

Department of Electrical and Computer Engineering

332:428 Senior Capstone Design Final Report Spring 2012

Gesture Controlled Smartphone

Advisors:
Dr. Christopher Rose
Dr. Kristin Dana

Team Members:
Anton Krivosheyev

Richard Romanowski
Michelle Greenfarb

2

 Table of Contents

1. Abstract ... 3

2. Design Goals ... 3

3. Related Work ... 4

4. System Design .. 5

5. Software... 6

5.1 Gesture Recognition .. 6
5.2 Android Application .. 8

6. Design Problems Encountered and Solutions 9

7. Future Considerations .. 10

8. Conclusion .. 10

Appendix A: Android Application Code .. 11

3

Abstract

The progression of technology is fast-
moving, and there is no sign of this pace
slowing down in the near future. Society
has attempted to make personal
computers even more personal, with the
invention of the desktop computer, the
portable notebook PC, and the cellphone.
The smartphone is an innovation that has
allowed users to have everything they
need at their fingertips. This project,
continuing in the trend of personalization,
is set out to design a portable head-
mounted personal display that would
eliminate the need for a physical screen
on portable Android devices, replacing it
with a virtual screen projected onto
arbitrary surfaces or directly into the eye.

In a time where cell phones become
obsolete in just a few months, this project
provides the user a way to expand the
utility of their current Android device.
With the download of an Android
application and a wearable physical
portion of the project, a user has all the
advantages of their smartphone without
the need for tactile interaction. The
external wearable projector armed with
its supporting circuitry will allow the user
to read messages and other information
sent from the device. Different gestures
will translate to different commands that
the phone will act upon to provide
information to the user of the device. In
addition, the ability to control a mobile
device using hand gestures will allow a
user to control a mobile Android device
while it is still in a pocket.

This paper examines the design process
necessary to create this human-computer
interface accessory for Android.

Design Goals

The initial goal of this project was to
design a head-mounted heads-up display
that would communicate wirelessly with
an Android device via hand gestures. Very
early in the project, the laser heads-up
display portion was moved to the list of
long-term goals due to time restraints and
safety regulations. The goal for the
semester then changed to a system that
would display information onto either the
wrist or a wall. Then, this could later be
extended into the heads-up display. After
this modification, the project goals
included an Android application and a
physical component to be worn around
the neck.

 After the construction of the wearable
portion, the project was divided into two
areas. In order for the entire project to be
successful, each subproject necessarily
had to function independently.

The first of these subsystems includes the
path of information from the camera to
the phone. This includes the procedure to
recognize hand gestures with a
homogeneous background and then send
a command to the phone once a gesture is
recognized.

The second project includes the path from
the phone to the projector. The goals of
this task essentially included everything
else necessary for the project to work
including working on the user interface,
the coding of the Android application, the
coding of sending commands to display
information, and the optimization of the
speed of the system.

4

Related Work

The demand is increasing for wearable
computers and personal displays. These
displays are typically characterized by
having a unique function of displaying
desirable digital information, at all times,
without the need to ever physically
interact with the device that is serving the
information to the user. These devices are
commonly known as heads-up displays,
or HUDs. The interest in HUDs is
currently rising as can be observed using
the Google search request increase for
“heads up display”, as shown in Fig 1.

Fig. 1: Google search trends for “heads up display”.

There were numerous previous attempts
to design a system with similar functions.
However, many of them were neither
compact nor cheap to manufacture, and
those that did make it off the drawing
boards to the working prototypes were
either too expensive or had extremely
limited functionality, such as absence of
real-time visual data analysis and a much-
useful augmentation of physical and
virtual realities.

Fig.2: STAR™ 1200, see-thru augmented reality display.

The first of these devices, shown in Fig. 2,
appeared on the market in summer 2011.
Although a great device, the price tag of
nearly $5000 does not make this an ideal
product for the average consumer.
Another device currently on the market,
MOD Live, shown in Fig. 3 carries a much
more reasonable price tag of $400, and
with a few of modifications would be the
perfect solution to the problem--an
affordable Android HUD.

Fig.3: MOD Live GPS (HUD) for ski and snowboard goggles.

5

System Design

The system design proved to be very
important in the success of the project.
Power consumption, data transfer rates,
the physical size and shape of the system,
as well as its use, are all dependent on the
hardware components chosen. Each of
the hardware components are modular
and designed to work with other
components which communicate on the
same protocol. This modularity is taken
advantage of by the system to either
command or extract needed information
from each hardware component as
required by the design.

The current working system has the
functionality shown in Fig. 4. There are
three devices receiving input for
processing: a camera built into the laptop,
an ultrasonic distance detector, and the
light sensor on the Android phone. The
data transferred throughout the circuit
from the distance detector is shown by
green, and data transferred from the
laptop camera and light sensor is shown
in blue. The orange indicates feedback
sent from the µVGA board to the phone,
and the red arrow indicates all outgoing
data from the phone necessary for
projecting information.

Fig. 4: Current system diagram.

The ultrasonic distance detector checks
whether there are any objects present in
front of the user (to detect a hand or a
surface to project onto).

The laptop camera takes live images of
the hand, which are analyzed using the
gesture recognition algorithm on the
laptop. Once a gesture is recognized, the
laptop screen displays a screen color
corresponding the a specific gesture. The
phone lays against the laptop screen and
based on the light intensity from the color
on the screen sends a command to the
phone.

