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Problem 12.1.4 Solution

Based on the problem statement, the state of the wireless LAN is given by the following
Markov chain:
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. (1)

Problem 12.1.7 Solution

Let
Y =

[
Yn−1 Yn−2 · · · Y0

]
′

=
[
XTn−1

XTn−2
· · · X0

]
′

(1)

denote the past history of the process. In the conditional space where Yn = i and Y = y,
we can use the law of total probability to write

P [Yn+1 = j|Yn = i,Y = y]

=
∑

k

P [Yn+1 = j, |Yn = i,Y = y,Kn = k]P [Kn = k|Yn = i,Y = y]. (2)

Since Kn is independent of Yn and the past history Y,

P [Kn = k|Yn = i,Y = y] = P [Kn = k]. (3)

Next we observe that

P [Yn+1 = j|Yn = i,Y = y,Kn = k] = P [XTn+k = j|XTn
= i,Kn = k,Y = y] (4)

= P [XTn+k = j|XTn
= i,Kn = k] (5)
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because the state XTn+k is independent of the past history Y given the most recent state
XTn

. Moreover, by time invariance of the Markov chain,

P [XTn+k = j|XTn
= i,Kn = k] = P [XTn+k = j|XTn

= i] = [Pk]ij . (6)

Equations (5) and (6) imply

P [Yn+1 = j|Yn = i,Y = y,Kn = k] = [Pk]ij . (7)

It then follows from Equation (2) that

P [Yn+1 = j|Yn = i,Y = y] =
∑

k

P [Yn+1 = j, |Yn = i,Y = y,Kn = k]P [Kn = k] (8)

=
∑

k

[Pk]ijP [Kn = k]. (9)

Thus P [Yn+1 = j|Yn = i,Y = y] depends on i and j and is independent of the past history
Y and we conclude that Yn is a Markov chain.

Problem 12.3.2 Solution

At time n−1, let pi(n−1) denote the state probabilities. By Theorem 12.4, the probability
of state k at time n is

pk(n) =

∞∑

i=0

pi(n − 1)Pik (1)

Since Pik = q for every state i,

pk(n) = q

∞∑

i=0

pi(n − 1) = q (2)

Thus for any time n > 0, the probability of state k is q.

Problem 12.3.3 Solution

In this problem, the arrivals are the occurrences of packets in error. It would seem that
N(t) cannot be a renewal process because the interarrival times seem to depend on the
previous interarrival times. However, following a packet error, the sequence of packets that
are correct (c) or in error (e) up to and including the next error is given by the tree
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Assuming that sending a packet takes one unit of time, the time X until the next packet
error has the PMF

PX (x) =







0.9 x = 1
0.001(0.99)x−2 x = 2, 3, . . .
0 otherwise

(1)
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Thus, following an error, the time until the next error always has the same PMF. Moreover,
this time is independent of previous interarrival times since it depends only on the Bernoulli
trials following a packet error. It would appear that N(t) is a renewal process; however,
there is one additional complication. At time 0, we need to know the probability p of an
error for the first packet. If p = 0.9, then X1, the time until the first error, has the same
PMF as X above and the process is a renewal process. If p 6= 0.9, then the time until the
first error is different from subsequent renewal times. In this case, the process is a delayed
renewal process.

Problem 12.5.5 Solution

For this system, it’s hard to draw the entire Markov chain since from each state n there
are six branches, each with probability 1/6 to states n + 1, n + 2, . . . , n + 6. (Of course, if
n + k > K − 1, then the transition is to state n + k mod K.) Nevertheless, finding the
stationary probabilities is not very hard. In particular, the nth equation of π

′ = π
′P yields

πn =
1

6
(πn−6 + πn−5 + πn−4 + πn−3 + πn−2 + πn−1) . (1)

Rather than try to solve these equations algebraically, it’s easier to guess that the solution
is

π =
[
1/K 1/K · · · 1/K

]
′

. (2)

It’s easy to check that 1/K = (1/6) · 6 · (1/K)

Problem 12.5.6 Solution

This system has three states:

0 front teller busy, rear teller idle

1 front teller busy, rear teller busy

2 front teller idle, rear teller busy

We will assume the units of time are seconds. Thus, if a teller is busy one second, the teller
will become idle in th next second with probability p = 1/120. The Markov chain for this
system is

0 1 2

1-p p +(1-p)
2 2

1-p

1-p p(1-p)

p(1-p) p

We can solve this chain very easily for the stationary probability vector π. In particular,

π0 = (1 − p)π0 + p(1 − p)π1 (1)

This implies that π0 = (1 − p)π1. Similarly,

π2 = (1 − p)π2 + p(1 − p)π1 (2)
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yields π2 = (1 − p)π1. Hence, by applying π0 + π1 + π2 = 1, we obtain

π0 = π2 =
1 − p

3 − 2p
= 119/358 (3)

π1 =
1

3 − 2p
= 120/358 (4)

The stationary probability that both tellers are busy is π1 = 120/358.

