
ECE 543

Stochastic Signals and Systems

PRoblem Set 3 Solution

Problem Solutions : Yates and Goodman, 4.1.6 4.2.8 4.4.3 4.6.8 4.8.6 4.9.14 4.10.17
5.1.3 5.4.7 5.5.1 5.5.4 5.6.9 5.7.6 and 5.7.7

Problem 4.1.6 Solution

The given function is

FX,Y (x, y) =

{
1 − e−(x+y) x, y ≥ 0
0 otherwise

(1)

First, we find the CDF FX(x) and FY (y).

FX (x) = FX,Y (x,∞) =

{
1 x ≥ 0
0 otherwise

(2)

FY (y) = FX,Y (∞, y) =

{
1 y ≥ 0
0 otherwise

(3)

Hence, for any x ≥ 0 or y ≥ 0,

P [X > x] = 0 P [Y > y] = 0 (4)

For x ≥ 0 and y ≥ 0, this implies

P [{X > x} ∪ {Y > y}] ≤ P [X > x] + P [Y > y] = 0 (5)

However,

P [{X > x} ∪ {Y > y}] = 1 − P [X ≤ x, Y ≤ y] = 1 − (1 − e−(x+y)) = e−(x+y) (6)

Thus, we have the contradiction that e−(x+y) ≤ 0 for all x, y ≥ 0. We can conclude that
the given function is not a valid CDF.

Problem 4.2.8 Solution

Each circuit test produces an acceptable circuit with probability p. Let K denote the
number of rejected circuits that occur in n tests and X is the number of acceptable circuits
before the first reject. The joint PMF, PK,X(k, x) = P [K = k,X = x] can be found by
realizing that {K = k,X = x} occurs if and only if the following events occur:

A The first x tests must be acceptable.

B Test x + 1 must be a rejection since otherwise we would have x + 1 acceptable at the
beginnning.

C The remaining n − x − 1 tests must contain k − 1 rejections.
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Since the events A, B and C are independent, the joint PMF for x+k ≤ r, x ≥ 0 and k ≥ 0
is

PK,X (k, x) = px

︸︷︷︸

P [A]

(1 − p)
︸ ︷︷ ︸

P [B]

(
n − x − 1

k − 1

)

(1 − p)k−1pn−x−1−(k−1)

︸ ︷︷ ︸

P [C]

(1)

After simplifying, a complete expression for the joint PMF is

PK,X (k, x) =

{ (
n−x−1

k−1

)
pn−k(1 − p)k x + k ≤ n, x ≥ 0, k ≥ 0

0 otherwise
(2)

Problem 4.4.3 Solution

The joint PDF of X and Y is

fX,Y (x, y) =

{
6e−(2x+3y) x ≥ 0, y ≥ 0,
0 otherwise.

(1)

(a) The probability that X ≥ Y is:
Y

X

X Y³ P [X ≥ Y ] =

∫ ∞

0

∫ x

0
6e−(2x+3y) dy dx (2)

=

∫ ∞

0
2e−2x

(

−e−3y
∣
∣
y=x

y=0

)

dx (3)

=

∫ ∞

0
[2e−2x − 2e−5x] dx = 3/5 (4)

The P [X + Y ≤ 1] is found by integrating over the region where X + Y ≤ 1

Y

X

X+Y 1≤
1

1

P [X + Y ≤ 1] =

∫ 1

0

∫ 1−x

0
6e−(2x+3y) dy dx (5)

=

∫ 1

0
2e−2x

[

−e−3y
∣
∣
y=1−x

y=0

]

dx (6)

=

∫ 1

0
2e−2x

[

1 − e−3(1−x)
]

dx (7)

= −e−2x − 2ex−3
∣
∣
1

0
(8)

= 1 + 2e−3 − 3e−2 (9)

(b) The event min(X,Y ) ≥ 1 is the same as the event {X ≥ 1, Y ≥ 1}. Thus,

P [min(X,Y ) ≥ 1] =

∫ ∞

1

∫ ∞

1
6e−(2x+3y) dy dx = e−(2+3) (10)

(c) The event max(X,Y ) ≤ 1 is the same as the event {X ≤ 1, Y ≤ 1} so that

P [max(X,Y ) ≤ 1] =

∫ 1

0

∫ 1

0
6e−(2x+3y) dy dx = (1 − e−2)(1 − e−3) (11)
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Problem 4.6.8 Solution

Random variables X and Y have joint PDF
Y

X

1

1

fX,Y (x, y) =

{
2 0 ≤ y ≤ x ≤ 1
0 otherwise

(1)

(a) Since X and Y are both nonnegative, W = Y/X ≥ 0. Since Y ≤ X, W = Y/X ≤ 1.
Note that W = 0 can occur if Y = 0. Thus the range of W is SW = {w|0 ≤ w ≤ 1}.

