
ECE541

Stochastic Signals and Systems

Problem Set 7

Problem Solutions : Yates and Goodman, 7.1.3 7.2.2 7.2.4 7.3.3 7.3.4 7.3.6 7.4.2 and
7.4.6

Problem 7.1.3 Solution

This problem is in the wrong section since the standard error isn’t defined until Sec-
tion 7.3. However is we peek ahead to this section, the problem isn’t very hard. Given
the sample mean estimate Mn(X), the standard error is defined as the standard deviation
en =

√

Var[Mn(X)]. In our problem, we use samples Xi to generate Yi = X2
i . For the

sample mean Mn(Y ), we need to find the standard error

en =
√

Var[Mn(Y )] =

√

Var[Y ]

n
. (1)

Since X is a uniform (0, 1) random variable,

E [Y ] = E
[

X2
]

=

∫

1

0

x2 dx = 1/3, (2)

E
[

Y 2
]

= E
[

X4
]

=

∫

1

0

x4 dx = 1/5. (3)

Thus Var[Y ] = 1/5 − (1/3)2 = 4/45 and the sample mean Mn(Y ) has standard error

en =

√

4

45n
. (4)

Problem 7.2.2 Solution

We know from the Chebyshev inequality that

P [|X − E [X] | ≥ c] ≤ σ2
X

c2
(1)

Choosing c = kσX , we obtain

P [|X − E [X] | ≥ kσ] ≤ 1

k2
(2)

The actual probability the Gaussian random variable Y is more than k standard deviations
from its expected value is

P [|Y − E [Y ]| ≥ kσY ] = P [Y − E [Y ] ≤ −kσY ] + P [Y − E [Y ] ≥ kσY ] (3)

= 2P

[

Y − E [Y ]

σY

≥ k

]

(4)

= 2Q(k) (5)
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The following table compares the upper bound and the true probability:

k = 1 k = 2 k = 3 k = 4 k = 5

Chebyshev bound 1 0.250 0.111 0.0625 0.040

2Q(k) 0.317 0.046 0.0027 6.33 × 10−5 5.73 × 10−7

(6)

The Chebyshev bound gets increasingly weak as k goes up. As an example, for k = 4, the
bound exceeds the true probability by a factor of 1,000 while for k = 5 the bound exceeds
the actual probability by a factor of nearly 100,000.

Problem 7.2.4 Solution

On each roll of the dice, a success, namely snake eyes, occurs with probability p = 1/36.
The number of trials, R, needed for three successes is a Pascal (k = 3, p) random variable
with

E [R] = 3/p = 108, Var[R] = 3(1 − p)/p2 = 3780. (1)

(a) By the Markov inequality,

P [R ≥ 250] ≤ E [R]

250
=

54

125
= 0.432. (2)

(b) By the Chebyshev inequality,

P [R ≥ 250] = P [R − 108 ≥ 142] = P [|R − 108| ≥ 142] (3)

≤ Var[R]

(142)2
= 0.1875. (4)

(c) The exact value is P [R ≥ 250] = 1 − ∑

249

r=3
PR(r). Since there is no way around

summing the Pascal PMF to find the CDF, this is what pascalcdf does.

>> 1-pascalcdf(3,1/36,249)

ans =

0.0299

Thus the Markov and Chebyshev inequalities are valid bounds but not good estimates
of P [R ≥ 250].

Problem 7.3.3 Solution

This problem is really very simple. If we let Y = X1X2 and for the ith trial, let Yi =
X1(i)X2(i), then R̂n = Mn(Y ), the sample mean of random variable Y . By Theorem 7.5,
Mn(Y ) is unbiased. Since Var[Y ] = Var[X1X2] < ∞, Theorem 7.7 tells us that Mn(Y ) is a
consistent sequence.
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Problem 7.3.4 Solution

(a) Since the expectation of a sum equals the sum of the expectations also holds for
vectors,

E [M(n)] =
1

n

n
∑

i=1

E [X(i)] =
1

n

n
∑

i=1

µX = µX. (1)

(b) The jth component of M(n) is Mj(n) = 1

n

∑n
i=1

Xj(i), which is just the sample mean
of Xj . Defining Aj = {|Mj(n) − µj | ≥ c}, we observe that

P

[

max
j=1,...,k

|Mj(n) − µj| ≥ c

]

= P [A1 ∪ A2 ∪ · · · ∪ Ak] . (2)

Applying the Chebyshev inequality to Mj(n), we find that

P [Aj ] ≤
Var[Mj(n)]

c2
=

σ2
j

nc2
. (3)

By the union bound,

P

[

max
j=1,...,k

|Mj(n) − µj| ≥ c

]

≤
k

∑

j=1

P [Aj] ≤
1

nc2

k
∑

j=1

σ2
j (4)

Since
∑k

j=1
σ2

j < ∞, limn→∞ P [maxj=1,...,k |Mj(n) − µj | ≥ c] = 0.

