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Problem 5.7.8 Solution

As given in the problem statement, we define the m-dimensional vector X, the n-dimensional

vector Y and W =

[

X
′

Y
′

]′

. Note that W has expected value

µW = E [W] = E

[[

X

Y

]]

=

[

E [X]
E [Y]

]

=

[

µX

µY

]

. (1)

The covariance matrix of W is

CW = E
[

(W − µW)(W − µW)′
]

(2)

= E

[[

X− µX

Y − µY

]

[

(X − µX)′ (Y − µY)′
]

]

(3)

=

[

E [(X − µX)(X − µX)′] E [(X − µX)(Y − µY)′]
E [(Y − µY)(X − µX)′] E [(Y − µY)(Y − µY)′]

]

(4)

=

[

CX CXY

CYX CY

]

. (5)

The assumption that X and Y are independent implies that

CXY = E
[

(X − µX)(Y′ − µ
′
Y)

]

= (E [(X− µX)] E
[

(Y′ − µ
′
Y)

]

= 0. (6)

This also implies CYX = C
′
XY

= 0
′. Thus

CW =

[

CX 0

0
′

CY

]

. (7)

Problem 5.8.2 Solution

(a) The covariance matrix CX has Var[Xi] = 25 for each diagonal entry. For i 6= j, the
i, jth entry of CX is

[CX ]ij = ρXiXj

√

Var[Xi] Var[Xj ] = (0.8)(25) = 20 (1)

The covariance matrix of X is a 10 × 10 matrix of the form

CX =













25 20 · · · 20

20 25
. . .

...
...

. . .
. . . 20

20 · · · 20 25













. (2)
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(b) We observe that
Y =

[

1/10 1/10 · · · 1/10
]

X = AX (3)

Since Y is the average of 10 iid random variables, E[Y ] = E[Xi] = 5. Since Y is a
scalar, the 1 × 1 covariance matrix CY = Var[Y ]. By Theorem 5.13, the variance of
Y is

Var[Y ] = CY = ACXA
′ = 20.5 (4)

Since Y is Gaussian,

P [Y ≤ 25] = P

[

Y − 5√
20.5

≤ 25 − 20.5√
20.5

]

= Φ(0.9939) = 0.8399. (5)

Problem 5.8.4 Solution

The covariance matrix CX has Var[Xi] = 25 for each diagonal entry. For i 6= j, the i, jth
entry of CX is

[CX ]ij = ρXiXj

√

Var[Xi] Var[Xj ] = (0.8)(25) = 20 (1)

The covariance matrix of X is a 10 × 10 matrix of the form

CX =













25 20 · · · 20

20 25
. . .

...
...

. . .
. . . 20

20 · · · 20 25













. (2)

A program to estimate P [W ≤ 25] uses gaussvector to generate m sample vector of race
times X. In the program sailboats.m, X is an 10 × m matrix such that each column of X
is a vector of race times. In addition min(X) is a row vector indicating the fastest time in
each race.

function p=sailboats(w,m)

%Usage: p=sailboats(f,m)

%In Problem 5.8.4, W is the

%winning time in a 10 boat race.

%We use m trials to estimate

%P[W<=w]

CX=(5*eye(10))+(20*ones(10,10));

mu=35*ones(10,1);

X=gaussvector(mu,CX,m);

W=min(X);

p=sum(W<=w)/m;

>> sailboats(25,10000)

ans =

0.0827

>> sailboats(25,100000)

ans =

0.0801

>> sailboats(25,100000)

ans =

0.0803

>> sailboats(25,100000)

ans =

0.0798

We see from repeated experiments with m = 100,000 trials that P [W ≤ 25] ≈ 0.08.

Problem 10.2.4 Solution

The statement is false. As a counterexample, consider the rectified cosine waveform X(t) =
R| cos 2πft| of Example 10.9. When t = π/2, then cos 2πft = 0 so that X(π/2) = 0. Hence
X(π/2) has PDF

fX(π/2) (x) = δ(x) (1)

That is, X(π/2) is a discrete random variable.
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Problem 10.3.4 Solution

Since the problem states that the pulse is delayed, we will assume T ≥ 0. This problem
is difficult because the answer will depend on t. In particular, for t < 0, X(t) = 0 and
fX(t)(x) = δ(x). Things are more complicated when t > 0. For x < 0, P [X(t) > x] = 1.
For x ≥ 1, P [X(t) > x] = 0. Lastly, for 0 ≤ x < 1,

P [X(t) > x] = P
[

e−(t−T )u(t − T ) > x
]

(1)

= P [t + lnx < T ≤ t] (2)

= FT (t) − FT (t + lnx) (3)

Note that condition T ≤ t is needed to make sure that the pulse doesn’t arrive after time t.
The other condition T > t+ lnx ensures that the pulse didn’t arrrive too early and already
decay too much. We can express these facts in terms of the CDF of X(t).

