ECE 541

Stochastic Signals and Systems
 Problem Set 4 Solution

Problem Solutions: Yates and Goodman, 5.7.8 5.8.2 5.8.4 10.2.4 10.3.4 10.4.2 10.5.5 10.5.6 10.5.8 10.6.3 and 10.6.4

Problem 5.7.8 Solution

As given in the problem statement, we define the m-dimensional vector \mathbf{X}, the n-dimensional vector \mathbf{Y} and $\mathbf{W}=\left[\begin{array}{l}\mathbf{X}^{\prime} \\ \mathbf{Y}^{\prime}\end{array}\right]^{\prime}$. Note that \mathbf{W} has expected value

$$
\boldsymbol{\mu}_{\mathbf{W}}=E[\mathbf{W}]=E\left[\left[\begin{array}{l}
\mathbf{X} \tag{1}\\
\mathbf{Y}
\end{array}\right]\right]=\left[\begin{array}{l}
E[\mathbf{X}] \\
E[\mathbf{Y}]
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{\mu}_{\mathbf{X}} \\
\boldsymbol{\mu}_{\mathbf{Y}}
\end{array}\right] .
$$

The covariance matrix of \mathbf{W} is

$$
\begin{align*}
& \mathbf{C}_{\mathbf{W}}=E\left[\left(\mathbf{W}-\boldsymbol{\mu}_{\mathbf{W}}\right)\left(\mathbf{W}-\boldsymbol{\mu}_{\mathbf{W}}\right)^{\prime}\right] \tag{2}\\
& =E\left[\left[\begin{array}{l}
\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}} \\
\mathbf{Y}-\boldsymbol{\mu}_{\mathbf{Y}}
\end{array}\right]\left[\begin{array}{ll}
\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)^{\prime} & \left(\mathbf{Y}-\boldsymbol{\mu}_{\mathbf{Y}}\right)^{\prime}
\end{array}\right]\right] \tag{3}\\
& =\left[\begin{array}{ll}
E\left[\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)^{\prime}\right] & E\left[\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{\mathbf{Y}}\right)^{\prime}\right] \\
E\left[\left(\mathbf{Y}-\boldsymbol{\mu}_{\mathbf{Y}}\right)\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)^{\prime}\right] & E\left[\left(\mathbf{Y}-\boldsymbol{\mu}_{\mathbf{Y}}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{\mathbf{Y}}\right)^{\prime}\right]
\end{array}\right] \tag{4}\\
& =\left[\begin{array}{cc}
\mathbf{C}_{\mathbf{X}} & \mathbf{C}_{\mathbf{X Y}} \\
\mathbf{C}_{\mathbf{Y X}} & \mathbf{C}_{\mathbf{Y}}
\end{array}\right] . \tag{5}
\end{align*}
$$

The assumption that \mathbf{X} and \mathbf{Y} are independent implies that

$$
\begin{equation*}
\mathbf{C}_{\mathbf{X Y}}=E\left[\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)\left(\mathbf{Y}^{\prime}-\boldsymbol{\mu}_{\mathbf{Y}}^{\prime}\right)\right]=\left(E\left[\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)\right] E\left[\left(\mathbf{Y}^{\prime}-\boldsymbol{\mu}_{\mathbf{Y}}^{\prime}\right)\right]=\mathbf{0} .\right. \tag{6}
\end{equation*}
$$

This also implies $\mathbf{C}_{\mathbf{Y X}}=\mathbf{C}_{\mathbf{X Y}}^{\prime}=\mathbf{0}^{\prime}$. Thus

$$
\mathbf{C}_{\mathbf{W}}=\left[\begin{array}{cc}
\mathbf{C}_{\mathbf{X}} & \mathbf{0} \tag{7}\\
\mathbf{0}^{\prime} & \mathbf{C}_{\mathbf{Y}}
\end{array}\right] .
$$

