1) && loc1(i,2)<box(2) && loc1(i,

1)>box(3) && loc1(i,1)<box(4) && loc2(match(i),2)>box2(1) && loc2(match(i),

2)<box2(2) && loc2(match(i),1)>box2(3) && loc2(match(i),1)<box2(4)

 line([loc1(i,2) loc2(match(i),2)+cols1], ...

 [loc1(i,1) loc2(match(i),1)], 'Color', 'c')

 Amin=[Amin [loc1(i,2) ; loc1(i,1)]];

 Bmin=[Bmin [loc2(match(i),2);loc2(match(i),1)]];

 end

end

hold on

num = sum(match > 0);

fprintf('Found %d matches.\n', num);

plot([box(1) box(1) box(2) box(2) box(1)],[box(3) box(4) box(4) box(3)

box(3)]);

hold on

plot([box2(1)+cols1 box2(1)+cols1 box2(2)+cols1 box2(2)+cols1

box2(1)+cols1],[box2(3) box2(4) box2(4) box2(3) box2(3)]);

function Parallel=Straight(DistanceMoving)

% Check Robot

if verLessThan('RWTHMindstormsNXT', '3.00');

 error(strcat('ROBOT NOT CONNECTED OR TOOLBOX NOT SET TO PATH'));

end

%% Constants and so on

TableLength = DistanceMoving*52; %620 is a foot % in degrees of

motor rotations

Ports = [MOTOR_A; MOTOR_C]; % motorports for left and right wheel

DrivingSpeed = 80; %Speed of Motors

%% Open Bluetooth connetion

h = COM_OpenNXT('bluetooth.ini');

COM_SetDefaultNXT(h);

%% Initialize motor-objects:

mStraight = NXTMotor(Ports);

mStraight.SpeedRegulation = false; % not for sync mode

mStraight.Power = DrivingSpeed;

mStraight.TachoLimit = TableLength;

mStraight.ActionAtTachoLimit = 'Brake';

%% Rotate

 mStraight.SendToNXT();

 mStraight.WaitFor();

%% Close Bluetooth connection

COM_CloseNXT(h);

function Right=TurnRight()

h = COM_OpenNXT('bluetooth.ini');

COM_SetDefaultNXT(h);

%% Rotate

 l_wheel = NXTMotor(MOTOR_A);

 r_wheel = NXTMotor(MOTOR_C);

 l_wheel.Power =-30;

 r_wheel.Power = 30;

 l_wheel.TachoLimit =90;

 r_wheel.TachoLimit = 90;

 l_wheel.SendToNXT()

 r_wheel.SendToNXT()

 l_wheel.WaitFor()

 r_wheel.WaitFor()

 COM_CloseNXT(h);

end

