ECE 543

Stochastic Signals and Systems
 PRoblem Set 3 Solution

Problem Solutions : Yates and Goodman, 4.1.6 4.2.8 4.4.3 4.6.8 4.8.6 4.9.14 4.10.17 5.1.3 5.4.7 5.5.1 5.5.4 5.6.9 5.7.6 and 5.7.7

Problem 4.1.6 Solution

The given function is

$$
F_{X, Y}(x, y)= \begin{cases}1-e^{-(x+y)} & x, y \geq 0 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

First, we find the $\operatorname{CDF} F_{X}(x)$ and $F_{Y}(y)$.

$$
\begin{align*}
& F_{X}(x)=F_{X, Y}(x, \infty)= \begin{cases}1 & x \geq 0 \\
0 & \text { otherwise }\end{cases} \tag{2}\\
& F_{Y}(y)=F_{X, Y}(\infty, y)= \begin{cases}1 & y \geq 0 \\
0 & \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

Hence, for any $x \geq 0$ or $y \geq 0$,

$$
\begin{equation*}
P[X>x]=0 \quad P[Y>y]=0 \tag{4}
\end{equation*}
$$

For $x \geq 0$ and $y \geq 0$, this implies

$$
\begin{equation*}
P[\{X>x\} \cup\{Y>y\}] \leq P[X>x]+P[Y>y]=0 \tag{5}
\end{equation*}
$$

However,

$$
\begin{equation*}
P[\{X>x\} \cup\{Y>y\}]=1-P[X \leq x, Y \leq y]=1-\left(1-e^{-(x+y)}\right)=e^{-(x+y)} \tag{6}
\end{equation*}
$$

Thus, we have the contradiction that $e^{-(x+y)} \leq 0$ for all $x, y \geq 0$. We can conclude that the given function is not a valid CDF.

Problem 4.2.8 Solution

Each circuit test produces an acceptable circuit with probability p. Let K denote the number of rejected circuits that occur in n tests and X is the number of acceptable circuits before the first reject. The joint PMF, $P_{K, X}(k, x)=P[K=k, X=x]$ can be found by realizing that $\{K=k, X=x\}$ occurs if and only if the following events occur:
A The first x tests must be acceptable.
B Test $x+1$ must be a rejection since otherwise we would have $x+1$ acceptable at the beginnning.
C The remaining $n-x-1$ tests must contain $k-1$ rejections.

Since the events A, B and C are independent, the joint PMF for $x+k \leq r, x \geq 0$ and $k \geq 0$ is

$$
\begin{equation*}
P_{K, X}(k, x)=\underbrace{p^{x}}_{P[A]} \underbrace{(1-p)}_{P[B]} \underbrace{\binom{n-x-1}{k-1}(1-p)^{k-1} p^{n-x-1-(k-1)}}_{P[C]} \tag{1}
\end{equation*}
$$

After simplifying, a complete expression for the joint PMF is

$$
P_{K, X}(k, x)= \begin{cases}\binom{n-x-1}{k-1} p^{n-k}(1-p)^{k} & x+k \leq n, x \geq 0, k \geq 0 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Problem 4.4.3 Solution

The joint PDF of X and Y is

$$
f_{X, Y}(x, y)= \begin{cases}6 e^{-(2 x+3 y)} & x \geq 0, y \geq 0, \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

(a) The probability that $X \geq Y$ is:

$$
\begin{align*}
P[X \geq Y] & =\int_{0}^{\infty} \int_{0}^{x} 6 e^{-(2 x+3 y)} d y d x \tag{2}\\
& =\int_{0}^{\infty} 2 e^{-2 x}\left(-\left.e^{-3 y}\right|_{y=0} ^{y=x}\right) d x \tag{3}\\
& =\int_{0}^{\infty}\left[2 e^{-2 x}-2 e^{-5 x}\right] d x=3 / 5 \tag{4}
\end{align*}
$$