Problem 5.8.2 Solution

(a) The covariance matrix \mathbf{C}_{X} has $\operatorname{Var}\left[X_{i}\right]=25$ for each diagonal entry. For $i \neq j$, the i, j th entry of \mathbf{C}_{X} is

$$
\begin{equation*}
\left[\mathbf{C}_{X}\right]_{i j}=\rho_{X_{i} X_{j}} \sqrt{\operatorname{Var}\left[X_{i}\right] \operatorname{Var}\left[X_{j}\right]}=(0.8)(25)=20 \tag{1}
\end{equation*}
$$

The covariance matrix of X is a 10×10 matrix of the form

$$
\mathbf{C}_{X}=\left[\begin{array}{cccc}
25 & 20 & \cdots & 20 \tag{2}\\
20 & 25 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 20 \\
20 & \cdots & 20 & 25
\end{array}\right]
$$

(b) We observe that

$$
Y=\left[\begin{array}{llll}
1 / 10 & 1 / 10 & \cdots & 1 / 10 \tag{3}
\end{array}\right] \mathbf{X}=\mathbf{A X}
$$

Since Y is the average of 10 iid random variables, $E[Y]=E\left[X_{i}\right]=5$. Since Y is a scalar, the 1×1 covariance matrix $\mathbf{C}_{Y}=\operatorname{Var}[Y]$. By Theorem 5.13, the variance of Y is

$$
\begin{equation*}
\operatorname{Var}[Y]=\mathbf{C}_{Y}=\mathbf{A} \mathbf{C}_{X} \mathbf{A}^{\prime}=20.5 \tag{4}
\end{equation*}
$$

Since Y is Gaussian,

$$
\begin{equation*}
P[Y \leq 25]=P\left[\frac{Y-5}{\sqrt{20.5}} \leq \frac{25-20.5}{\sqrt{20.5}}\right]=\Phi(0.9939)=0.8399 . \tag{5}
\end{equation*}
$$

Problem 5.8.4 Solution

The covariance matrix \mathbf{C}_{X} has $\operatorname{Var}\left[X_{i}\right]=25$ for each diagonal entry. For $i \neq j$, the i, j th entry of \mathbf{C}_{X} is

$$
\begin{equation*}
\left[\mathbf{C}_{X}\right]_{i j}=\rho_{X_{i} X_{j}} \sqrt{\operatorname{Var}\left[X_{i}\right] \operatorname{Var}\left[X_{j}\right]}=(0.8)(25)=20 \tag{1}
\end{equation*}
$$

The covariance matrix of X is a 10×10 matrix of the form

$$
\mathbf{C}_{X}=\left[\begin{array}{cccc}
25 & 20 & \cdots & 20 \tag{2}\\
20 & 25 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 20 \\
20 & \cdots & 20 & 25
\end{array}\right]
$$

A program to estimate $P[W \leq 25]$ uses gaussvector to generate m sample vector of race times \mathbf{X}. In the program sailboats. m, X is an $10 \times m$ matrix such that each column of X is a vector of race times. In addition $\min (X)$ is a row vector indicating the fastest time in each race.

```
function p=sailboats(w,m)
%Usage: p=sailboats(f,m)
%In Problem 5.8.4, W is the
%winning time in a }10\mathrm{ boat race.
%We use m trials to estimate
%P[W<=w]
CX=(5*eye (10))+(20*ones (10,10));
mu=35*ones(10,1);
X=gaussvector(mu,CX,m);
W=min(X);
p=sum(W<=w)/m;
```


We see from repeated experiments with $m=100,000$ trials that $P[W \leq 25] \approx 0.08$.

Problem 10.2.4 Solution

The statement is false. As a counterexample, consider the rectified cosine waveform $X(t)=$ $R|\cos 2 \pi f t|$ of Example 10.9. When $t=\pi / 2$, then $\cos 2 \pi f t=0$ so that $X(\pi / 2)=0$. Hence $X(\pi / 2)$ has PDF

$$
\begin{equation*}
f_{X(\pi / 2)}(x)=\delta(x) \tag{1}
\end{equation*}
$$

That is, $X(\pi / 2)$ is a discrete random variable.