All of the code for the Android application
runs on the phone. Once the phone
receives a command from the light
sensor, it processes the information and
forwards a command to the rest of the
circuit to display relevant information.

The IOIO board, shown in the figure as a
Bluetooth module and microcontroller, is
the connector between the phone and the
circuit. The connection can be either
wired or wireless. The Bluetooth module
is the main gateway for the data
transferred between the device and the
phone’s internal Bluetooth transceiver.
The microcontroller is responsible for
forwarding the commands to the µVGA
graphics controller. The µVGA graphics

controller displays data on the pico
projector through a direct connection.
The portable laser projector contains a
CPU used to display graphics, video, and
custom graphical user interface (GUI),
based on the commands that it receives
from the main application running on the
Android device.

6

Software

There are two software components: the
software used for hand recognition, and
the software used for the Android
application. The hand recognition code is
run and processed on the laptop. The
application code is run on the phone. Each
system can run independently of one
another.

Gesture Recognition

For a machine to recognize gestures,
several steps need to occur beforehand. A
sequence of images needs to be acquired
for analysis, in this case, a webcam. Then,
the hand needs to segmented in each
frame from the other objects that are not
of interest. Finally, features of the hand,
such as number of fingers, and
orientation need to be extracted. These
numbers will then be translated into a
gesture.

When approaching object segmentation
via color identification, there are several
color spaces to be considered. The main
three experimented with in this project
were RGB, HSV, and YCbCr. Red-Green-
Blue (RGB) color space is the most
intuitive and convenient color space
process in since this is how humans see
the world. All colors are made up of a
mixture of red, green, and blue, however,
since white is the sum of all color
primitives, computers have problems
with illumination changes. Color
consistency, is a skill the human brain can
perform subconsciously, but a computer
needs to be told explicitly that different
shades of the same color are equivalent in
different images, if the lighting changes.
Because of this, RGB is not a good color

space in which to perform color
segmentation.

Hue-Saturation-Value (HSV) color space
is arranged in a cylinder, with hue the
degrees of rotation from a starting point,
saturation is interpreted as the radius,
and value, or intensity, as the height. This
breakdown has hue as a better definition
of the color of a pixel, more invariant to
illumination since the brightness is
translated into the saturation and values
portions.

OpenCV calls the YUV color space YCbCr,
and it is defined as a color space of one
luma (Y) and two chrominance
components (UV). The conversion from
RGB to YUV contains three linear
combinations. YUV also separates
intensity and color information effectively
like HSV. The distribution of skin-tone is
most favorable in this color space than
the former two, so this was the color
space chosen for the algorithm.

There are several ways to segment a hand
from a background. First, is to look at
color segmentation, and choose all pixels
of a certain color. A second method is to
use two cameras in stereo, and create a
depth map from the disparities between
pixels. The hand would be the big object
that is close to the camera. A third option
is to use an infrared camera so that the
temperature of human skin (30 to 34
degrees C) is easily differentiated from
the cooler background.

To segment the hand from the
background, all of the pixels that are skin
need to be found. When the module starts
up, it performs k-means clustering on
random subset of pixels from the image,
with k=2. Resulting is two coordinates in

7

YUV space that represent the color of the
hand and the background. Each pixel is
then compared to these two points and
labeled as the centroid to which it is
closer. Re-clustering occurs periodically
after the first training to compensate for
changes in illumination. Just in case, there
are stray pixels that are labeled skin, or
there are small, bright patches on the
background, only the largest shape is
considered for analysis.

Once the hand is segmented from the
background, analysis to determine the
gesture can begin. Contours will define
the border of the hand. Several questions
need to be answered to classify the
gesture. The location of the center of the
hand is the main piece of information that
needs to be extracted so the fingertips can
be found relative to this center. The palm
of the hand can be approximated with a
circle, and conveniently the largest
approximating circle of any part of the
entire hand/arm object. So, the center of
the circle inside the contour of the hand
that is of the largest area will be a very
good estimation of the center of the hand.
Locating the center of this circle, is the
same as finding the point whose
minimum distance to any point on the
contour is the largest. This description of
the problem is one that is easily solved,
with the following algorithm:

1. Loop over all points that are
considered part of the hand.

2. For each point p, loop over all
points of the contour.

3. Save the minimum distance among
p to all points of the contour.

4. Save the maximum of these
minimums.

Since we are looping over a rectangular
image, and a long contour, this is a
polynomial algorithm. Some

optimizations can be made, by adding
conditional breaks, but it is still
polynomial. Then, there are two ways to
determine where the ends of the fingers
are located, so that we can count how
many fingers are extended. The first is to
use the convexity hulls and defects. The
hull is the shape that surrounds the
contour as a rubber band would. The
defects are where this hull is far away
from the rubber band, the knuckles, and
the points of contact are where the
fingers are, or the edge of the image. A
defect is defined as a set of three points: a
start, middle, and end. The start and end
are two points along the contour that
touch the hull. The middle point is the
point on the contour in between the start
and end that is furthest away from the
hull. The problem with this method is that
ring and middle fingers would have
trouble showing up since the start and
end of their defects weren't well defined.