FX(t) (x) = 1 − P [X(t) > x] =







0 x < 0
1 + FT (t + lnx) − FT (t) 0 ≤ x < 1
1 x ≥ 1

(4)

We can take the derivative of the CDF to find the PDF. However, we need to keep in mind
that the CDF has a jump discontinuity at x = 0. In particular, since ln 0 = −∞,

FX(t) (0) = 1 + FT (−∞) − FT (t) = 1 − FT (t) (5)

Hence, when we take a derivative, we will see an impulse at x = 0. The PDF of X(t) is

fX(t) (x) =

{

(1 − FT (t))δ(x) + fT (t + lnx) /x 0 ≤ x < 1
0 otherwise

(6)

Problem 10.4.2 Solution

Each Wn is the sum of two identical independent Gaussian random variables. Hence, each
Wn must have the same PDF. That is, the Wn are identically distributed. However, since
Wn−1 and Wn both use Xn−1 in their averaging, Wn−1 and Wn are dependent. We can
verify this observation by calculating the covariance of Wn−1 and Wn. First, we observe
that for all n,

E [Wn] = (E [Xn] + E [Xn−1])/2 = 30 (1)

Next, we observe that Wn−1 and Wn have covariance

Cov [Wn−1,Wn] = E [Wn−1Wn] − E [Wn]E [Wn−1] (2)

=
1

4
E [(Xn−1 + Xn−2)(Xn + Xn−1)] − 900 (3)

We observe that for n 6= m, E[XnXm] = E[Xn]E[Xm] = 900 while

E
[

X2
n

]

= Var[Xn] + (E [Xn])2 = 916 (4)

Thus,

Cov [Wn−1,Wn] =
900 + 916 + 900 + 900

4
− 900 = 4 (5)

Since Cov[Wn−1,Wn] 6= 0, Wn and Wn−1 must be dependent.
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Problem 10.5.5 Solution

Note that it matters whether t ≥ 2 minutes. If t ≤ 2, then any customers that have arrived
must still be in service. Since a Poisson number of arrivals occur during (0, t],

PN(t) (n) =

{

(λt)ne−λt/n! n = 0, 1, 2, . . .
0 otherwise

(0 ≤ t ≤ 2) (1)

For t ≥ 2, the customers in service are precisely those customers that arrived in the interval
(t− 2, t]. The number of such customers has a Poisson PMF with mean λ[t− (t− 2)] = 2λ.
The resulting PMF of N(t) is

PN(t) (n) =

{

(2λ)ne−2λ/n! n = 0, 1, 2, . . .
0 otherwise

(t ≥ 2) (2)

Problem 10.5.6 Solution

The time T between queries are independent exponential random variables with PDF

fT (t) =

{

(1/8)e−t/8 t ≥ 0
0 otherwise

(1)

From the PDF, we can calculate for t > 0,

P [T ≥ t] =

∫ t

0
fT

(

t′
)

dt′ = e−t/8 (2)

Using this formula, each question can be easily answered.

(a) P [T ≥ 4] = e−4/8 ≈ 0.951.

(b)

P [T ≥ 13|T ≥ 5] =
P [T ≥ 13, T ≥ 5]

P [T ≥ 5]
(3)

=
P [T ≥ 13]

P [T ≥ 5]
=

e−13/8

e−5/8
= e−1 ≈ 0.368 (4)

(c) Although the time betwen queries are independent exponential random variables,
N(t) is not exactly a Poisson random process because the first query occurs at time
t = 0. Recall that in a Poisson process, the first arrival occurs some time after t = 0.
However N(t) − 1 is a Poisson process of rate 8. Hence, for n = 0, 1, 2, . . .,

P [N(t) − 1 = n] = (t/8)ne−t/8/n! (5)

Thus, for n = 1, 2, . . ., the PMF of N(t) is

PN(t) (n) = P [N(t) − 1 = n − 1] = (t/8)n−1e−t/8/(n − 1)! (6)

The complete expression of the PMF of N(t) is

PN(t) (n) =

{

(t/8)n−1e−t/8/(n − 1)! n = 1, 2, . . .
0 otherwise

(7)
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Problem 10.5.8 Solution

(a) For Xi = − lnUi, we can write

P [Xi > x] = P [− lnUi > x] = P [lnUi ≤ −x] = P
[

Ui ≤ e−x
]