Problem 10.3.4 Solution

Since the problem states that the pulse is delayed, we will assume $T \geq 0$. This problem is difficult because the answer will depend on t. In particular, for $t<0, X(t)=0$ and $f_{X(t)}(x)=\delta(x)$. Things are more complicated when $t>0$. For $x<0, P[X(t)>x]=1$. For $x \geq 1, P[X(t)>x]=0$. Lastly, for $0 \leq x<1$,

$$
\begin{align*}
P[X(t)>x] & =P\left[e^{-(t-T)} u(t-T)>x\right] \tag{1}\\
& =P[t+\ln x<T \leq t] \tag{2}\\
& =F_{T}(t)-F_{T}(t+\ln x) \tag{3}
\end{align*}
$$

Note that condition $T \leq t$ is needed to make sure that the pulse doesn't arrive after time t. The other condition $T>t+\ln x$ ensures that the pulse didn't arrrive too early and already decay too much. We can express these facts in terms of the CDF of $X(t)$.

$$
F_{X(t)}(x)=1-P[X(t)>x]= \begin{cases}0 & x<0 \tag{4}\\ 1+F_{T}(t+\ln x)-F_{T}(t) & 0 \leq x<1 \\ 1 & x \geq 1\end{cases}
$$

We can take the derivative of the CDF to find the PDF. However, we need to keep in mind that the CDF has a jump discontinuity at $x=0$. In particular, since $\ln 0=-\infty$,

$$
\begin{equation*}
F_{X(t)}(0)=1+F_{T}(-\infty)-F_{T}(t)=1-F_{T}(t) \tag{5}
\end{equation*}
$$

Hence, when we take a derivative, we will see an impulse at $x=0$. The PDF of $X(t)$ is

$$
f_{X(t)}(x)= \begin{cases}\left(1-F_{T}(t)\right) \delta(x)+f_{T}(t+\ln x) / x & 0 \leq x<1 \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

Problem 10.4.2 Solution

Each W_{n} is the sum of two identical independent Gaussian random variables. Hence, each W_{n} must have the same PDF. That is, the W_{n} are identically distributed. However, since W_{n-1} and W_{n} both use X_{n-1} in their averaging, W_{n-1} and W_{n} are dependent. We can verify this observation by calculating the covariance of W_{n-1} and W_{n}. First, we observe that for all n,

$$
\begin{equation*}
E\left[W_{n}\right]=\left(E\left[X_{n}\right]+E\left[X_{n-1}\right]\right) / 2=30 \tag{1}
\end{equation*}
$$

Next, we observe that W_{n-1} and W_{n} have covariance

$$
\begin{align*}
\operatorname{Cov}\left[W_{n-1}, W_{n}\right] & =E\left[W_{n-1} W_{n}\right]-E\left[W_{n}\right] E\left[W_{n-1}\right] \tag{2}\\
& =\frac{1}{4} E\left[\left(X_{n-1}+X_{n-2}\right)\left(X_{n}+X_{n-1}\right)\right]-900 \tag{3}
\end{align*}
$$

We observe that for $n \neq m, E\left[X_{n} X_{m}\right]=E\left[X_{n}\right] E\left[X_{m}\right]=900$ while

$$
\begin{equation*}
E\left[X_{n}^{2}\right]=\operatorname{Var}\left[X_{n}\right]+\left(E\left[X_{n}\right]\right)^{2}=916 \tag{4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\operatorname{Cov}\left[W_{n-1}, W_{n}\right]=\frac{900+916+900+900}{4}-900=4 \tag{5}
\end{equation*}
$$

Since $\operatorname{Cov}\left[W_{n-1}, W_{n}\right] \neq 0, W_{n}$ and W_{n-1} must be dependent.