Problem 7.3.6 Solution

(a) From Theorem 6.2, we have

Var[X1 + · · · + Xn] =
n

∑

i=1

Var[Xi] + 2
n−1
∑

i=1

n
∑

j=i+1

Cov [Xi, Xj ] (1)

Note that Var[Xi] = σ2 and for j > i, Cov[Xi, Xj ] = σ2aj−i. This implies

Var[X1 + · · · + Xn] = nσ2 + 2σ2

n−1
∑

i=1

n
∑

j=i+1

aj−i (2)

= nσ2 + 2σ2

n−1
∑

i=1

(

a + a2 + · · · + an−i
)

(3)

= nσ2 +
2aσ2

1 − a

n−1
∑

i=1

(1 − an−i) (4)
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With some more algebra, we obtain

Var[X1 + · · · + Xn] = nσ2 +
2aσ2

1 − a
(n − 1) − 2aσ2

1 − a

(

a + a2 + · · · + an−1
)

(5)

=

(

n(1 + a)σ2

1 − a

)

− 2aσ2

1 − a
− 2σ2

(

a

1 − a

)2

(1 − an−1) (6)

Since a/(1 − a) and 1 − an−1 are both nonnegative,

Var[X1 + · · · + Xn] ≤ nσ2

(

1 + a

1 − a

)

(7)

(b) Since the expected value of a sum equals the sum of the expected values,

E [M(X1, . . . , Xn)] =
E [X1] + · · · + E [Xn]

n
= µ (8)

The variance of M(X1, . . . , Xn) is

Var[M(X1, . . . , Xn)] =
Var[X1 + · · · + Xn]

n2
≤ σ2(1 + a)

n(1 − a)
(9)

Applying the Chebyshev inequality to M(X1, . . . , Xn) yields

P [|M(X1, . . . , Xn) − µ| ≥ c] ≤ Var[M(X1, . . . , Xn)]

c2
≤ σ2(1 + a)

n(1 − a)c2
(10)

(c) Taking the limit as n approaches infinity of the bound derived in part (b) yields

lim
n→∞

P [|M(X1, . . . , Xn) − µ| ≥ c] ≤ lim
n→∞

σ2(1 + a)

n(1 − a)c2
= 0 (11)

Thus
lim

n→∞

P [|M(X1, . . . , Xn) − µ| ≥ c] = 0 (12)

Problem 7.4.2 Solution

X1, X2, . . . are iid random variables each with mean 75 and standard deviation 15.

(a) We would like to find the value of n such that

P [74 ≤ Mn(X) ≤ 76] = 0.99 (1)

When we know only the mean and variance of Xi, our only real tool is the Chebyshev
inequality which says that

P [74 ≤ Mn(X) ≤ 76] = 1 − P [|Mn(X) − E [X]| ≥ 1] (2)

≥ 1 − Var [X]

n
= 1 − 225

n
≥ 0.99 (3)

This yields n ≥ 22,500.
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(b) If each Xi is a Gaussian, the sample mean, Mn(X) will also be Gaussian with mean
and variance

E [Mn′(X)] = E [X] = 75 (4)

Var [Mn′(X)] = Var [X] /n′ = 225/n′ (5)

In this case,

P [74 ≤ Mn′(X) ≤ 76] = Φ

(

76 − µ

σ

)

− Φ

(

74 − µ

σ

)

(6)

= Φ(
√

n′/15) − Φ(−
√

n′/15) (7)

= 2Φ(
√

n′/15) − 1 = 0.99 (8)

Thus, n′ = 1,521.

Since even under the Gaussian assumption, the number of samples n′ is so large that even
if the Xi are not Gaussian, the sample mean may be approximated by a Gaussian. Hence,
about 1500 samples probably is about right. However, in the absence of any information
about the PDF of Xi beyond the mean and variance, we cannot make any guarantees
stronger than that given by the Chebyshev inequality.

Problem 7.4.6 Solution

Both questions can be answered using the following equation from Example 7.6:

P
[
∣

∣

∣
P̂n(A) − P [A]

∣

∣

∣
≥ c

]

≤ P [A] (1 − P [A])

nc2
(1)

The unusual part of this problem is that we are given the true value of P [A]. Since P [A] =
0.01, we can write

P
[
∣

∣

∣
P̂n(A) − P [A]

∣

∣

∣
≥ c

]

≤ 0.0099

nc2
(2)

(a) In this part, we meet the requirement by choosing c = 0.001 yielding

P
[
∣

∣

∣
P̂n(A) − P [A]

∣

∣

∣
≥ 0.001

]

≤ 9900

n
(3)

Thus to have confidence level 0.01, we require that 9900/n ≤ 0.01. This requires
n ≥ 990,000.

(b) In this case, we meet the requirement by choosing c = 10−3P [A] = 10−5. This implies

P
[∣

∣

∣
P̂n(A) − P [A]

∣

∣

∣
≥ c

]

≤ P [A] (1 − P [A])

nc2
=

0.0099

n10−10
=

9.9 × 107

n
(4)

The confidence level 0.01 is met if 9.9 × 107/n = 0.01 or n = 9.9 × 109.
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