Problem 12.6.2 Solution

The Markov chain for this system is

0 1

P N >1|N >0[ ]

P N=2|N >1[ ]

K-1 K

P N >3|N >2[ ]

P N=K|N >K-1[ ]

P N >K|N >K-1[ ]P N >K-1|N >K-2[ ]

2

P N >2|N >1[ ]

P N=3|N >2[ ]

P N=K+1|N >K[ ]

…

Note that P [N > 0] = 1 and that

P [N > n|N > n − 1] =
P [N > n,N > n − 1]

P [N > n − 1]
=

P [N > n]

P [N > n − 1]
. (1)

Solving π
′ = π

′P yields

π1 = P [N > 1|N > 0] π0 = P [N > 1] π0 (2)

π2 = P [N > 2|N > 1] π1 =
P [N > 2]

P [N > 1]
π1 = P [N > 2]π0 (3)

...

πn = P [N > n|N > n − 1] πn−1 =
P [N > n]

P [N > n − 1]
πn−1 = P [N > n]π0 (4)

Next we apply the requirement that the stationary probabilities sum to 1. Since P [N ≤ K + 1] =
1, we see for n ≥ K + 1 that P [N > n] = 0. Thus

1 =

K∑

n=0

πn = π0

K∑

n=0

P [N > n] = π0

∞∑

n=0

P [N > n] . (5)

From Problem 2.5.11, we recall that
∑

∞

n=0
P [N > n] = E[N ]. This implies π0 = 1/E[N ]

and that

πn =
P [N > n]

E [N ]
. (6)

This is exactly the same stationary distribution found in Quiz 12.5! In this problem, we
can view the system state as describing the age of an object that is repeatedly replaced. In
state 0, we start with a new (zero age) object, and each unit of time, the object ages one
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unit of time. The random variable N is the lifetime of the object. A transition to state 0
corresponds to the current object expiring and being replaced by a new object.

In Quiz 12.5, the system state described a countdown timer for the residual life of an
object. At state 0, the system would transition to a state N = n corresponding to the
lifetime of n for a new object. This object expires and is replaced each time that state 0
is reached. This solution and the solution to Quiz 12.5 show that the age and the residual
life have the same stationary distribution. That is, if we inspect an object at an arbitrary
time in the distant future, the PMF of the age of the object is the same as the PMF of the
residual life.

Problem 12.8.2 Solution

If there are k customers in the system at time n, then at time n+1, the number of customers
in the system is either n−1 (if the customer in service departs and no new customer arrives),
n (if either there is no new arrival and no departure or if there is both a new arrival and
a departure) or n + 1, if there is a new arrival but no new departure. The transition
probabilities are given by the following chain:

1 2

p

d d d

a a

1-a-d 1-a-d1-p

0

where α = p(1 − q) and δ = q(1 − p). To find the stationary probabilities, we apply
Theorem 12.13 by partitioning the state space between states S = {0, 1, . . . , i} and S ′ =
{i + 1, i + 2, . . .} as shown in Figure 12.4. By Theorem 12.13, for state i > 0,

πiα = πi+1δ. (1)

This implies πi+1 = (α/δ)πi. A cut between states 0 and 1 yields π1 = (p/δ)π0. Combining
these results, we have for any state i > 0,

πi =
p

δ

(α

δ

)i−1

π0 (2)

Under the condition α < δ, it follows that

∞∑

i=0

πi = π0 + π0

∞∑

i=1

p

δ

(α

δ

)i−1

= π0

(

1 +
p/δ

1 − α/δ

)

(3)

since p < q implies α/δ < 1. Thus, applying
∑

i πi = 1 and noting δ − α = q − p, we have

π0 =
q

q − p
, πi =

p

(1 − p)(1 − q)

[
p/(1 − p)

q/(1 − q)

]i−1

, i = 1, 2, . . . (4)

Note that α < δ if and only if p < q, which is both sufficient and necessary for the Markov
chain to be positive recurrent.
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Problem 12.9.1 Solution