(1)

When x < 0, e−x > 1 so that P [Ui ≤ e−x] = 1. When x ≥ 0, we have 0 < e−x ≤ 1,
implying P [Ui ≤ e−x] = e−x. Combining these facts, we have

P [Xi > x] =

{

1 x < 0
e−x x ≥ 0

(2)

This permits us to show that the CDF of Xi is

FXi
(x) = 1 − P [Xi > x] =

{

0 x < 0
1 − e−x x > 0

(3)

We see that Xi has an exponential CDF with mean 1.

(b) Note that N = n iff
n

∏

i=1

Ui ≥ e−t >
n+1
∏

i=1

Ui (4)

By taking the logarithm of both inequalities, we see that N = n iff

n
∑

i=1

lnUi ≥ −t >

n+1
∑

i=1

lnUi (5)

Next, we multiply through by −1 and recall that Xi = − lnUi is an exponential
random variable. This yields N = n iff

n
∑

i=1

Xi ≤ t <
n+1
∑

i=1

Xi (6)

Now we recall that a Poisson process N(t) of rate 1 has independent exponential inter-
arrival times X1, X2, . . .. That is, the ith arrival occurs at time

∑i
j=1 Xj. Moreover,

N(t) = n iff the first n arrivals occur by time t but arrival n + 1 occurs after time t.
Since the random variable N(t) has a Poisson distribution with mean t, we can write

P

[

n
∑

i=1

Xi ≤ t <

n+1
∑

i=1

Xi

]

= P [N(t) = n] =
tne−t

n!
. (7)
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Problem 10.6.3 Solution

We start with the case when t ≥ 2. When each service time is equally likely to be either 1
minute or 2 minutes, we have the following situation. Let M1 denote those customers that
arrived in the interval (t − 1, 1]. All M1 of these customers will be in the bank at time t
and M1 is a Poisson random variable with mean λ.

Let M2 denote the number of customers that arrived during (t − 2, t − 1]. Of course,
M2 is Poisson with expected value λ. We can view each of the M2 customers as flipping
a coin to determine whether to choose a 1 minute or a 2 minute service time. Only those
customers that chooses a 2 minute service time will be in service at time t. Let M ′

2 denote
those customers choosing a 2 minute service time. It should be clear that M ′

2 is a Poisson
number of Bernoulli random variables. Theorem 10.6 verifies that using Bernoulli trials to
decide whether the arrivals of a rate λ Poisson process should be counted yields a Poisson
process of rate pλ. A consequence of this result is that a Poisson number of Bernoulli
(success probability p) random variables has Poisson PMF with mean pλ. In this case,
M ′

2 is Poisson with mean λ/2. Moreover, the number of customers in service at time t is
N(t) = M1 + M ′

2. Since M1 and M ′
2 are independent Poisson random variables, their sum

N(t) also has a Poisson PMF. This was verified in Theorem 6.9. Hence N(t) is Poisson
with mean E[N(t)] = E[M1] + E[M ′

2] = 3λ/2. The PMF of N(t) is

PN(t) (n) =

{

(3λ/2)ne−3λ/2/n! n = 0, 1, 2, . . .
0 otherwise

(t ≥ 2) (1)

Now we can consider the special cases arising when t < 2. When 0 ≤ t < 1, every arrival
is still in service. Thus the number in service N(t) equals the number of arrivals and has
the PMF

PN(t) (n) =

{

(λt)ne−λt/n! n = 0, 1, 2, . . .
0 otherwise

(0 ≤ t ≤ 1) (2)

When 1 ≤ t < 2, let M1 denote the number of customers in the interval (t − 1, t]. All
M1 customers arriving in that interval will be in service at time t. The M2 customers
arriving in the interval (0, t − 1] must each flip a coin to decide one a 1 minute or two
minute service time. Only those customers choosing the two minute service time will be
in service at time t. Since M2 has a Poisson PMF with mean λ(t − 1), the number M ′

2

of those customers in the system at time t has a Poisson PMF with mean λ(t − 1)/2.
Finally, the number of customers in service at time t has a Poisson PMF with expected
value E[N(t)] = E[M1] + E[M ′

2] = λ + λ(t − 1)/2. Hence, the PMF of N(t) becomes

PN(t) (n) =

{

(λ(t + 1)/2)ne−λ(t+1)/2/n! n = 0, 1, 2, . . .
0 otherwise

(1 ≤ t ≤ 2) (3)