A second way of counting fingers is to find
all the points of high curvature on the
contour since the end of fingers, and the
valleys where they meet are the places of
highest curvature on the hand. These
valleys, knuckles, can be differentiated
from fingertips in two ways: if the method
of determining curvature is signed, then
the two will have opposite signs. The
other way of separating knuckles from
fingers is to calculate the euclidean
distance from the center of the hand. For
this project, any potential candidate for a
fingertip that was further than twice the
radius of the palm is confidently labeled
as a fingertip. Anything else is assumed to
be a knuckle or a finger that is not fully
extended. Another facet of gestures is
which fingers are extended. The angles
between fingers can be used to discern
from different gestures.

8

Android Application

The code starts with importation of
libraries that allow Android to
communicate with the IOIO board.

One of the microcontroller's pins (#46) is
then assigned, output viewport is created,
and two UART pairs of communication
ports are initiated.

Next, the function onCreate initiates
objects required for the app to run. Then,
IOIOThread class is defined, which hosts
functions that run either only once, loop
continuously, or run conditionally (for
example, if connection is terminated
unexpectedly).

Within the IOIOThread class, the function
setup() runs once when the app is
launched on the phone. It opens an analog
input port on the microcontroller; opens
the UART ports with RX pin 4, TX pin 5,
baud rate of 9600, with no parity bits, and
a stop bit of one; it then proceeds to
assign buffer variables for data coming
out of the phone and data coming into the
phone. After all initiations are completed,
the control data is then is being sent.

While still inside the setup() function,
three commands are sent. First, is the
autobaud command; it allows the
microcontroller to automatically set the
baud rate. Next, the projector's screen is
cleared by sending a hexidecimal byte
0x45. This clears anything remaining on
the screen from previous time the app
was run. And last, the projector's
resolution is set to be 640x480 by
sending a string of bytes corresponding to
the uVGA board's communication
protocol.

Now that the setup is complete, a loop
function is run which loops indefinitely
until the app is terminated. The functions
contained in this loop continuously
receive gesture data from the gesture
recognition part, reads the output of the
ultrasonic rangefinder, extract data from
the Android's system (time, text
messages, GPS position, etc), and then
send appropriate commands to the
microcontroller's UART ports to
command the projector connected to the
uVGA.

The loop function first reads the range
from the ultrasonic rangefinder. This
value is then converted into an integer for
convenience sake. The screen is cleared
again at this point, and the value at the
UART's input port is read to make sure
the data is successfully received. Then if
the distance of any object is within
approximately 3 feet of the device, the
Android phone's internal functions are
accessed to read the light sensor, text
messages, and current date and time.
Then these data are translated into
something the uVGA can understand (e.g.
individual bytes of ASCII characters), and
it is sent byte-by-byte to the uVGA in
accordance with its communication
protocol.

Both software components can run
independently from one another with the
same results. For the system to work as a
HUD, both sections are necessary. These
components share data that is used to
make correct decisions as expected by the
user.

9

Design Problems Encountered and Solutions

The system design had to be modified
until it was ready to demonstrate the
capabilities of this electonic tool.

The initial system design is shown in Fig.
5. There were many issues with this
system. The camera used first was chosen
because the pictures taken were bmps.
Early on, the camera had to be changed
because the data sheet was incomplete
and so some commands needed were not
available.

Fig. 5: Original system attempted.

The camera used was switched to another
external camera, which takes images as
jpegs. This was an issue because each
component in the circuit uses bmps, so
the images could not be sent to the phone
for processing. Also, if the tranfer of the
photos was possible, the processing time
to save, convert, and process the photo
would have been too long.

Next, an ultrasonic distance detector was
put in place of the camera. The issue with
this, however, was that it eliminated the
ability to use the hand gesture algorithms
with the system. It was used, nontheless,
to show proof of concept to be able to
send data from the phone to the projector
via some kind of external command.

There were three ranges of distance
utilized to shown three different displays

of information from the phone. After this
was complete, a camera was put back into
the system.

The system currently used utilizes both
the ultrasonic distance detector and the
camera from the laptop. This is the
system decribed above in Fig. 4.

Fig. 6:Current system diagram.

Throughout the duration of the project,
there were also many issues encountered
with the software. The majority of these
issues were encountered early on in the
project because of the lack of knowledge
in Android development. Once the
communication protocol was understood,
the issues with software were resolved
fairly quickly.

The only ongoing software issue is the
inability to access the Android camera
while simultaneously running the
application.

10

Future Considerations

The next step in completing this project is
to implement the system shown below in
Fig. 7.

Fig. 7: System diagram replacing webcam with Android

camera.

The OpenCV gesture recognition code can
be tranferred to an application utilizing
current OpenCV libraries which are made
specifically for Android.

The above system still does not conform
to the initial goal of seperating the
hardware entirely from Android. Since
the goal is to design a standalone device
(and because by then the image analysis
gesture-extracting algorithms would be
transferred to Android OpenCV), the
system design would be modified to the
one shown below.

Fig. 8: Future system diagram using external camera

separating Android phone from the device.