From the problem statement, we learn that in each state i, the tiger spends an exponential
time with parameter λi. When we measure time in hours,

λ0 = q01 = 1/3 λ1 = q12 = 1/2 λ2 = q20 = 2 (1)

The corresponding continous time Markov chain is shown below:

2

0 1

½2

1/3

The state probabilities satisfy

1

3
p0 = 2p2

1

2
p1 =

1

3
p0 p0 + p1 + p2 = 1 (2)

The solution is
[
p0 p1 p2

]
=

[
6/11 4/11 1/11

]
(3)

Problem 12.10.1 Solution

In Equation (12.93), we found that the blocking probability of the M/M/c/c queue was
given by the Erlang-B formula

P [B] = PN (c) =
ρc/c!

∑c
k=0

ρk/k!
(1)

The parameter ρ = λ/µ is the normalized load. When c = 2, the blocking probability is

P [B] =
ρ2/2

1 + ρ + ρ2/2
(2)

Setting P [B] = 0.1 yields the quadratic equation

ρ2 − 2

9
ρ − 2

9
= 0 (3)

The solutions to this quadratic are

ρ =
1 ±

√
19

9
(4)

The meaningful nonnegative solution is ρ = (1 +
√

19)/9 = 0.5954.
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Problem 12.10.5 Solution

(a) In this case, we have two M/M/1 queues, each with an arrival rate of λ/2. By defining
ρ = λ/µ, each queue has a stationary distribution

pn = (1 − ρ/2) (ρ/2)n n = 0, 1, . . . (1)

Note that in this case, the expected number in queue i is

E [Ni] =

∞∑

n=0

npn =
ρ/2

1 − ρ/2
(2)

The expected number in the system is

E [N1] + E [N2] =
ρ

1 − ρ/2
(3)

(b) The combined queue is an M/M/2/∞ queue. As in the solution to Quiz 12.10, the
stationary probabilities satisfy

pn =

{
p0ρ

n/n! n = 1, 2
p0ρ

n−2ρ2/2 n = 3, 4, . . .
(4)

The requirement that
∑

∞

n=0
pn = 1 yields

p0 =

(

1 + ρ +
ρ2

2
+

ρ2

2

ρ/2

1 − ρ/2

)−1

=
1 − ρ/2

1 + ρ/2
(5)

The expected number in the system is E[N ] =
∑

∞

n=1
npn. Some algebra will show

that
E [N ] =

ρ

1 − (ρ/2)2
(6)

We see that the average number in the combined queue is lower than in the system with
individual queues. The reason for this is that in the system with individual queues, there
is a possibility that one of the queues becomes empty while there is more than one person
in the other queue.

Problem 12.11.2 Solution

In this problem, we model the system as a continuous time Markov chain. The clerk and
the manager each represent a “server.” The state describes the number of customers in
the queue and the number of active servers. The Markov chain issomewhat complicated
because when the number of customers in the store is 2, 3, or 4, the number of servers may
be 1 or may be 2, depending on whether the manager became an active server.

When just the clerk is serving, the service rate is 1 customer per minute. When the
manager and clerk are both serving, the rate is 2 customers per minute. Here is the Markov
chain:
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1 4c
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In states 2c, 3c and 4c, only the clerk is working. In states 2m, 3m and 4m, the manager
is also working. The state space {0, 1, 2c, 3c, 4c, 2m, 3m, 4m, 5, 6, . . .} is countably infinite.
Finding the state probabilities is a little bit complicated because the are enough states
that we would like to use Matlab; however, Matlab can only handle a finite state space.
Fortunately, we can use Matlab because the state space for states n ≥ 5 has a simple
structure.

We observe for n ≥ 5 that the average rate of transitions from state n to state n + 1
must equal the average rate of transitions from state n + 1 to state n, implying

λpn = 2pn+1, n = 5, 6, . . . (1)

It follows that pn+1 = (λ/2)pn and that

pn = αn−5p5, n = 5, 6, . . . , (2)

where α = λ < 2 < 1. The requirement that the stationary probabilities sum to 1 implies

1 = p0 + p1 +
4∑

j=2

(pjc + pjm) +
∞∑

n=5

pn (3)

= p0 + p1 +

4∑

j=2

(pjc + pjm) + p5

∞∑

n=5

αn−5 (4)

= p0 + p1 +

4∑

j=2

(pjc + pjm) +
p5

1 − α
(5)

This is convenient because for each state j < 5, we can solve for the staitonary probabilities.
In particular, we use Theorem 12.23 to write