The $P[X+Y \leq 1]$ is found by integrating over the region where $X+Y \leq 1$

$$
\begin{align*}
P[X+Y \leq 1] & =\int_{0}^{1} \int_{0}^{1-x} 6 e^{-(2 x+3 y)} d y d x \tag{5}\\
& =\int_{0}^{1} 2 e^{-2 x}\left[-\left.e^{-3 y}\right|_{y=0} ^{y=1-x}\right] d x \\
& =\int_{0}^{1} 2 e^{-2 x}\left[1-e^{-3(1-x)}\right] d x \tag{6}\\
& =-e^{-2 x}-\left.2 e^{x-3}\right|_{0} ^{1} \tag{7}\\
& =1+2 e^{-3}-3 e^{-2} \tag{8}
\end{align*}
$$

(b) The event $\min (X, Y) \geq 1$ is the same as the event $\{X \geq 1, Y \geq 1\}$. Thus,

$$
\begin{equation*}
P[\min (X, Y) \geq 1]=\int_{1}^{\infty} \int_{1}^{\infty} 6 e^{-(2 x+3 y)} d y d x=e^{-(2+3)} \tag{10}
\end{equation*}
$$

(c) The event $\max (X, Y) \leq 1$ is the same as the event $\{X \leq 1, Y \leq 1\}$ so that

$$
\begin{equation*}
P[\max (X, Y) \leq 1]=\int_{0}^{1} \int_{0}^{1} 6 e^{-(2 x+3 y)} d y d x=\left(1-e^{-2}\right)\left(1-e^{-3}\right) \tag{11}
\end{equation*}
$$

Problem 4.6.8 Solution

Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leq 1 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

(a) Since X and Y are both nonnegative, $W=Y / X \geq 0$. Since $Y \leq X, W=Y / X \leq 1$. Note that $W=0$ can occur if $Y=0$. Thus the range of W is $S_{W}=\{w \mid 0 \leq w \leq 1\}$.
(b) For $0 \leq w \leq 1$, the CDF of W is

$$
\begin{equation*}
F_{W}(w)=P[Y / X \leq w]=P[Y \leq w X]=w \tag{2}
\end{equation*}
$$

The complete expression for the CDF is

$$
F_{W}(w)= \begin{cases}0 & w<0 \tag{3}\\ w & 0 \leq w<1 \\ 1 & w \geq 1\end{cases}
$$

By taking the derivative of the CDF, we find that the PDF of W is

$$
f_{W}(w)= \begin{cases}1 & 0 \leq w<1 \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

We see that W has a uniform PDF over $[0,1]$. Thus $E[W]=1 / 2$.

Problem 4.8.6 Solution

Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}(4 x+2 y) / 3 & 0 \leq x \leq 1,0 \leq y \leq 1 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

(a) The probability of event $A=\{Y \leq 1 / 2\}$ is

$$
\begin{equation*}
P[A]=\iint_{y \leq 1 / 2} f_{X, Y}(x, y) d y d x=\int_{0}^{1} \int_{0}^{1 / 2} \frac{4 x+2 y}{3} d y d x . \tag{2}
\end{equation*}
$$

With some calculus,

$$
\begin{equation*}
P[A]=\left.\int_{0}^{1} \frac{4 x y+y^{2}}{3}\right|_{y=0} ^{y=1 / 2} d x=\int_{0}^{1} \frac{2 x+1 / 4}{3} d x=\frac{x^{2}}{3}+\left.\frac{x}{12}\right|_{0} ^{1}=\frac{5}{12} . \tag{3}
\end{equation*}
$$

(b) The conditional joint PDF of X and Y given A is

$$
\begin{align*}
f_{X, Y \mid A}(x, y) & = \begin{cases}\frac{f_{X, Y}(x, y)}{P[A]} & (x, y) \in A \\
0 & \text { otherwise }\end{cases} \tag{4}\\
& = \begin{cases}8(2 x+y) / 5 & 0 \leq x \leq 1,0 \leq y \leq 1 / 2 \\
0 & \text { otherwise }\end{cases} \tag{5}
\end{align*}
$$