Conclusion

 This project has a lot of potential for
expansion. Once the phone is separated
and the rest of the system is a standalone
device, the application can be expanded
to incorporate anything from Android.
Ideally, the data rates will eventually be
high enough to be able to send entire
screenshots from the phone to the
projector. Currently, the system only
extracts information from the phone and
displays it using a GUI developed during
the duration of this project.

Another future point of optimization
comes with expansion of gestures. With
the light sensor currently being used,
there is a maximum of three recognized
gestures that can be sent to the phone.

Finally, the gesture recognition currently
works only with a black background in a
well-lit area. This is something that will
have to be addressed if this product is
going to be used widely; the convenience
aspect of the project is nonexistent if it
can only be used in a very specific setting.

The most important part for this project
moving forward is the camera. The proof
of concept for hand recognition has been
shown. The proof of the ability to
manipulate the phone through some
external device has been shown. With a
camera that can work with each
component in the system in a timely
manner, this project will be complete and
ready for expansion.

11

Appendix A

Gesture Recognition
handed in as hard copy

Android Application

package romanowski.main;

/*
 * Head-mounted gesture-controlled smartphone with projected-onto-the-wrist visual feedback.
 * Upon approval on human testing, functions extend to a head-mounted heads-up display
 * to directly transmit images onto the retina (instead of first reflecting off the wrist).
 *
 * This project is a combination of computer vision, android app development,
 * embedded electronics, and communications fields of electrical and computer engineering.
 *
 * Project Authors: Anton Krivosheyev, Richard Romanowski, Michelle Greenfarb
 * Date First Created: February 1, 2012
 * Date Last Modified: 5/2/2012
 *
 */

import ioio.lib.api.AnalogInput;
import ioio.lib.api.Uart;
import ioio.lib.api.exception.ConnectionLostException;
import ioio.lib.util.AbstractIOIOActivity;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.text.DateFormat;
import java.util.Date;

import android.content.Context;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Rect;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.WindowManager;
import android.widget.Button;
import android.widget.LinearLayout;
import android.widget.TextView;

//Modified Activity to AbstractIOIOActivity:
public class ScreenCaptureActivity extends AbstractIOIOActivity implements
SensorEventListener{

12

 private static final int ULTRASONIC_PIN = 46;
 Bitmap bm = null;
 private TextView output;
 private Uart uart_uVGA;
 private InputStream in_uVGA;
 private OutputStream out_uVGA;
 private int lightQuantity;

 private SensorManager sensorManager = null;
 private Sensor currentSensor = null;

 @Override
 public void onResume(){
 super.onResume();
 if(currentSensor != null)sensorManager.registerListener(this, currentSensor,
SensorManager.SENSOR_DELAY_FASTEST);
 }

 @Override
 public void onPause(){
 super.onPause();
 sensorManager.unregisterListener(this);
 }

 LinearLayout view;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 // TODO Auto-generated method stub
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON); //keep
screen of phone on while application is open

 sensorManager = (SensorManager) this.getSystemService(SENSOR_SERVICE);
 currentSensor = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
 if(currentSensor != null){
 sensorManager.registerListener(this, currentSensor,
SensorManager.SENSOR_DELAY_FASTEST);
 }else{
 //do nothing
 }

 output = (TextView)findViewById(R.id.textview);
 view = (LinearLayout)findViewById(R.id.main);
 Button myBtn = (Button)findViewById(R.id.myBtn);

 myBtn.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v) {
 click();
 }
 });
 }

 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // TODO Auto-generated method stub

13

 }

 @Override
 public void onSensorChanged(SensorEvent event) {
 // TODO Auto-generated method stub

 if (event.sensor.getType() == Sensor.TYPE_LIGHT){
 //output = (TextView)findViewById(R.id.textview);
 //output.setText(output.getText()+ "value: " +event.values[0] + " lux ");
 lightQuantity = (int) event.values[0];
 }
 }

 public void click(){
 // TODO Auto-generated method stub

 View v1 = view.getRootView();
 System.out.println("Root View : "+v1);
 v1.setDrawingCacheEnabled(true);
 bm = v1.getDrawingCache();
 setContentView(new BitMapView(this, bm));

 System.out.println("Bitmap : bm.getPixel(0,0) =?= "+bm.getPixel(0,0));
 }
 class BitMapView extends View {
 Bitmap mBitmap = null;
 public BitMapView(Context context, Bitmap bm) {
 super(context);
 mBitmap = bm;
 }

 @Override
 protected void onDraw(Canvas canvas) {
 // called when view is drawn
 Paint paint = new Paint();
 paint.setFilterBitmap(true);
 // The image will be scaled so it will fill the width, and the
 // height will preserve the image's aspect ratio
 double aspectRatio = ((double) mBitmap.getWidth()) / mBitmap.getHeight();
 Rect dest = new Rect(0, 0, this.getWidth(),(int) (this.getHeight() /
aspectRatio));
 canvas.drawBitmap(mBitmap, null, dest, paint);
 }
 }

 class IOIOThread extends AbstractIOIOActivity.IOIOThread {
 private AnalogInput sonicInput;
 private int sonicVal;
 private int sonicValOld;
 private int sonicVal2;
 private int sonicValOld2;

 public void setup() throws ConnectionLostException {
 try {

14

 sonicInput = ioio_.openAnalogInput(ULTRASONIC_PIN);
 uart_uVGA =
ioio_.openUart(4,5,9600,Uart.Parity.NONE,Uart.StopBits.ONE);