(b) For 0 ≤ w ≤ 1, the CDF of W is

Y

X

1

1

w
P[Y<wX]

FW (w) = P [Y/X ≤ w] = P [Y ≤ wX ] = w (2)

The complete expression for the CDF is

FW (w) =







0 w < 0
w 0 ≤ w < 1
1 w ≥ 1

(3)

By taking the derivative of the CDF, we find that the PDF of W is

fW (w) =

{
1 0 ≤ w < 1
0 otherwise

(4)

We see that W has a uniform PDF over [0, 1]. Thus E[W ] = 1/2.

Problem 4.8.6 Solution

Random variables X and Y have joint PDF

fX,Y (x, y) =

{
(4x + 2y)/3 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise

(1)

(a) The probability of event A = {Y ≤ 1/2} is

P [A] =

∫∫

y≤1/2
fX,Y (x, y) dy dx =

∫ 1

0

∫ 1/2

0

4x + 2y

3
dy dx. (2)

With some calculus,

P [A] =

∫ 1

0

4xy + y2

3

∣
∣
∣
∣

y=1/2

y=0

dx =

∫ 1

0

2x + 1/4

3
dx =

x2

3
+

x

12

∣
∣
∣
∣

1

0

=
5

12
. (3)

3



(b) The conditional joint PDF of X and Y given A is

fX,Y |A (x, y) =

{
fX,Y (x,y)

P [A] (x, y) ∈ A

0 otherwise
(4)

=

{
8(2x + y)/5 0 ≤ x ≤ 1, 0 ≤ y ≤ 1/2
0 otherwise

(5)

For 0 ≤ x ≤ 1, the PDF of X given A is

fX|A (x) =

∫ ∞

−∞
fX,Y |A (x, y) dy =

8

5

∫ 1/2

0
(2x + y) dy (6)

=
8

5

(

2xy +
y2

2

)∣
∣
∣
∣

y=1/2

y=0

=
8x + 1

5
(7)

The complete expression is

fX|A (x) =

{
(8x + 1)/5 0 ≤ x ≤ 1
0 otherwise

(8)

For 0 ≤ y ≤ 1/2, the conditional marginal PDF of Y given A is

fY |A (y) =

∫ ∞

−∞
fX,Y |A (x, y) dx =

8

5

∫ 1

0
(2x + y) dx (9)

=
8x2 + 8xy

5

∣
∣
∣
∣

x=1

x=0

=
8y + 8

5
(10)

The complete expression is

fY |A (y) =

{
(8y + 8)/5 0 ≤ y ≤ 1/2
0 otherwise

(11)

Problem 4.9.14 Solution

(a) The number of buses, N , must be greater than zero. Also, the number of minutes
that pass cannot be less than the number of buses. Thus, P [N = n, T = t] > 0 for
integers n, t satisfying 1 ≤ n ≤ t.

(b) First, we find the joint PMF of N and T by carefully considering the possible sample
paths. In particular, PN,T (n, t) = P [ABC] = P [A]P [B]P [C] where the events A, B
and C are

A = {n − 1 buses arrive in the first t − 1 minutes} (1)

B = {none of the first n − 1 buses are boarded} (2)

C = {at time t a bus arrives and is boarded} (3)
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These events are independent since each trial to board a bus is independent of when
the buses arrive. These events have probabilities

P [A] =

(
t − 1

n − 1

)

pn−1(1 − p)t−1−(n−1) (4)

P [B] = (1 − q)n−1 (5)

P [C] = pq (6)

Consequently, the joint PMF of N and T is

PN,T (n, t) =

{ (
t−1
n−1

)
pn−1(1 − p)t−n(1 − q)n−1pq n ≥ 1, t ≥ n

0 otherwise
(7)

(c) It is possible to find the marginal PMF’s by summing the joint PMF. However, it
is much easier to obtain the marginal PMFs by consideration of the experiment.
Specifically, when a bus arrives, it is boarded with probability q. Moreover, the
experiment ends when a bus is boarded. By viewing whether each arriving bus is
boarded as an independent trial, N is the number of trials until the first success.
Thus, N has the geometric PMF

PN (n) =

{
(1 − q)n−1q n = 1, 2, . . .
0 otherwise

(8)

To find the PMF of T , suppose we regard each minute as an independent trial in
which a success occurs if a bus arrives and that bus is boarded. In this case, the
success probability is pq and T is the number of minutes up to and including the first
success. The PMF of T is also geometric.

PT (t) =

{
(1 − pq)t−1pq t = 1, 2, . . .
0 otherwise

(9)

(d) Once we have the marginal PMFs, the conditional PMFs are easy to find.