For $0 \leq x \leq 1$, the PDF of X given A is

$$
\begin{align*}
f_{X \mid A}(x)=\int_{-\infty}^{\infty} f_{X, Y \mid A}(x, y) d y & =\frac{8}{5} \int_{0}^{1 / 2}(2 x+y) d y \tag{6}\\
& =\left.\frac{8}{5}\left(2 x y+\frac{y^{2}}{2}\right)\right|_{y=0} ^{y=1 / 2}=\frac{8 x+1}{5} \tag{7}
\end{align*}
$$

The complete expression is

$$
f_{X \mid A}(x)= \begin{cases}(8 x+1) / 5 & 0 \leq x \leq 1 \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

For $0 \leq y \leq 1 / 2$, the conditional marginal PDF of Y given A is

$$
\begin{align*}
f_{Y \mid A}(y)=\int_{-\infty}^{\infty} f_{X, Y \mid A}(x, y) d x & =\frac{8}{5} \int_{0}^{1}(2 x+y) d x \tag{9}\\
& =\left.\frac{8 x^{2}+8 x y}{5}\right|_{x=0} ^{x=1}=\frac{8 y+8}{5} \tag{10}
\end{align*}
$$

The complete expression is

$$
f_{Y \mid A}(y)= \begin{cases}(8 y+8) / 5 & 0 \leq y \leq 1 / 2 \tag{11}\\ 0 & \text { otherwise }\end{cases}
$$

Problem 4.9.14 Solution

(a) The number of buses, N, must be greater than zero. Also, the number of minutes that pass cannot be less than the number of buses. Thus, $P[N=n, T=t]>0$ for integers n, t satisfying $1 \leq n \leq t$.
(b) First, we find the joint PMF of N and T by carefully considering the possible sample paths. In particular, $P_{N, T}(n, t)=P[A B C]=P[A] P[B] P[C]$ where the events A, B and C are

$$
\begin{align*}
& A=\{n-1 \text { buses arrive in the first } t-1 \text { minutes }\} \tag{1}\\
& B=\{\text { none of the first } n-1 \text { buses are boarded }\} \tag{2}\\
& C=\{\text { at time } t \text { a bus arrives and is boarded }\} \tag{3}
\end{align*}
$$

These events are independent since each trial to board a bus is independent of when the buses arrive. These events have probabilities

$$
\begin{align*}
& P[A]=\binom{t-1}{n-1} p^{n-1}(1-p)^{t-1-(n-1)} \tag{4}\\
& P[B]=(1-q)^{n-1} \tag{5}\\
& P[C]=p q \tag{6}
\end{align*}
$$

Consequently, the joint PMF of N and T is

$$
P_{N, T}(n, t)= \begin{cases}\binom{t-1}{n-1} p^{n-1}(1-p)^{t-n}(1-q)^{n-1} p q & n \geq 1, t \geq n \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

(c) It is possible to find the marginal PMF's by summing the joint PMF. However, it is much easier to obtain the marginal PMFs by consideration of the experiment. Specifically, when a bus arrives, it is boarded with probability q. Moreover, the experiment ends when a bus is boarded. By viewing whether each arriving bus is boarded as an independent trial, N is the number of trials until the first success. Thus, N has the geometric PMF

$$
P_{N}(n)= \begin{cases}(1-q)^{n-1} q & n=1,2, \ldots \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

To find the PMF of T, suppose we regard each minute as an independent trial in which a success occurs if a bus arrives and that bus is boarded. In this case, the success probability is $p q$ and T is the number of minutes up to and including the first success. The PMF of T is also geometric.

$$
P_{T}(t)= \begin{cases}(1-p q)^{t-1} p q & t=1,2, \ldots \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

(d) Once we have the marginal PMFs, the conditional PMFs are easy to find.

$$
P_{N \mid T}(n \mid t)=\frac{P_{N, T}(n, t)}{P_{T}(t)}= \begin{cases}\binom{t-1}{n-1}\left(\frac{p(1-q)}{1-p q}\right)^{n-1}\left(\frac{1-p}{1-p q}\right)^{t-1-(n-1)} & n=1,2, \ldots, t \tag{10}\\ 0 & \text { otherwise }\end{cases}
$$