∑∑

i rijpi = 0. This leads to a set of matrix
equations for the state probability vector

p =
[
p0 p1 p2c p3c p3c p4c p2m p3m p4m p5

]
′

(6)

8



The rate transition matrix associated with p is

Q =



















p0 p1 p2c p3c p4c p2m p3m p4m p5

0 λ 0 0 0 0 0 0 0
1 0 λ 0 0 0 0 0 0
0 1 0 λ 0 0 0 0 0
0 0 1 0 λ 0 0 0 0
0 0 0 1 0 0 0 0 λ
0 2 0 0 0 0 λ 0 0
0 0 0 0 0 2 0 λ 0
0 0 0 0 0 0 2 0 λ
0 0 0 0 0 0 0 2 0



















, (7)

where the first row just shows the correspondence of the state probabilities and the matrix
columns. For each state i, excepting state 5, the departure rate νi from that state equals
the sum of entries of the corresponding row of Q. To find the stationary probabilities, our
normal procedure is to use Theorem 12.23 and solve p′R = 0 and p′1 = 1, where R is
the same as Q except the zero diagonal entries are replaced by −νi. The equation p′1 = 1
replaces one column of the set of matrix equations. This is the approach of cmcstatprob.m.

In this problem, we follow almost the same procedure. We form the matrix R by
replacing the diagonal entries of Q. However, instead of replacing an arbitrary column with
the equation p′1 = 1, we replace the column corresponding to p5 with the equation

p0 + p1 + p2c + p3c + p4c + p2m + p3m + p4m +
p5

1 − α
= 1. (8)

That is, we solve
p′R =

[
0 0 0 0 0 0 0 0 0 1

]
′

. (9)

where

R =

















−λ λ 0 0 0 0 0 0 1
1 −1 − λ λ 0 0 0 0 0 1
0 1 −1 − λ λ 0 0 0 0 1
0 0 1 −1 − λ λ 0 0 0 1
0 0 0 1 −1 − λ 0 0 0 1
0 2 0 0 0 −2 − λ λ 0 1
0 0 0 0 0 2 −2 − λ λ 1
0 0 0 0 0 0 2 −2 − λ 1
0 0 0 0 0 0 0 2 1

1−α

















(10)

Given the stationary distribution, we can now find E[N ] and P [W ].
Recall that N is the number of customers in the system at a time in the distant future.

Defining
pn = pnc + pnm, n = 2, 3, 4, (11)

we can write

E [N ] =

∞∑

n=0

npn =

4∑

n=0

npn +

∞∑

n=5

np5α
n−5 (12)
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The substitution k = n − 5 yields

E [N ] =

4∑

n=0

npn + p5

∞∑

k=0

(k + 5)αk (13)

=

4∑

n=0

npn + p5

5

1 − α
+ p5

∞∑

k=0

kαk (14)

From Math Fact B.7, we conclude that

E [N ] =
4∑

n=0

npn + p5

(
5

1 − α
+

α

(1 − α)2

)

(15)

=
4∑

n=0

npn + p5

5 − 4α

(1 − α)2
(16)

Furthermore, the manager is working unless the system is in state 0, 1, 2c, 3c, or 4c.
Thus

P [W ] = 1 − (p0 + p1 + p2c + p3c + p4c). (17)

We implement these equations in the following program, alongside the corresponding out-
put.

function [EN,PW]=clerks(lam);

Q=diag(lam*[1 1 1 1 0 1 1 1],1);

Q=Q+diag([1 1 1 1 0 2 2 2],-1);

Q(6,2)=2; Q(5,9)=lam;

R=Q-diag(sum(Q,2));

n=size(Q,1);

a=lam/2;

R(:,n)=[ones(1,n-1) 1/(1-a)]’;

pv=([zeros(1,n-1) 1]*R^(-1));

EN=pv*[0;1;2;3;4;2;3;4; ...

(5-4*a)/(1-a)^2];

PW=1-sum(pv(1:5));

>> [en05,pw05]=clerks(0.5)

en05 =

0.8217

pw05 =

0.0233

>> [en10,pw10]=clerks(1.0)

en10 =

2.1111

pw10 =

0.2222

>> [en15,pw15]=clerks(1.5)

en15 =

4.5036

pw15 =

0.5772

>>

We see that in going from an arrival rate of 0.5 customers per minute to 1.5 customers
per minute, the average number of customers goes from 0.82 to 4.5 customers. Similarly,
the probability the manager is working rises from 0.02 to 0.57.