 int value1 = 1, value2 = 2, value3 = 3; //variables for testing
bytes returned
 in_uVGA = uart_uVGA.getInputStream();
 out_uVGA = uart_uVGA.getOutputStream();

 out_uVGA.write(0x55); //autobaud command (must be sent to uVGAII
board first)
 value1=(byte) in_uVGA.read(); //device replies with 0x06 if
command successfully received

 out_uVGA.write(0x45); //clear screen command
 value2=(byte) in_uVGA.read(); //device replies with 0x06 if
command successfully received

 out_uVGA.write(0x59); //display control functions command
 out_uVGA.write(0x0C); //change VGA resolution sub-command
 out_uVGA.write(0x01); //01:640x480 02:800x480 sub-command
 value3=(byte) in_uVGA.read(); //replies with 0x06 if command
successfully received

 //drawAndroid();

 } catch (ConnectionLostException e) {
 throw e;
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public void loop() throws ConnectionLostException {
 try {
 int val = 0;
 final float sonicValue = sonicInput.read();//read ultrasonic
analog
 //final float sonicVal11=sonicInput.read();
 //final float sonicVal22=sonicInput.read();
 //final float sonicVal33=sonicInput.read();
 //sonicVal = (int) (((sonicVal11+sonicVal22+sonicVal33)/3)*1000);
 final int sonicVal = (int) (sonicValue*1000);
 //sleep(100);

 //Scanner st = new Scanner(new
File("/sys/devices/virtual/lightsensor/switch_cmd/lightsensor_file_state"));
 //int lux = st.nextInt();
 //st.close();

 /*
 out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x01); //x
 out_uVGA.write(0x40); //x

15

 out_uVGA.write(0x00); //y
 out_uVGA.write(0x50); //y
 out_uVGA.write(0x00); //radius
 out_uVGA.write((byte) lightQuantity); //radius
 out_uVGA.write(0xFF); //color
 out_uVGA.write(0xFF); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully
received
 */

 //if(sonicVal > (sonicValOld+7) || sonicVal < (sonicValOld-7))
 //{
 //sonicValOld = sonicVal;
 sleep(100);
 out_uVGA.write(0x45); //clear screen command
 val=(byte) in_uVGA.read(); //device replies with 0x06 if command
successfully received
 if(sonicVal < 20)
 {
 drawAndroid();
 /*
 out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x01); //x
 out_uVGA.write(0x40); //x
 out_uVGA.write(0x00); //y
 out_uVGA.write(0x50); //y
 out_uVGA.write(0x00); //radius
 out_uVGA.write(0x1F); //radius
 out_uVGA.write(0x00); //color blue
 out_uVGA.write(0x1F); //color blue
 val=(byte) in_uVGA.read(); // replies with 0x06 if command
successfully received
 */

 }
 else if((sonicVal > 20 && sonicVal <30) && (lightQuantity >0 &&
lightQuantity <30))
 {
 Cursor cursor =
getContentResolver().query(Uri.parse("content://sms/inbox"), null, null, null, null);
 cursor.moveToFirst();
 String msgData = "";
 msgData += " Last TXT:" + cursor.getString(13);
 char[] msgDataChar = msgData.toCharArray();

 out_uVGA.write(0x73); //Draw “String” of ASCII Text (text format) -
73hex
 out_uVGA.write(0x01); //column
 out_uVGA.write(0x01); //row
 out_uVGA.write(0x03); // 3: 12x16 font
 out_uVGA.write(0xFF); // ffff white
 out_uVGA.write(0xFF); // ffff white
 out_uVGA.write(msgDataChar[0]); // ASCII
 out_uVGA.write(msgDataChar[1]); // ASCII
 out_uVGA.write(msgDataChar[2]); // ASCII
 out_uVGA.write(msgDataChar[3]); // ASCII
 out_uVGA.write(msgDataChar[4]); // ASCII
 out_uVGA.write(msgDataChar[5]); // ASCII
 out_uVGA.write(msgDataChar[6]); // ASCII
 out_uVGA.write(msgDataChar[7]); // ASCII

16

 out_uVGA.write(msgDataChar[8]); // ASCII
 out_uVGA.write(msgDataChar[9]); // ASCII
 out_uVGA.write(msgDataChar[10]); // ASCII
 out_uVGA.write(msgDataChar[11]); // ASCII
 out_uVGA.write(msgDataChar[12]); // ASCII
 out_uVGA.write(msgDataChar[13]); // ASCII
 out_uVGA.write(msgDataChar[14]); // ASCII
 out_uVGA.write(msgDataChar[15]); // ASCII
 out_uVGA.write(msgDataChar[16]); // ASCII
 out_uVGA.write(msgDataChar[17]); // ASCII
 out_uVGA.write(msgDataChar[18]); // ASCII
 out_uVGA.write(msgDataChar[19]); // ASCII
 out_uVGA.write(msgDataChar[20]); // ASCII
 out_uVGA.write(msgDataChar[21]); // ASCII
 out_uVGA.write(msgDataChar[22]); // ASCII
 out_uVGA.write(msgDataChar[23]); // ASCII
 out_uVGA.write(msgDataChar[24]); // ASCII
 out_uVGA.write(msgDataChar[25]); // ASCII
 out_uVGA.write(msgDataChar[26]); // ASCII
 out_uVGA.write(msgDataChar[27]); // ASCII
 out_uVGA.write(msgDataChar[28]); // ASCII

 out_uVGA.write(0x00); // TERMINATOR
 val=(byte) in_uVGA.read(); //replies with 0x06 if command
successfully received