That is, given you depart at time $T=t$, the number of buses that arrive during minutes $1, \ldots, t-1$ has a binomial PMF since in each minute a bus arrives with probability p. Similarly, the conditional PMF of T given N is

$$
P_{T \mid N}(t \mid n)=\frac{P_{N, T}(n, t)}{P_{N}(n)}= \begin{cases}\binom{t-1}{n-1} p^{n}(1-p)^{t-n} & t=n, n+1, \ldots \tag{11}\\ 0 & \text { otherwise }\end{cases}
$$

This result can be explained. Given that you board bus $N=n$, the time T when you leave is the time for n buses to arrive. If we view each bus arrival as a success of an independent trial, the time for n buses to arrive has the above Pascal PMF.

Problem 4.10.17 Solution

We need to define the events $A=\{U \leq u\}$ and $B=\{V \leq v\}$. In this case,

$$
\begin{equation*}
F_{U, V}(u, v)=P[A B]=P[B]-P\left[A^{c} B\right]=P[V \leq v]-P[U>u, V \leq v] \tag{1}
\end{equation*}
$$

Note that $U=\min (X, Y)>u$ if and only if $X>u$ and $Y>u$. In the same way, since $V=\max (X, Y), V \leq v$ if and only if $X \leq v$ and $Y \leq v$. Thus

$$
\begin{align*}
P[U>u, V \leq v] & =P[X>u, Y>u, X \leq v, Y \leq v] \tag{2}\\
& =P[u<X \leq v, u<Y \leq v] \tag{3}
\end{align*}
$$

Thus, the joint CDF of U and V satisfies

$$
\begin{align*}
F_{U, V}(u, v) & =P[V \leq v]-P[U>u, V \leq v] \tag{4}\\
& =P[X \leq v, Y \leq v]-P[u<X \leq v, u<X \leq v] \tag{5}
\end{align*}
$$

Since X and Y are independent random variables,

$$
\begin{align*}
F_{U, V}(u, v) & =P[X \leq v] P[Y \leq v]-P[u<X \leq v] P[u<X \leq v] \tag{6}\\
& =F_{X}(v) F_{Y}(v)-\left(F_{X}(v)-F_{X}(u)\right)\left(F_{Y}(v)-F_{Y}(u)\right) \tag{7}\\
& =F_{X}(v) F_{Y}(u)+F_{X}(u) F_{Y}(v)-F_{X}(u) F_{Y}(u) \tag{8}
\end{align*}
$$

The joint PDF is

$$
\begin{align*}
f_{U, V}(u, v) & =\frac{\partial^{2} F_{U, V}(u, v)}{\partial u \partial v} \tag{9}\\
& =\frac{\partial}{\partial u}\left[f_{X}(v) F_{Y}(u)+F_{X}(u) f_{Y}(v)\right] \tag{10}\\
& =f_{X}(u) f_{Y}(v)+f_{X}(v) f_{Y}(v) \tag{11}
\end{align*}
$$

Problem 5.1.3 Solution

(a) In terms of the joint PDF, we can write joint CDF as

$$
\begin{equation*}
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{n}} f_{X_{1}, \ldots, X_{n}}\left(y_{1}, \ldots, y_{n}\right) d y_{1} \cdots d y_{n} \tag{1}
\end{equation*}
$$

However, simplifying the above integral depends on the values of each x_{i}. In particular, $f_{X_{1}, \ldots, X_{n}}\left(y_{1}, \ldots, y_{n}\right)=1$ if and only if $0 \leq y_{i} \leq 1$ for each i. Since $F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=$ 0 if any $x_{i}<0$, we limit, for the moment, our attention to the case where $x_{i} \geq 0$ for all i. In this case, some thought will show that we can write the limits in the following way:

$$
\begin{align*}
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) & =\int_{0}^{\max \left(1, x_{1}\right)} \cdots \int_{0}^{\min \left(1, x_{n}\right)} d y_{1} \cdots d y_{n} \tag{2}\\
& =\min \left(1, x_{1}\right) \min \left(1, x_{2}\right) \cdots \min \left(1, x_{n}\right) \tag{3}
\end{align*}
$$