Problem 12.11.3 Solution

Although the inventory system in this problem is relatively simple, the performance analysis
is suprisingly complicated. We can model the system as a Markov chain with state Xn equal
to the number of brake pads in stock at the start of day n. Note that the range of Xn is
SX = {50, 51, . . . , 109}. To evaluate the system, we need to find the state transition matrix
for the Markov chain. We express the transition probabilities in terms of PK(·), the PMF of
the number of brake pads ordered on an arbitary day. In state i, there are two possibilities:
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• If 50 ≤ i ≤ 59, then there will be min(i,K) brake pads sold. At the end of the day, the
number of pads remaining is less than 60, and so 50 more pads are delivered overnight.
Thus the next state is j = 50 if K ≥ i pads are ordered, i pads are sold and 50 pads
are delivered overnight. On the other hand, if there are K < i orders, then the next
state is j = i − K + 50. In this case,

Pij =

{
P [K ≥ i] j = 50,
PK (50 + i − j) j = 51, 52, . . . , 50 + i.

(1)

• If 60 ≤ i ≤ 109, then there are several subcases:

– j = 50: If there are K ≥ i orders, then all i pads are sold, 50 pads are delivered
overnight, and the next state is j = 50. Thus

Pij = P [K ≥ i] , j = 50. (2)

– 51 ≤ j ≤ 59: If 50+ i− j pads are sold, then j − 50 pads ar left at the end of the
day. In this case, 50 pads are delivered overnight, and the next state is j with
probability

Pij = PK (50 + i − j) , j = 51, 52, . . . , 59. (3)

– 60 ≤ j ≤ i: If there are K = i−j pads ordered, then there will be j ≥ 60 pads at
the end of the day and the next state is j. On the other hand, if K = 50 + i− j
pads are ordered, then there will be i − (50 + i − j) = j − 50 pads at the end of
the day. Since 60 ≤ j ≤ 109, 10 ≤ j − 50 ≤ 59, there will be 50 pads delivered
overnight and the next state will be j. Thus

Pij = PK (i − j) + PK (50 + i − j) , j = 60, 61, . . . , i. (4)

– For i < j ≤ 109, state j can be reached from state i if there 50 + i − j orders,
leaving i − (50 + i − j) = j − 50 in stock at the end of the day. This implies 50
pads are delivered overnight and the next stage is j. the probability of this event
is

Pij = PK (50 + i − j) , j = i + 1, i + 2, . . . , 109. (5)

We can summarize these observations in this set of state transition probabilities:

Pij =







P [K ≥ i] 50 ≤ i ≤ 109, j = 50,
PK (50 + i − j) 50 ≤ i ≤ 59, 51 ≤ j ≤ 50 + i,
PK (50 + i − j) 60 ≤ i ≤ 109, 51 ≤ j ≤ 59,
PK (i − j) + PK (50 + i − j) 60 ≤ i ≤ 109, 60 ≤ j ≤ i,
PK (50 + i − j) 60 ≤ i ≤ 108, i + 1 ≤ j ≤ 109
0 otherwise

(6)

Note that the “0 otherwise” rule comes into effect when 50 ≤ i ≤ 59 and j > 50 + i. To
simplify these rules, we observe that PK(k) = 0 for k < 0. This implies PK(50 + i − j) = 0
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for j > 50 + i. In addition, for j > i, PK(i − j) = 0. These facts imply that we can write
the state transition probabilities in the simpler form:

Pij =







P [K ≥ i] 50 ≤ i ≤ 109, j = 50,
PK (50 + i − j) 50 ≤ i ≤ 59, 51 ≤ j
PK (50 + i − j) 60 ≤ i ≤ 109, 51 ≤ j ≤ 59,
PK (i − j) + PK (50 + i − j) 60 ≤ i ≤ 109, 60 ≤ j

(7)

Finally, we make the definitions

βi = P [K ≥ i] , γk = PK (50 + k) , δk = PK (k) + PK (50 + k) . (8)

With these definitions, the state transition probabilities are

Pij =







βi 50 ≤ i ≤ 109, j = 50,
γi−j 50 ≤ i ≤ 59, 51 ≤ j
γi−j 60 ≤ i ≤ 109, 51 ≤ j ≤ 59,
δi−j 60 ≤ i ≤ 109, 60 ≤ j

(9)

Expressed as a table, the state transition matrix P is

i\j 50 51 · · · 59 60 · · · · · · · · · · · · 109

50 β50 γ−1 · · · γ−9 · · · · · · · · · · · · · · · γ−59

51 β51 γ0

. . .
...