Problem 10.5.5 Solution

Note that it matters whether $t \geq 2$ minutes. If $t \leq 2$, then any customers that have arrived must still be in service. Since a Poisson number of arrivals occur during $(0, t]$,

$$
P_{N(t)}(n)=\left\{\begin{array}{ll}
(\lambda t)^{n} e^{-\lambda t} / n! & n=0,1,2, \ldots \tag{1}\\
0 & \text { otherwise }
\end{array} \quad(0 \leq t \leq 2)\right.
$$

For $t \geq 2$, the customers in service are precisely those customers that arrived in the interval $(t-2, t]$. The number of such customers has a Poisson PMF with mean $\lambda[t-(t-2)]=2 \lambda$. The resulting PMF of $N(t)$ is

$$
P_{N(t)}(n)=\left\{\begin{array}{ll}
(2 \lambda)^{n} e^{-2 \lambda} / n! & n=0,1,2, \ldots \tag{2}\\
0 & \text { otherwise }
\end{array} \quad(t \geq 2)\right.
$$

Problem 10.5.6 Solution

The time T between queries are independent exponential random variables with PDF

$$
f_{T}(t)= \begin{cases}(1 / 8) e^{-t / 8} & t \geq 0 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

From the PDF, we can calculate for $t>0$,

$$
\begin{equation*}
P[T \geq t]=\int_{0}^{t} f_{T}\left(t^{\prime}\right) d t^{\prime}=e^{-t / 8} \tag{2}
\end{equation*}
$$

Using this formula, each question can be easily answered.
(a) $P[T \geq 4]=e^{-4 / 8} \approx 0.951$.
(b)

$$
\begin{align*}
P[T \geq 13 \mid T \geq 5] & =\frac{P[T \geq 13, T \geq 5]}{P[T \geq 5]} \tag{3}\\
& =\frac{P[T \geq 13]}{P[T \geq 5]}=\frac{e^{-13 / 8}}{e^{-5 / 8}}=e^{-1} \approx 0.368 \tag{4}
\end{align*}
$$

(c) Although the time betwen queries are independent exponential random variables, $N(t)$ is not exactly a Poisson random process because the first query occurs at time $t=0$. Recall that in a Poisson process, the first arrival occurs some time after $t=0$. However $N(t)-1$ is a Poisson process of rate 8. Hence, for $n=0,1,2, \ldots$,

$$
\begin{equation*}
P[N(t)-1=n]=(t / 8)^{n} e^{-t / 8} / n! \tag{5}
\end{equation*}
$$

Thus, for $n=1,2, \ldots$, the PMF of $N(t)$ is

$$
\begin{equation*}
P_{N(t)}(n)=P[N(t)-1=n-1]=(t / 8)^{n-1} e^{-t / 8} /(n-1)! \tag{6}
\end{equation*}
$$

The complete expression of the PMF of $N(t)$ is

$$
P_{N(t)}(n)= \begin{cases}(t / 8)^{n-1} e^{-t / 8} /(n-1)! & n=1,2, \ldots \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

Problem 10.5.8 Solution

(a) For $X_{i}=-\ln U_{i}$, we can write

$$
\begin{equation*}
P\left[X_{i}>x\right]=P\left[-\ln U_{i}>x\right]=P\left[\ln U_{i} \leq-x\right]=P\left[U_{i} \leq e^{-x}\right] \tag{1}
\end{equation*}
$$

When $x<0, e^{-x}>1$ so that $P\left[U_{i} \leq e^{-x}\right]=1$. When $x \geq 0$, we have $0<e^{-x} \leq 1$, implying $P\left[U_{i} \leq e^{-x}\right]=e^{-x}$. Combining these facts, we have

$$
P\left[X_{i}>x\right]= \begin{cases}1 & x<0 \tag{2}\\ e^{-x} & x \geq 0\end{cases}
$$

This permits us to show that the CDF of X_{i} is

$$
F_{X_{i}}(x)=1-P\left[X_{i}>x\right]= \begin{cases}0 & x<0 \tag{3}\\ 1-e^{-x} & x>0\end{cases}
$$

We see that X_{i} has an exponential CDF with mean 1.
(b) Note that $N=n$ iff

$$
\begin{equation*}
\prod_{i=1}^{n} U_{i} \geq e^{-t}>\prod_{i=1}^{n+1} U_{i} \tag{4}
\end{equation*}
$$