A complete expression for the CDF of X_{1}, \ldots, X_{n} is

$$
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}\prod_{i=1}^{n} \min \left(1, x_{i}\right) & 0 \leq x_{i}, i=1,2, \ldots, n \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

(b) For $n=3$,

$$
\begin{align*}
1-P\left[\min _{i} X_{i} \leq 3 / 4\right] & =P\left[\min _{i} X_{i}>3 / 4\right] \tag{5}\\
& =P\left[X_{1}>3 / 4, X_{2}>3 / 4, X_{3}>3 / 4\right] \tag{6}\\
& =\int_{3 / 4}^{1} \int_{3 / 4}^{1} \int_{3 / 4}^{1} d x_{1} d x_{2} d x_{3} \tag{7}\\
& =(1-3 / 4)^{3}=1 / 64 \tag{8}
\end{align*}
$$

Thus $P\left[\min _{i} X_{i} \leq 3 / 4\right]=63 / 64$.

Problem 5.4.7 Solution

Since U_{1}, \ldots, U_{n} are iid uniform $(0,1)$ random variables,

$$
f_{U_{1}, \ldots, U_{n}}\left(u_{1}, \ldots, u_{n}\right)= \begin{cases}1 / T^{n} & 0 \leq u_{i} \leq 1 ; i=1,2, \ldots, n \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Since U_{1}, \ldots, U_{n} are continuous, $P\left[U_{i}=U_{j}\right]=0$ for all $i \neq j$. For the same reason, $P\left[X_{i}=X_{j}\right]=0$ for $i \neq j$. Thus we need only to consider the case when $x_{1}<x_{2}<\cdots<x_{n}$.

To understand the claim, it is instructive to start with the $n=2$ case. In this case, $\left(X_{1}, X_{2}\right)=\left(x_{1}, x_{2}\right)$ (with $\left.x_{1}<x_{2}\right)$ if either $\left(U_{1}, U_{2}\right)=\left(x_{1}, x_{2}\right)$ or $\left(U_{1}, U_{2}\right)=\left(x_{2}, x_{1}\right)$. For infinitesimal Δ,

$$
\begin{align*}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \Delta^{2}= & P\left[x_{1}<X_{1} \leq x_{1}+\Delta, x_{2}<X_{2} \leq x_{2}+\Delta\right] \tag{2}\\
= & P\left[x_{1}<U_{1} \leq x_{1}+\Delta, x_{2}<U_{2} \leq x_{2}+\Delta\right] \\
& +P\left[x_{2}<U_{1} \leq x_{2}+\Delta, x_{1}<U_{2} \leq x_{1}+\Delta\right] \tag{3}\\
= & f_{U_{1}, U_{2}}\left(x_{1}, x_{2}\right) \Delta^{2}+f_{U_{1}, U_{2}}\left(x_{2}, x_{1}\right) \Delta^{2} \tag{4}
\end{align*}
$$

We see that for $0 \leq x_{1}<x_{2} \leq 1$ that

$$
\begin{equation*}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=2 / T^{n} . \tag{5}
\end{equation*}
$$

For the general case of n uniform random variables, we define $\boldsymbol{\pi}=\left[\begin{array}{lll}\pi(1) & \ldots & \pi(n)\end{array}\right]^{\prime}$ as a permutation vector of the integers $1,2, \ldots, n$ and Π as the set of n ! possible permutation vectors. In this case, the event $\left\{X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right\}$ occurs if

$$
\begin{equation*}
U_{1}=x_{\pi(1)}, U_{2}=x_{\pi(2)}, \ldots, U_{n}=x_{\pi(n)} \tag{6}
\end{equation*}
$$

for any permutation $\boldsymbol{\pi} \in \Pi$. Thus, for $0 \leq x_{1}<x_{2}<\cdots<x_{n} \leq 1$,

$$
\begin{equation*}
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) \Delta^{n}=\sum_{\pi \in \Pi} f_{U_{1}, \ldots, U_{n}}\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \Delta^{n} . \tag{7}
\end{equation*}
$$