 /*out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x01); //x
 out_uVGA.write(0x40); //x
 out_uVGA.write(0x00); //y
 out_uVGA.write(0x50); //y
 out_uVGA.write(0x00); //radius
 out_uVGA.write(0x1F); //radius
 out_uVGA.write(0xF8); //color red
 out_uVGA.write(0x00); //color red
 val=(byte) in_uVGA.read(); // replies with 0x06 if command
successfully received
 */
 }
 else if((sonicVal > 20 && sonicVal <30) && (lightQuantity >30 &&
lightQuantity <500))
 {
 String currentDateTimeString =
DateFormat.getDateTimeInstance().format(new Date());

 char[] currentDateChar =
currentDateTimeString.toCharArray();

 out_uVGA.write(0x73); //Draw “String” of ASCII Text (text
format) - 73hex
 out_uVGA.write(0x01); //column
 out_uVGA.write(0x01); //row
 out_uVGA.write(0x03); // 3: 12x16 font
 out_uVGA.write(0xFF); // ffff white
 out_uVGA.write(0xFF); // ffff white
 out_uVGA.write(currentDateChar[0]); // ASCII
 out_uVGA.write(currentDateChar[1]); // ASCII
 out_uVGA.write(currentDateChar[2]); // ASCII
 out_uVGA.write(currentDateChar[3]); // ASCII
 out_uVGA.write(currentDateChar[4]); // ASCII

17

 out_uVGA.write(currentDateChar[5]); // ASCII
 out_uVGA.write(currentDateChar[6]); // ASCII
 out_uVGA.write(currentDateChar[7]); // ASCII
 out_uVGA.write(currentDateChar[8]); // ASCII
 out_uVGA.write(currentDateChar[9]); // ASCII
 out_uVGA.write(currentDateChar[10]); // ASCII
 out_uVGA.write(currentDateChar[11]); // ASCII
 out_uVGA.write(currentDateChar[12]); // ASCII
 out_uVGA.write(currentDateChar[13]); // ASCII
 out_uVGA.write(currentDateChar[14]); // ASCII
 out_uVGA.write(currentDateChar[15]); // ASCII
 out_uVGA.write(currentDateChar[16]); // ASCII
 out_uVGA.write(0x00); // TERMINATOR
 val=(byte) in_uVGA.read(); //replies with 0x06 if command
successfully received
 /*out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x01); //x
 out_uVGA.write(0x40); //x
 out_uVGA.write(0x00); //y
 out_uVGA.write(0x50); //y
 out_uVGA.write(0x00); //radius
 out_uVGA.write(0x1F); //radius
 out_uVGA.write(0x07); //color green
 out_uVGA.write(0xE0); //color green
 val=(byte) in_uVGA.read(); // replies with 0x06 if command
successfully received
 */
 }

 //}

 //int val=0;
 //out_uVGA.write(0x45);
 //val=(byte) in_uVGA.read();

 //read read read read until x=val1; if x=val1: read again, if x =
val2 read again if x = val3 wait 2 seconds send command

 //out_uVGA.write(0x45); //clear screen command
 //val=(byte) in_uVGA.read(); //device replies with 0x06 if
command successfully received
 //out_uVGA.write(0x70);//Set Pen Size-70hex
 //out_uVGA.write(0x00);//object will be drawn solid

 /*
 out_uVGA.write(0x70);//Set Pen Size-70hex
 out_uVGA.write(0x01);//object will be drawn with wire frame

 out_uVGA.write(0x72); //Draw Rectangle-72hex
 out_uVGA.write(0x00); //x1
 out_uVGA.write(0x01); //x1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x01); //y1
 out_uVGA.write(0x02); //x2 0x0280
 out_uVGA.write(0x80); //x2
 out_uVGA.write(0x01); //y2 0x01E0

18

 out_uVGA.write(0xE0); //y2
 out_uVGA.write(0xFF); //color white
 out_uVGA.write(0xFF); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command
successfully received

 out_uVGA.write(0x70);//Set Pen Size-70hex
 out_uVGA.write(0x00);//object will be drawn solid
 */
 /*
 if (sonicVal>30)
 {
 //out_uVGA.write(0x45); //clear screen command
 //val=(byte) in_uVGA.read(); //device replies with 0x06 if command
successfully received

 out_uVGA.write(0x47); //Draw Triangle- 47hex
 out_uVGA.write(0x00); //x1
 out_uVGA.write(0x0A); //x1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x0A); //y1
 out_uVGA.write(0x00); //x2
 out_uVGA.write(0x2A); //x2
 out_uVGA.write(0x00); //y2
 out_uVGA.write(0x2A); //y2
 out_uVGA.write(0x00); //x3
 out_uVGA.write(0x03); //x3
 out_uVGA.write(0x00); //y3
 out_uVGA.write(0x2A); //y3
 out_uVGA.write(0xFF); //color
 out_uVGA.write(0xFF); //color