PN |T (n|t) =
PN,T (n, t)

PT (t)
=

{
(

t−1
n−1

) (
p(1−q)
1−pq

)n−1 (
1−p
1−pq

)t−1−(n−1)
n = 1, 2, . . . , t

0 otherwise
(10)

That is, given you depart at time T = t, the number of buses that arrive during
minutes 1, . . . , t − 1 has a binomial PMF since in each minute a bus arrives with
probability p. Similarly, the conditional PMF of T given N is

PT |N (t|n) =
PN,T (n, t)

PN (n)
=

{ ( t−1
n−1

)
pn(1 − p)t−n t = n, n + 1, . . .

0 otherwise
(11)

This result can be explained. Given that you board bus N = n, the time T when you
leave is the time for n buses to arrive. If we view each bus arrival as a success of an
independent trial, the time for n buses to arrive has the above Pascal PMF.
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Problem 4.10.17 Solution

We need to define the events A = {U ≤ u} and B = {V ≤ v}. In this case,

FU,V (u, v) = P [AB] = P [B] − P [AcB] = P [V ≤ v] − P [U > u, V ≤ v] (1)

Note that U = min(X,Y ) > u if and only if X > u and Y > u. In the same way, since
V = max(X,Y ), V ≤ v if and only if X ≤ v and Y ≤ v. Thus

P [U > u, V ≤ v] = P [X > u, Y > u,X ≤ v, Y ≤ v] (2)

= P [u < X ≤ v, u < Y ≤ v] (3)

Thus, the joint CDF of U and V satisfies

FU,V (u, v) = P [V ≤ v] − P [U > u, V ≤ v] (4)

= P [X ≤ v, Y ≤ v] − P [u < X ≤ v, u < X ≤ v] (5)

Since X and Y are independent random variables,

FU,V (u, v) = P [X ≤ v] P [Y ≤ v] − P [u < X ≤ v]P [u < X ≤ v] (6)

= FX (v) FY (v) − (FX (v) − FX (u)) (FY (v) − FY (u)) (7)

= FX (v) FY (u) + FX (u)FY (v) − FX (u) FY (u) (8)

The joint PDF is

fU,V (u, v) =
∂2FU,V (u, v)

∂u∂v
(9)

=
∂

∂u
[fX (v) FY (u) + FX (u) fY (v)] (10)

= fX (u) fY (v) + fX (v) fY (v) (11)

Problem 5.1.3 Solution

(a) In terms of the joint PDF, we can write joint CDF as

FX1,...,Xn
(x1, . . . , xn) =

∫ x1

−∞
· · ·

∫ xn

−∞
fX1,...,Xn

(y1, . . . , yn) dy1 · · · dyn (1)

However, simplifying the above integral depends on the values of each xi. In particular,
fX1,...,Xn

(y1, . . . , yn) = 1 if and only if 0 ≤ yi ≤ 1 for each i. Since FX1 ,...,Xn
(x1, . . . , xn) =

0 if any xi < 0, we limit, for the moment, our attention to the case where xi ≥ 0 for
all i. In this case, some thought will show that we can write the limits in the following
way:

FX1,...,Xn
(x1, . . . , xn) =

∫ max(1,x1)

0
· · ·

∫ min(1,xn)

0
dy1 · · · dyn (2)

= min(1, x1)min(1, x2) · · ·min(1, xn) (3)

A complete expression for the CDF of X1, . . . , Xn is

FX1,...,Xn
(x1, . . . , xn) =

{ ∏n
i=1 min(1, xi) 0 ≤ xi, i = 1, 2, . . . , n

0 otherwise
(4)
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(b) For n = 3,

1 − P

[

min
i

Xi ≤ 3/4

]

= P

[

min
i

Xi > 3/4

]

(5)

= P [X1 > 3/4, X2 > 3/4, X3 > 3/4] (6)

=

∫ 1

3/4

∫ 1

3/4

∫ 1

3/4
dx1 dx2 dx3 (7)

= (1 − 3/4)3 = 1/64 (8)

Thus P [mini Xi ≤ 3/4] = 63/64.

Problem 5.4.7 Solution

Since U1, . . . , Un are iid uniform (0, 1) random variables,

fU1,...,Un
(u1, . . . , un) =

{
1/T n 0 ≤ ui ≤ 1; i = 1, 2, . . . , n
0 otherwise

(1)

Since U1, . . . , Un are continuous, P [Ui = Uj] = 0 for all i 6= j. For the same reason,
P [Xi = Xj ] = 0 for i 6= j. Thus we need only to consider the case when x1 < x2 < · · · < xn.