Since there are n ! permutations and $f_{U_{1}, \ldots, U_{n}}\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)=1 / T^{n}$ for each permutation π, we can conclude that

$$
\begin{equation*}
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=n!/ T^{n} . \tag{8}
\end{equation*}
$$

Since the order statistics are necessarily ordered, $f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=0$ unless $x_{1}<\cdots<$ x_{n}.

Problem 5.5.1 Solution

For discrete random vectors, it is true in general that

$$
\begin{equation*}
P_{\mathbf{Y}}(\mathbf{y})=P[\mathbf{Y}=\mathbf{y}]=P[\mathbf{A X}+\mathbf{b}=\mathbf{y}]=P[\mathbf{A} \mathbf{X}=\mathbf{y}-\mathbf{b}] . \tag{1}
\end{equation*}
$$

For an arbitrary matrix \mathbf{A}, the system of equations $\mathbf{A x}=\mathbf{y}-\mathbf{b}$ may have no solutions (if the columns of \mathbf{A} do not span the vector space), multiple solutions (if the columns of \mathbf{A} are linearly dependent), or, when \mathbf{A} is invertible, exactly one solution. In the invertible case,

$$
\begin{equation*}
P_{\mathbf{Y}}(\mathbf{y})=P[\mathbf{A X}=\mathbf{y}-\mathbf{b}]=P\left[\mathbf{X}=\mathbf{A}^{-1}(\mathbf{y}-\mathbf{b})\right]=P_{\mathbf{X}}\left(\mathbf{A}^{-1}(\mathbf{y}-\mathbf{b})\right) . \tag{2}
\end{equation*}
$$

As an aside, we note that when $\mathbf{A x}=\mathbf{y}-\mathbf{b}$ has multiple solutions, we would need to do some bookkeeping to add up the probabilities $P_{\mathbf{X}}(\mathbf{x})$ for all vectors \mathbf{x} satisfying $\mathbf{A x}=\mathbf{y}-\mathbf{b}$. This can get disagreeably complicated.

Problem 5.5.4 Solution

Let X_{i} denote the finishing time of boat i. Since finishing times of all boats are iid Gaussian random variables with expected value 35 minutes and standard deviation 5 minutes, we know that each X_{i} has CDF

$$
\begin{equation*}
F_{X_{i}}(x)=P\left[X_{i} \leq x\right]=P\left[\frac{X_{i}-35}{5} \leq \frac{x-35}{5}\right]=\Phi\left(\frac{x-35}{5}\right) \tag{1}
\end{equation*}
$$

(a) The time of the winning boat is

$$
\begin{equation*}
W=\min \left(X_{1}, X_{2}, \ldots, X_{10}\right) \tag{2}
\end{equation*}
$$

To find the probability that $W \leq 25$, we will find the $\operatorname{CDF} F_{W}(w)$ since this will also be useful for part (c).

$$
\begin{align*}
F_{W}(w) & =P\left[\min \left(X_{1}, X_{2}, \ldots, X_{10}\right) \leq w\right] \tag{3}\\
& =1-P\left[\min \left(X_{1}, X_{2}, \ldots, X_{10}\right)>w\right] \tag{4}\\
& =1-P\left[X_{1}>w, X_{2}>w, \ldots, X_{10}>w\right] \tag{5}
\end{align*}
$$

Since the X_{i} are iid,

$$
\begin{align*}
F_{W}(w)=1-\prod_{i=1}^{10} P\left[X_{i}>w\right] & =1-\left(1-F_{X_{i}}(w)\right)^{10} \tag{6}\\
& =1-\left(1-\Phi\left(\frac{w-35}{5}\right)\right)^{10} \tag{7}
\end{align*}
$$