 val=(byte) in_uVGA.read(); // replies with 0x06 if command
successfully received
 }
 else if (sonicVal>20 && sonicVal<=30)
 {
 //out_uVGA.write(0x45); //clear screen command
 //val=(byte) in_uVGA.read(); //device replies with 0x06 if
command successfully received

 out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x01); //x
 out_uVGA.write(0x40); //x
 out_uVGA.write(0x00); //y
 out_uVGA.write(0x50); //y
 out_uVGA.write(0x00); //radius
 out_uVGA.write((byte)sonicVal); //radius
 out_uVGA.write(0xFF); //color
 out_uVGA.write(0xFF); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command
successfully received
 }
 else if (sonicVal > 10 && sonicVal<=20)
 {
 //out_uVGA.write(0x45); //clear screen command
 //val=(byte) in_uVGA.read(); //device replies with 0x06 if
command successfully received

19

 out_uVGA.write(0x72); //Draw Rectangle-72hex
 out_uVGA.write(0x00); //x1
 out_uVGA.write(0x00); //x1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x02); //x2
 out_uVGA.write(0x80); //x2
 out_uVGA.write(0x01); //y2
 out_uVGA.write(0xE0); //y2
 out_uVGA.write(0xAA); //color
 out_uVGA.write(0x66); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command
successfully received

 }
 else if (sonicVal > 0 && sonicVal<=10)
 {
 //
 }
 */
 /*
 else if (sonicVal>0 && sonicVal<25)
 {
 String currentDateTimeString =
DateFormat.getDateTimeInstance().format(new Date());

 char[] currentDateChar = currentDateTimeString.toCharArray();

 out_uVGA.write(0x73); //Draw “String” of ASCII Text (text format) -
73hex
 out_uVGA.write(0x01); //column
 out_uVGA.write(0x01); //row
 out_uVGA.write(0x03); // 3: 12x16 font
 out_uVGA.write(0xFF); // ffff white
 out_uVGA.write(0xFF); // ffff white
 out_uVGA.write(currentDateChar[0]); // ASCII
 out_uVGA.write(currentDateChar[1]); // ASCII
 out_uVGA.write(currentDateChar[2]); // ASCII
 out_uVGA.write(currentDateChar[3]); // ASCII
 out_uVGA.write(currentDateChar[4]); // ASCII
 out_uVGA.write(currentDateChar[5]); // ASCII
 out_uVGA.write(currentDateChar[6]); // ASCII
 out_uVGA.write(currentDateChar[7]); // ASCII
 out_uVGA.write(currentDateChar[8]); // ASCII
 out_uVGA.write(currentDateChar[9]); // ASCII
 out_uVGA.write(currentDateChar[10]); // ASCII
 out_uVGA.write(currentDateChar[11]); // ASCII
 out_uVGA.write(currentDateChar[12]); // ASCII
 out_uVGA.write(currentDateChar[13]); // ASCII
 out_uVGA.write(currentDateChar[14]); // ASCII
 out_uVGA.write(currentDateChar[15]); // ASCII
 out_uVGA.write(currentDateChar[16]); // ASCII
 out_uVGA.write(0x00); // TERMINATOR
 val=(byte) in_uVGA.read(); //replies with 0x06 if command successfully
received
 }
 */

 //sleep(1);

20

 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
public void drawAndroid() throws IOException{
 int val=0;

 out_uVGA.write(0x73); //Draw ascii string 73hex
 out_uVGA.write(0x0F); //column
 out_uVGA.write(0x01);// row
 out_uVGA.write(0x03);//font size
 out_uVGA.write(0xFF);// string color
 out_uVGA.write(0xFF);//sting color
 out_uVGA.write(0x57);//w
 out_uVGA.write(0x65);//e
 out_uVGA.write(0x6C);//l
 out_uVGA.write(0x63);//c
 out_uVGA.write(0x6F);//o
 out_uVGA.write(0x6D);//m
 out_uVGA.write(0x65);//e
 out_uVGA.write(0x20);//space
 out_uVGA.write(0x74);//t
 out_uVGA.write(0x6F);//o
 out_uVGA.write(0x20);//space
 out_uVGA.write(0x56);//V
 out_uVGA.write(0x69);//i
 out_uVGA.write(0x72);//r
 out_uVGA.write(0x74);//t
 out_uVGA.write(0x75);//u
 out_uVGA.write(0x61);//a
 out_uVGA.write(0x6C);//l
 out_uVGA.write(0x20);//space
 out_uVGA.write(0x41); //A
 out_uVGA.write(0x6E);//n
 out_uVGA.write(0x64);//d
 out_uVGA.write(0x72);//r
 out_uVGA.write(0x6F);//o
 out_uVGA.write(0x69);//i
 out_uVGA.write(0x64);//d
 out_uVGA.write(0x21);//!
 out_uVGA.write(0x00);//terminator
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received

 out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x02); //x
 out_uVGA.write(0x0F); //x
 out_uVGA.write(0x00); //y
 out_uVGA.write(0x0F); //y
 out_uVGA.write(0x00); //radius
 out_uVGA.write(0x05); //radius
 out_uVGA.write(0x0F); //color
 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received