By taking the logarithm of both inequalities, we see that $N=n$ iff

$$
\begin{equation*}
\sum_{i=1}^{n} \ln U_{i} \geq-t>\sum_{i=1}^{n+1} \ln U_{i} \tag{5}
\end{equation*}
$$

Next, we multiply through by -1 and recall that $X_{i}=-\ln U_{i}$ is an exponential random variable. This yields $N=n$ iff

$$
\begin{equation*}
\sum_{i=1}^{n} X_{i} \leq t<\sum_{i=1}^{n+1} X_{i} \tag{6}
\end{equation*}
$$

Now we recall that a Poisson process $N(t)$ of rate 1 has independent exponential interarrival times X_{1}, X_{2}, \ldots. That is, the i th arrival occurs at time $\sum_{j=1}^{i} X_{j}$. Moreover, $N(t)=n$ iff the first n arrivals occur by time t but arrival $n+1$ occurs after time t. Since the random variable $N(t)$ has a Poisson distribution with mean t, we can write

$$
\begin{equation*}
P\left[\sum_{i=1}^{n} X_{i} \leq t<\sum_{i=1}^{n+1} X_{i}\right]=P[N(t)=n]=\frac{t^{n} e^{-t}}{n!} . \tag{7}
\end{equation*}
$$

Problem 10.6.3 Solution

We start with the case when $t \geq 2$. When each service time is equally likely to be either 1 minute or 2 minutes, we have the following situation. Let M_{1} denote those customers that arrived in the interval $(t-1,1]$. All M_{1} of these customers will be in the bank at time t and M_{1} is a Poisson random variable with mean λ.

Let M_{2} denote the number of customers that arrived during $(t-2, t-1]$. Of course, M_{2} is Poisson with expected value λ. We can view each of the M_{2} customers as flipping a coin to determine whether to choose a 1 minute or a 2 minute service time. Only those customers that chooses a 2 minute service time will be in service at time t. Let M_{2}^{\prime} denote those customers choosing a 2 minute service time. It should be clear that M_{2}^{\prime} is a Poisson number of Bernoulli random variables. Theorem 10.6 verifies that using Bernoulli trials to decide whether the arrivals of a rate λ Poisson process should be counted yields a Poisson process of rate $p \lambda$. A consequence of this result is that a Poisson number of Bernoulli (success probability p) random variables has Poisson PMF with mean $p \lambda$. In this case, M_{2}^{\prime} is Poisson with mean $\lambda / 2$. Moreover, the number of customers in service at time t is $N(t)=M_{1}+M_{2}^{\prime}$. Since M_{1} and M_{2}^{\prime} are independent Poisson random variables, their sum $N(t)$ also has a Poisson PMF. This was verified in Theorem 6.9. Hence $N(t)$ is Poisson with mean $E[N(t)]=E\left[M_{1}\right]+E\left[M_{2}^{\prime}\right]=3 \lambda / 2$. The PMF of $N(t)$ is

$$
P_{N(t)}(n)=\left\{\begin{array}{ll}
(3 \lambda / 2)^{n} e^{-3 \lambda / 2} / n! & n=0,1,2, \ldots \tag{1}\\
0 & \text { otherwise }
\end{array} \quad(t \geq 2)\right.
$$

Now we can consider the special cases arising when $t<2$. When $0 \leq t<1$, every arrival is still in service. Thus the number in service $N(t)$ equals the number of arrivals and has the PMF

$$
P_{N(t)}(n)=\left\{\begin{array}{ll}
(\lambda t)^{n} e^{-\lambda t} / n! & n=0,1,2, \ldots \tag{2}\\
0 & \text { otherwise }
\end{array} \quad(0 \leq t \leq 1)\right.
$$