Thus,

$$
\begin{align*}
P[W \leq 25]=F_{W}(25) & =1-(1-\Phi(-2))^{10} \tag{8}\\
& =1-[\Phi(2)]^{10}=0.2056 . \tag{9}
\end{align*}
$$

(b) The finishing time of the last boat is $L=\max \left(X_{1}, \ldots, X_{10}\right)$. The probability that the last boat finishes in more than 50 minutes is

$$
\begin{align*}
P[L>50] & =1-P[L \leq 50] \tag{10}\\
& =1-P\left[X_{1} \leq 50, X_{2} \leq 50, \ldots, X_{10} \leq 50\right] \tag{11}
\end{align*}
$$

Once again, since the X_{i} are iid Gaussian $(35,5)$ random variables,

$$
\begin{align*}
P[L>50]=1-\prod_{i=1}^{10} P\left[X_{i} \leq 50\right] & =1-\left(F_{X_{i}}(50)\right)^{10} \tag{12}\\
& =1-(\Phi([50-35] / 5))^{10} \tag{13}\\
& =1-(\Phi(3))^{10}=0.0134 \tag{14}
\end{align*}
$$

(c) A boat will finish in negative time if and only iff the winning boat finishes in negative time, which has probability

$$
\begin{equation*}
F_{W}(0)=1-(1-\Phi(-35 / 5))^{10}=1-(1-\Phi(-7))^{10}=1-(\Phi(7))^{10} . \tag{15}
\end{equation*}
$$

Unfortunately, the tables in the text have neither $\Phi(7)$ nor $Q(7)$. However, those with access to MATLAB, or a programmable calculator, can find out that $Q(7)=1-\Phi(7)=$ 1.28×10^{-12}. This implies that a boat finishes in negative time with probability

$$
\begin{equation*}
F_{W}(0)=1-\left(1-1.28 \times 10^{-12}\right)^{10}=1.28 \times 10^{-11} \tag{16}
\end{equation*}
$$

Problem 5.6.9 Solution

Given an arbitrary random vector \mathbf{X}, we can define $\mathbf{Y}=\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}$ so that

$$
\begin{equation*}
\mathbf{C}_{\mathbf{X}}=E\left[\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)^{\prime}\right]=E\left[\mathbf{Y} \mathbf{Y}^{\prime}\right]=\mathbf{R}_{\mathbf{Y}} \tag{1}
\end{equation*}
$$

It follows that the covariance matrix $\mathbf{C}_{\mathbf{X}}$ is positive semi-definite if and only if the correlation matrix $\mathbf{R}_{\mathbf{Y}}$ is positive semi-definite. Thus, it is sufficient to show that every correlation matrix, whether it is denoted $\mathbf{R}_{\mathbf{Y}}$ or $\mathbf{R}_{\mathbf{X}}$, is positive semi-definite.

To show a correlation matrix $\mathbf{R}_{\mathbf{X}}$ is positive semi-definite, we write

$$
\begin{equation*}
\mathbf{a}^{\prime} \mathbf{R}_{\mathbf{X}} \mathbf{a}=\mathbf{a}^{\prime} E\left[\mathbf{X X}^{\prime}\right] \mathbf{a}=E\left[\mathbf{a}^{\prime} \mathbf{X} \mathbf{X}^{\prime} \mathbf{a}\right]=E\left[\left(\mathbf{a}^{\prime} \mathbf{X}\right)\left(\mathbf{X}^{\prime} \mathbf{a}\right)\right]=E\left[\left(\mathbf{a}^{\prime} \mathbf{X}\right)^{2}\right] \tag{2}
\end{equation*}
$$

We note that $W=\mathbf{a}^{\prime} \mathbf{X}$ is a random variable. Since $E\left[W^{2}\right] \geq 0$ for any random variable W,

$$
\begin{equation*}
\mathbf{a}^{\prime} \mathbf{R}_{\mathbf{X}} \mathbf{a}=E\left[W^{2}\right] \geq 0 \tag{3}
\end{equation*}
$$