 out_uVGA.write(0x72); //Draw Rectangle-72hex

21

 out_uVGA.write(0x02); //x1
 out_uVGA.write(0x09); //x1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x10); //y1
 out_uVGA.write(0x02); //x2
 out_uVGA.write(0x15); //x2
 out_uVGA.write(0x00); //y2
 out_uVGA.write(0x1C); //y2
 out_uVGA.write(0x0F); //color
 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received

 out_uVGA.write(0x4C); // draw line 4C-hex
 out_uVGA.write(0x02); //x1
 out_uVGA.write(0x09); //x1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x10); //y1
 out_uVGA.write(0x02); //x2
 out_uVGA.write(0x15); //x2
 out_uVGA.write(0x00); //y2
 out_uVGA.write(0x10); //y2
 out_uVGA.write(0x00); //color black
 out_uVGA.write(0x00); //color black
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received

 out_uVGA.write(0x4C); // draw line 4C-hex
 out_uVGA.write(0x02); //x1
 out_uVGA.write(0x10); //x1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x0F); //y1
 out_uVGA.write(0x02); //x2
 out_uVGA.write(0x12); //x2
 out_uVGA.write(0x00); //y2
 out_uVGA.write(0x06); //y2
 out_uVGA.write(0x0F); //color green
 out_uVGA.write(0x0F); //color green
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received
 out_uVGA.write(0x4C); // draw line 4C-hex
 out_uVGA.write(0x02); //x1
 out_uVGA.write(0x0E); //x1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x0F); //y1
 out_uVGA.write(0x02); //x2
 out_uVGA.write(0x0C); //x2
 out_uVGA.write(0x00); //y2
 out_uVGA.write(0x06); //y2
 out_uVGA.write(0x0F); //color green
 out_uVGA.write(0x0F); //color green
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received
 //right foot
 out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x02); //x
 out_uVGA.write(0x12); //x
 out_uVGA.write(0x00); //y
 out_uVGA.write(0x22); //y
 out_uVGA.write(0x00); //radius
 out_uVGA.write(0x01); //radius
 out_uVGA.write(0x0F); //color
 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received

22

 //left foot
 out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x02); //x
 out_uVGA.write(0x0C); //x
 out_uVGA.write(0x00); //y
 out_uVGA.write(0x22); //y
 out_uVGA.write(0x00); //radius
 out_uVGA.write(0x01); //radius
 out_uVGA.write(0x0F); //color
 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received
 //left leg
 out_uVGA.write(0x72); //Draw Rectangle-72hex
 out_uVGA.write(0x02); //x1
 out_uVGA.write(0x0B); //x1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x17); //y1
 out_uVGA.write(0x02); //x2
 out_uVGA.write(0x0D); //x2
 out_uVGA.write(0x00); //y2
 out_uVGA.write(0x22); //y2
 out_uVGA.write(0x0F); //color
 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received

 //right leg
 out_uVGA.write(0x72); //Draw Rectangle-72hex
 out_uVGA.write(0x02); //x1
 out_uVGA.write(0x11); //x1
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x17); //y1
 out_uVGA.write(0x02); //x2
 out_uVGA.write(0x13); //x2
 out_uVGA.write(0x00); //y2
 out_uVGA.write(0x22); //y2
 out_uVGA.write(0x0F); //color
 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received

 //right hand
 out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x02); //x
 out_uVGA.write(0x18); //x +7
 out_uVGA.write(0x00); //y
 out_uVGA.write(0x1B); //y -8
 out_uVGA.write(0x00); //radius
 out_uVGA.write(0x01); //radius
 out_uVGA.write(0x0F); //color
 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received
 //left hand
 out_uVGA.write(0x43); //Draw Circle- 43hex
 out_uVGA.write(0x02); //x
 out_uVGA.write(0x06); //x -7
 out_uVGA.write(0x00); //y
 out_uVGA.write(0x1B); //y -8
 out_uVGA.write(0x00); //radius
 out_uVGA.write(0x01); //radius
 out_uVGA.write(0x0F); //color

23

 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received
 //left arm
 out_uVGA.write(0x72); //Draw Rectangle-72hex
 out_uVGA.write(0x02); //x1
 out_uVGA.write(0x05); //x1 -7
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x13); //y1
 out_uVGA.write(0x02); //x2
 out_uVGA.write(0x07); //x2 -7
 out_uVGA.write(0x00); //y2
 out_uVGA.write(0x1B); //y2 -8
 out_uVGA.write(0x0F); //color
 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received
 //right arm
 out_uVGA.write(0x72); //Draw Rectangle-72hex
 out_uVGA.write(0x02); //x1
 out_uVGA.write(0x17); //x1 +7
 out_uVGA.write(0x00); //y1
 out_uVGA.write(0x13); //y1 was 0f
 out_uVGA.write(0x02); //x2
 out_uVGA.write(0x19); //x2 +7
 out_uVGA.write(0x00); //y2
 out_uVGA.write(0x1B); //y2 -8
 out_uVGA.write(0x0F); //color
 out_uVGA.write(0x0F); //color
 val=(byte) in_uVGA.read(); // replies with 0x06 if command successfully received
}
}

 @Override
 protected AbstractIOIOActivity.IOIOThread createIOIOThread() {
 return new IOIOThread();
 }

}