When $1 \leq t<2$, let M_{1} denote the number of customers in the interval $(t-1, t]$. All M_{1} customers arriving in that interval will be in service at time t. The M_{2} customers arriving in the interval $(0, t-1$] must each flip a coin to decide one a 1 minute or two minute service time. Only those customers choosing the two minute service time will be in service at time t. Since M_{2} has a Poisson PMF with mean $\lambda(t-1)$, the number M_{2}^{\prime} of those customers in the system at time t has a Poisson PMF with mean $\lambda(t-1) / 2$. Finally, the number of customers in service at time t has a Poisson PMF with expected value $E[N(t)]=E\left[M_{1}\right]+E\left[M_{2}^{\prime}\right]=\lambda+\lambda(t-1) / 2$. Hence, the PMF of $N(t)$ becomes

$$
P_{N(t)}(n)=\left\{\begin{array}{ll}
(\lambda(t+1) / 2)^{n} e^{-\lambda(t+1) / 2} / n! & n=0,1,2, \ldots \tag{3}\\
0 & \text { otherwise }
\end{array} \quad(1 \leq t \leq 2)\right.
$$

Problem 10.6.4 Solution

Since the arrival times S_{1}, \ldots, S_{n} are ordered in time and since a Poisson process cannot have two simultaneous arrivals, the conditional $\operatorname{PDF} f_{S_{1}, \ldots, S_{n} \mid N}\left(S_{1}, \ldots, S_{n} \mid n\right)$ is nonzero only if $s_{1}<s_{2}<\cdots<s_{n}<T$. In this case, consider an arbitrarily small Δ; in particular, $\Delta<\min _{i}\left(s_{i+1}-s_{i}\right) / 2$ implies that the intervals $\left(s_{i}, s_{i}+\Delta\right]$ are non-overlapping. We now find the joint probability

$$
P\left[s_{1}<S_{1} \leq s_{1}+\Delta, \ldots, s_{n}<S_{n} \leq s_{n}+\Delta, N=n\right]
$$

that each S_{i} is in the interval $\left(s_{i}, s_{i}+\Delta\right]$ and that $N=n$. This joint event implies that there were zero arrivals in each interval $\left(s_{i}+\Delta, s_{i+1}\right]$. That is, over the interval $[0, T]$, the Poisson process has exactly one arrival in each interval $\left(s_{i}, s_{i}+\Delta\right]$ and zero arrivals in the time period $T-\bigcup_{i=1}^{n}\left(s_{i}, s_{i}+\Delta\right]$. The collection of intervals in which there was no arrival had a total duration of $T-n \Delta$. Note that the probability of exactly one arrival in the interval $\left(s_{i}, s_{i}+\Delta\right]$ is $\lambda \Delta e^{-\lambda \delta}$ and the probability of zero arrivals in a period of duration $T-n \Delta$ is $e^{-\lambda\left(T_{n}-\Delta\right)}$. In addition, the event of one arrival in each interval $\left(s_{i}, s_{i}+\Delta\right)$ and zero events in the period of length $T-n \Delta$ are independent events because they consider non-overlapping periods of the Poisson process. Thus,

$$
\begin{align*}
P\left[s_{1}<S_{1} \leq s_{1}+\Delta, \ldots, s_{n}<S_{n} \leq s_{n}+\Delta, N=n\right] & =\left(\lambda \Delta e^{-\lambda \Delta}\right)^{n} e^{-\lambda(T-n \Delta)} \tag{1}\\
& =(\lambda \Delta)^{n} e^{-\lambda T} \tag{2}
\end{align*}
$$

Since $P[N=n]=(\lambda T)^{n} e^{-\lambda T} / n$!, we see that

$$
\begin{align*}
P\left[s_{1}<S_{1}\right. & \left.\leq s_{1}+\Delta, \ldots, s_{n}<S_{n} \leq s_{n}+\Delta \mid N=n\right] \\
& =\frac{P\left[s_{1}<S_{1} \leq s_{1}+\Delta, \ldots, s_{n}<S_{n} \leq s_{n}+\Delta, N=n\right]}{P[N=n]} \tag{3}\\
& =\frac{(\lambda \Delta)^{n} e^{-\lambda T}}{(\lambda T)^{n} e^{-\lambda T} / n!} \tag{4}\\
& =\frac{n!}{T^{n}} \Delta^{n} \tag{5}
\end{align*}
$$