Problem 5.7.6 Solution

(a) From Theorem 5.13, Y has covariance matrix

$$
\begin{align*}
\mathbf{C}_{\mathbf{Y}} & =\mathbf{Q} \mathbf{C}_{\mathbf{X}} \mathbf{Q}^{\prime} \tag{1}\\
& =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \tag{2}\\
& =\left[\begin{array}{cc}
\sigma_{1}^{2} \cos ^{2} \theta+\sigma_{2}^{2} \sin ^{2} \theta & \left(\sigma_{1}^{2}-\sigma_{2}^{2}\right) \sin \theta \cos \theta \\
\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right) \sin \theta \cos \theta & \sigma_{1}^{2} \sin ^{2} \theta+\sigma_{2}^{2} \cos ^{2} \theta
\end{array}\right] . \tag{3}
\end{align*}
$$

We conclude that Y_{1} and Y_{2} have covariance

$$
\begin{equation*}
\operatorname{Cov}\left[Y_{1}, Y_{2}\right]=C_{\mathbf{Y}}(1,2)=\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right) \sin \theta \cos \theta \tag{4}
\end{equation*}
$$

Since Y_{1} and Y_{2} are jointly Gaussian, they are independent if and only if $\operatorname{Cov}\left[Y_{1}, Y_{2}\right]=$ 0 . Thus, Y_{1} and Y_{2} are independent for all θ if and only if $\sigma_{1}^{2}=\sigma_{2}^{2}$. In this case, when the joint PDF $f_{\mathbf{X}}(\mathbf{x})$ is symmetric in x_{1} and x_{2}. In terms of polar coordinates, the $\operatorname{PDF} f_{\mathbf{X}}(\mathbf{x})=f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ depends on $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$ but for a given r, is constant for all $\phi=\tan ^{-1}\left(x_{2} / x_{1}\right)$. The transformation of \mathbf{X} to \mathbf{Y} is just a rotation of the coordinate system by θ preserves this circular symmetry.
(b) If $\sigma_{2}^{2}>\sigma_{1}^{2}$, then Y_{1} and Y_{2} are independent if and only if $\sin \theta \cos \theta=0$. This occurs in the following cases:

- $\theta=0: Y_{1}=X_{1}$ and $Y_{2}=X_{2}$
- $\theta=\pi / 2: Y_{1}=-X_{2}$ and $Y_{2}=-X_{1}$
- $\theta=\pi: Y_{1}=-X_{1}$ and $Y_{2}=-X_{2}$
- $\theta=-\pi / 2: Y_{1}=X_{2}$ and $Y_{2}=X_{1}$

In all four cases, Y_{1} and Y_{2} are just relabeled versions, possibly with sign changes, of X_{1} and X_{2}. In these cases, Y_{1} and Y_{2} are independent because X_{1} and X_{2} are independent. For other values of θ, each Y_{i} is a linear combination of both X_{1} and X_{2}. This mixing results in correlation between Y_{1} and Y_{2}.

Problem 5.7.7 Solution

The difficulty of this problem is overrated since its a pretty simple application of Problem 5.7.6. In particular,

$$
\mathbf{Q}=\left.\left[\begin{array}{cc}
\cos \theta & -\sin \theta \tag{1}\\
\sin \theta & \cos \theta
\end{array}\right]\right|_{\theta=45^{\circ}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

Since $\mathbf{X}=\mathbf{Q Y}$, we know from Theorem 5.16 that \mathbf{X} is Gaussian with covariance matrix

$$
\begin{align*}
\mathbf{C}_{\mathbf{X}} & =\mathbf{Q} \mathbf{C}_{\mathbf{Y}} \mathbf{Q}^{\prime} \tag{2}\\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1+\rho & 0 \\
0 & 1-\rho
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \tag{3}\\
& =\frac{1}{2}\left[\begin{array}{cc}
1+\rho & -(1-\rho) \\
1+\rho & 1-\rho
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \tag{4}\\
& =\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right] . \tag{5}
\end{align*}
$$