Problem 10.6.4 Solution

Since the arrival times S1, . . . , Sn are ordered in time and since a Poisson process cannot
have two simultaneous arrivals, the conditional PDF fS1,...,Sn|N (S1, . . . , Sn|n) is nonzero
only if s1 < s2 < · · · < sn < T . In this case, consider an arbitrarily small ∆; in particular,
∆ < mini(si+1 − si)/2 implies that the intervals (si, si + ∆] are non-overlapping. We now
find the joint probability

P [s1 < S1 ≤ s1 + ∆, . . . , sn < Sn ≤ sn + ∆, N = n]
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that each Si is in the interval (si, si + ∆] and that N = n. This joint event implies that
there were zero arrivals in each interval (si + ∆, si+1]. That is, over the interval [0, T ], the
Poisson process has exactly one arrival in each interval (si, si + ∆] and zero arrivals in the
time period T − ⋃n

i=1(si, si + ∆]. The collection of intervals in which there was no arrival
had a total duration of T − n∆. Note that the probability of exactly one arrival in the
interval (si, si + ∆] is λ∆e−λδ and the probability of zero arrivals in a period of duration
T − n∆ is e−λ(Tn−∆). In addition, the event of one arrival in each interval (si, si + ∆) and
zero events in the period of length T − n∆ are independent events because they consider
non-overlapping periods of the Poisson process. Thus,

P [s1 < S1 ≤ s1 + ∆, . . . , sn < Sn ≤ sn + ∆, N = n] =
(

λ∆e−λ∆
)n

e−λ(T−n∆) (1)

= (λ∆)ne−λT (2)

Since P [N = n] = (λT )ne−λT /n!, we see that

P [s1 < S1 ≤ s1 + ∆, . . . , sn < Sn ≤ sn + ∆|N = n]

=
P [s1 < S1 ≤ s1 + ∆, . . . , sn < Sn ≤ sn + ∆, N = n]

P [N = n]
(3)

=
(λ∆)ne−λT

(λT )ne−λT /n!
(4)

=
n!

T n
∆n (5)

Finally, for infinitesimal ∆, the conditional PDF of S1, . . . , Sn given N = n satisfies

fS1,...,Sn|N (s1, . . . , sn|n)∆n = P [s1 < S1 ≤ s1 + ∆, . . . , sn < Sn ≤ sn + ∆|N = n] (6)

=
n!

T n
∆n (7)

Since the conditional PDF is zero unless s1 < s2 < · · · < sn ≤ T , it follows that

fS1,...,Sn|N (s1, . . . , sn|n) =

{

n!/T n 0 ≤ s1 < · · · < sn ≤ T,
0 otherwise.

(8)

If it seems that the above argument had some “hand-waving,” we now do the derivation of
P [s1 < S1 ≤ s1 + ∆, . . . , sn < Sn ≤ sn + ∆|N = n] in somewhat excruciating detail. (Feel
free to skip the following if you were satisfied with the earlier explanation.)

For the interval (s, t], we use the shorthand notation 0(s,t) and 1(s,t) to denote the events
of 0 arrivals and 1 arrival respectively. This notation permits us to write

P [s1 < S1 ≤ s1 + ∆, . . . , sn < Sn ≤ sn + ∆, N = n]

= P
[

0(0,s1)1(s1,s1+∆)0(s1+∆,s2)1(s2,s2+∆)0(s2+∆,s3) · · · 1(sn,sn+∆)0(sn+∆,T )

]

(9)

The set of events 0(0,s1), 0(sn+∆,T ), and for i = 1, . . . , n − 1, 0(si+∆,si+1) and 1(si,si+∆) are
independent because each devent depend on the Poisson process in a time interval that
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overlaps none of the other time intervals. In addition, since the Poisson process has rate λ,
P [0(s,t)] = e−λ(t−s) and P [1(si ,si+∆)] = (λ∆)e−λ∆. Thus,

P [s1 < S1 ≤ s1 + ∆, . . . , sn < Sn ≤ sn + ∆, N = n]

= P
[

0(0,s1)

]

P
[

1(s1,s1+∆)

]

P
[

0(s1+∆,s2)

]

· · ·P
[

1(sn,sn+∆)

]

P
[

0(sn+∆,T )

]

(10)

= e−λs1

(

λ∆e−λ∆
)

e−λ(s2−s1−∆) · · ·
(

λ∆e−λ∆
)

e−λ(T−sn−∆) (11)

= (λ∆)ne−λT (12)
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