Finally, for infinitesimal Δ, the conditional PDF of S_{1}, \ldots, S_{n} given $N=n$ satisfies

$$
\begin{align*}
f_{S_{1}, \ldots, S_{n} \mid N}\left(s_{1}, \ldots, s_{n} \mid n\right) \Delta^{n} & =P\left[s_{1}<S_{1} \leq s_{1}+\Delta, \ldots, s_{n}<S_{n} \leq s_{n}+\Delta \mid N=n\right] \tag{6}\\
& =\frac{n!}{T^{n}} \Delta^{n} \tag{7}
\end{align*}
$$

Since the conditional PDF is zero unless $s_{1}<s_{2}<\cdots<s_{n} \leq T$, it follows that

$$
f_{S_{1}, \ldots, S_{n} \mid N}\left(s_{1}, \ldots, s_{n} \mid n\right)= \begin{cases}n!/ T^{n} & 0 \leq s_{1}<\cdots<s_{n} \leq T \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

If it seems that the above argument had some "hand-waving," we now do the derivation of $P\left[s_{1}<S_{1} \leq s_{1}+\Delta, \ldots, s_{n}<S_{n} \leq s_{n}+\Delta \mid N=n\right]$ in somewhat excruciating detail. (Feel free to skip the following if you were satisfied with the earlier explanation.)

For the interval $(s, t]$, we use the shorthand notation $0_{(s, t)}$ and $1_{(s, t)}$ to denote the events of 0 arrivals and 1 arrival respectively. This notation permits us to write

$$
\begin{align*}
P\left[s_{1}\right. & \left.<S_{1} \leq s_{1}+\Delta, \ldots, s_{n}<S_{n} \leq s_{n}+\Delta, N=n\right] \\
& =P\left[0_{\left(0, s_{1}\right)} 1_{\left(s_{1}, s_{1}+\Delta\right)} 0_{\left(s_{1}+\Delta, s_{2}\right)} 1_{\left(s_{2}, s_{2}+\Delta\right)} 0_{\left(s_{2}+\Delta, s_{3}\right)} \cdots 1_{\left(s_{n}, s_{n}+\Delta\right)} 0_{\left(s_{n}+\Delta, T\right)}\right] \tag{9}
\end{align*}
$$

The set of events $0_{\left(0, s_{1}\right)}, 0_{\left(s_{n}+\Delta, T\right)}$, and for $i=1, \ldots, n-1,0_{\left(s_{i}+\Delta, s_{i}+1\right)}$ and $1_{\left(s_{i}, s_{i}+\Delta\right)}$ are independent because each devent depend on the Poisson process in a time interval that
overlaps none of the other time intervals. In addition, since the Poisson process has rate λ, $P\left[0_{(s, t)}\right]=e^{-\lambda(t-s)}$ and $P\left[1_{\left(s_{i}, s_{i}+\Delta\right)}\right]=(\lambda \Delta) e^{-\lambda \Delta}$. Thus,

$$
\begin{align*}
P\left[s_{1}\right. & \left.<S_{1} \leq s_{1}+\Delta, \ldots, s_{n}<S_{n} \leq s_{n}+\Delta, N=n\right] \\
& =P\left[0_{\left(0, s_{1}\right)}\right] P\left[1_{\left(s_{1}, s_{1}+\Delta\right)}\right] P\left[0_{\left(s_{1}+\Delta, s_{2}\right)}\right] \cdots P\left[1_{\left(s_{n}, s_{n}+\Delta\right)}\right] P\left[0_{\left(s_{n}+\Delta, T\right)}\right] \tag{10}\\
& =e^{-\lambda s_{1}}\left(\lambda \Delta e^{-\lambda \Delta}\right) e^{-\lambda\left(s_{2}-s_{1}-\Delta\right)} \cdots\left(\lambda \Delta e^{-\lambda \Delta}\right) e^{-\lambda\left(T-s_{n}-\Delta\right)} \tag{11}\\
& =(\lambda \Delta)^{n} e^{-\lambda T} \tag{12}
\end{align*}
$$

