Derivation of Pascal Distribution

Christopher Rose

November 27, 2007

Hi Folks,
Manasi asked me a question and though I made noises in the right direction, I pretty much screwed up in what I wrote down in an email. This will serve to fix my errors and be an indirect apology to Manasi.

Suppose you have a set of identically distributed random variables K_{i} where each is geometric with parameter p. That is

$$
p_{K_{i}}(k)=p(1-p)^{k-1}
$$

for $k=1,2, \ldots$ We can think of K_{i} as the number of trials up to and including a first "success."

Now, suppose we run the same "success" experiment independently r times. That is, we're looking for the number of trials up to and including the $r^{\text {th }}$ success. Then we have a new random variable $K=K_{1}+K_{2}+\cdots+K_{r}$. Since the K_{i} are independent, the distribution of the sum is the convolution of the distributions (A VERY IMPORTANT FACT! HINT HINT!!!).

However, unless you're a masochist and like doing convolution as opposed to multiplication, the speediest way to figure out the distribution on K is to go to "frequency domain" and use moment generating functions. So, the moment generating function for K_{i} is

$$
\phi_{K_{i}}(s)=E\left[e^{s k}\right]=\sum_{k=1}^{\infty} p(1-p)^{k-1} e^{s k}=\frac{p e^{s}}{1-(1-p) e^{s}}
$$

which immediately means that

$$
\phi_{K}(s)=\left(\frac{p e^{s}}{1-(1-p) e^{s}}\right)^{r}=p^{r} e^{s r}\left(\frac{1}{1-(1-p) e^{s}}\right)^{r}
$$

And I dare you to try to take the inverse transform directly to get back to $p_{K}(k)$. (I have a personal dislike of doing contour integrations, so inverse Z transforms and inverse Laplace transforms often bedevil me. Luckily, I have lots of company in my laziness.)

When I'm confronted with something I don't know (or don't want to do using brute force), I nose around for an easy way out. Looking at the fraction raised to a power makes me immediately think of

$$
\frac{d}{d \theta} \frac{1}{1-\theta}=\left(\frac{1}{1-\theta}\right)^{2}
$$

Therefore

$$
\frac{d^{\ell}}{d \theta^{\ell}} \frac{1}{1-\theta}=\ell!\left(\frac{1}{1-\theta}\right)^{\ell+1}
$$

Using this lovely fact we have (setting $\theta=(1-p) e^{s}$)

$$
\phi_{K}(s)=p^{r} e^{s r} \frac{1}{(r-1)!} \frac{d^{r-1}}{d \theta^{r-1}} \frac{1}{1-\theta}
$$

Suddenly, I'm much happier because I immediately remember that

$$
\sum_{m=0}^{\infty} q^{m}=\frac{1}{1-q}
$$

which leads to
$\phi_{K}(s)=p^{r} e^{s r} \frac{1}{(r-1)!} \frac{d^{r-1}}{d \theta^{r-1}} \sum_{k=1}^{\infty} \theta^{k-1}=p^{r} e^{s r} \frac{1}{(r-1)!} \sum_{k=r}^{\infty} \frac{(k-1)!}{(k-1-(r-1))!} \theta^{k-1-(r-1)}$
which we simplify as

$$
\phi_{K}(s)=p^{r} e^{s r} \frac{1}{(r-1)!} \sum_{k=r}^{\infty} \frac{(k-1)!}{(k-r)!} \theta^{k-r}
$$

We then substitute for θ to obtain

$$
\phi_{K}(s)=\sum_{k=r}^{\infty} p^{r} e^{s r} \frac{1}{(r-1)!} \frac{(k-1)!}{(k-r)!}(1-p)^{k-r} e^{s(k-r)}
$$

and rearrange a little to get

$$
\phi_{K}(s)=\sum_{k=r}^{\infty} e^{s k}\binom{k-1}{r-1} p^{r}(1-p)^{k-r}
$$

Hmmmmm! This looks just like $E\left[e^{s k}\right]$ if

$$
p_{K}(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}
$$

$k=r, r+1, \cdots$. AND WE'RE DONE since that's the Pascal distribution! Laziness has its rewards!