. . .
...

...
...

...
. . . γ−1

. . .
. . .

...
59 β59 γ8 · · · γ0 γ−1 · · · γ−9 · · · · · · γ−50

60 β60 γ9 · · · γ1 δ0 · · · δ−9 · · · δ−49

...
...

...
. . .

...
...

. . .
. . .

...
...

...
... γ9

... δ−9

...
...

...
. . .

... δ9

...
...

...
...

. . .
...

...
. . .

. . .
...

109 β109 γ58 · · · γ50 δ49 · · · δ9 · · · · · · δ0

(10)

In terms of Matlab, all we need to do is to encode the matrix P, calculate the stationary
probability vector π, and then calculate E[Y ], the expected number of pads sold on a typical
day. To calculate E[Y ], we use iterated expectation. The number of pads ordered is the
Poisson random variable K. We assume that on a day n that Xn = i and we calculate the
conditional expectation

E [Y |Xn = i] = E [min(K, i)] =

i−1∑

j=0

jPK (j) + iP [K ≥ i] . (11)

Since only states i ≥ 50 are possible, we can write

E [Y |Xn = i] =

48∑

j=0

jPK (j) +

i−1∑

j=49

jPK (j) + iP [K ≥ i] . (12)
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Finally, we assume that on a typical day n, the state of the system Xn is described by the
stationary probabilities P [Xn = i] = πi and we calculate

E [Y ] =

109∑

i=50

E [Y |Xn = i] πi. (13)

These calculations are given in this Matlab program:

function [pstat,ey]=brakepads(alpha);

s=(50:109)’;

beta=1-poissoncdf(alpha,s-1);

grow=poissonpmf(alpha,50+(-1:-1:-59));

gcol=poissonpmf(alpha,50+(-1:58));

drow=poissonpmf(alpha,0:-1:-49);

dcol=poissonpmf(alpha,0:49);

P=[beta,toeplitz(gcol,grow)];

P(11:60,11:60)=P(11:60,11:60)...

+toeplitz(dcol,drow);

pstat=dmcstatprob(P);

[I,J]=ndgrid(49:108,49:108);

G=J.*(I>=J);

EYX=(G*gcol)+(s.*beta);

pk=poissonpmf(alpha,0:48);

EYX=EYX+(0:48)*pk;

ey=(EYX’)*pstat;

The first half of brakepads.m constructs
P to calculate the stationary probabilities.
The first column of P is just the vector

beta =
[
β50 · · · β109

]
′

. (14)

The rest of P is easy to construct using
toeplitz function. We first build an asym-
metric Toeplitz matrix with first row and
first column

grow =
[
γ−1 γ−2 · · · γ−59

]
(15)

gcol =
[
γ−1 γ0 · · · γ58

]
′

(16)

Note that δk = PK(k) + γk. Thus, to construct the Toeplitz matrix in the lower right
corner of P, we simply add the Toeplitz matrix corresponding to the missing PK(k) term.
The second half of brakepads.m calculates E[Y ] using the iterated expectation. Note that

EYX =
[
E [Y |Xn = 50] · · · E [Y |Xn = 109]

]
′

. (17)

The somewhat convoluted code becomes clearer by noting the following correspondences:

E [Y |Xn = i] =
48∑

j=0

jPK (j)

︸ ︷︷ ︸

(0:48)*pk

+
i−1∑

j=49

jPK (j)

︸ ︷︷ ︸

G*gcol

+ iP [K ≥ i]
︸ ︷︷ ︸

s.*beta

. (18)

To find E[Y ], we execute the commands:

>> [ps,ey]=brakepads(50);

>> ey

ey =

49.4154

>>

We see that although the store receives 50 orders for brake pads on average, the average
number sold is only 49.42 because once in awhile the pads are out of stock. Some experi-
mentation will show that if the expected number of orders α is significantly less than 50,
then the expected number of brake pads sold each days is very close to α. On the other
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hand, if α � 50, then the each day the store will run out of pads and will get a delivery of
50 pads ech night. The expected number of unfulfilled orders will be very close to α − 50.

Note that a new inventory policy in which the overnight delivery is more than 50 pads
or the threshold for getting a shipment is more than 60 will reduce the expected numer of
unfulfilled orders. Whether such a change in policy is a good idea depends on factors such
as the carrying cost of inventory that are absent from our simple model.
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