To understand the claim, it is instructive to start with the n = 2 case. In this case,
(X1, X2) = (x1, x2) (with x1 < x2) if either (U1, U2) = (x1, x2) or (U1, U2) = (x2, x1). For
infinitesimal ∆,

fX1,X2
(x1, x2) ∆2 = P [x1 < X1 ≤ x1 + ∆, x2 < X2 ≤ x2 + ∆] (2)

= P [x1 < U1 ≤ x1 + ∆, x2 < U2 ≤ x2 + ∆]

+ P [x2 < U1 ≤ x2 + ∆, x1 < U2 ≤ x1 + ∆] (3)

= fU1,U2
(x1, x2)∆2 + fU1,U2

(x2, x1) ∆2 (4)

We see that for 0 ≤ x1 < x2 ≤ 1 that

fX1,X2
(x1, x2) = 2/T n. (5)

For the general case of n uniform random variables, we define π =
[
π(1) . . . π(n)

]′
as a

permutation vector of the integers 1, 2, . . . , n and Π as the set of n! possible permutation
vectors. In this case, the event {X1 = x1, X2 = x2, . . . , Xn = xn} occurs if

U1 = xπ(1), U2 = xπ(2), . . . , Un = xπ(n) (6)

for any permutation π ∈ Π. Thus, for 0 ≤ x1 < x2 < · · · < xn ≤ 1,

fX1,...,Xn
(x1, . . . , xn)∆n =

∑

π∈Π

fU1,...,Un

(
xπ(1), . . . , xπ(n)

)
∆n. (7)

Since there are n! permutations and fU1,...,Un
(xπ(1), . . . , xπ(n)) = 1/T n for each permutation

π, we can conclude that
fX1,...,Xn

(x1, . . . , xn) = n!/T n. (8)

Since the order statistics are necessarily ordered, fX1,...,Xn
(x1, . . . , xn) = 0 unless x1 < · · · <

xn.
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Problem 5.5.1 Solution

For discrete random vectors, it is true in general that

PY (y) = P [Y = y] = P [AX + b = y] = P [AX = y − b] . (1)

For an arbitrary matrix A, the system of equations Ax = y − b may have no solutions (if
the columns of A do not span the vector space), multiple solutions (if the columns of A are
linearly dependent), or, when A is invertible, exactly one solution. In the invertible case,

PY (y) = P [AX = y − b] = P
[
X = A−1(y − b)

]
= PX

(
A−1(y − b)

)
. (2)

As an aside, we note that when Ax = y − b has multiple solutions, we would need to do
some bookkeeping to add up the probabilities PX(x) for all vectors x satisfying Ax = y−b.
This can get disagreeably complicated.

Problem 5.5.4 Solution

Let Xi denote the finishing time of boat i. Since finishing times of all boats are iid Gaussian
random variables with expected value 35 minutes and standard deviation 5 minutes, we
know that each Xi has CDF

FXi
(x) = P [Xi ≤ x] = P

[
Xi − 35

5
≤ x − 35

5

]

= Φ

(
x − 35

5

)

(1)

(a) The time of the winning boat is

W = min(X1, X2, . . . , X10) (2)

To find the probability that W ≤ 25, we will find the CDF FW (w) since this will also
be useful for part (c).

FW (w) = P [min(X1, X2, . . . , X10) ≤ w] (3)

= 1 − P [min(X1, X2, . . . , X10) > w] (4)

= 1 − P [X1 > w,X2 > w, . . . ,X10 > w] (5)

Since the Xi are iid,

FW (w) = 1 −
10∏

i=1

P [Xi > w] = 1 − (1 − FXi
(w))10 (6)

= 1 −
(

1 − Φ

(
w − 35

5

))10

(7)

Thus,

P [W ≤ 25] = FW (25) = 1 − (1 − Φ(−2))10 (8)

= 1 − [Φ(2)]10 = 0.2056. (9)
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(b) The finishing time of the last boat is L = max(X1, . . . , X10). The probability that the
last boat finishes in more than 50 minutes is

P [L > 50] = 1 − P [L ≤ 50] (10)

= 1 − P [X1 ≤ 50, X2 ≤ 50, . . . , X10 ≤ 50] (11)

Once again, since the Xi are iid Gaussian (35, 5) random variables,

P [L > 50] = 1 −
10∏

i=1

P [Xi ≤ 50] = 1 − (FXi
(50))10 (12)

= 1 − (Φ([50 − 35]/5))10 (13)

= 1 − (Φ(3))10 = 0.0134 (14)

(c) A boat will finish in negative time if and only iff the winning boat finishes in negative
time, which has probability

FW (0) = 1 − (1 − Φ(−35/5))10 = 1 − (1 − Φ(−7))10 = 1 − (Φ(7))10 . (15)

Unfortunately, the tables in the text have neither Φ(7) nor Q(7). However, those with
access to Matlab, or a programmable calculator, can find out that Q(7) = 1−Φ(7) =
1.28 × 10−12. This implies that a boat finishes in negative time with probability

FW (0) = 1 − (1 − 1.28 × 10−12)10 = 1.28 × 10−11. (16)

Problem 5.6.9 Solution

Given an arbitrary random vector X, we can define Y = X− µX so that

CX = E
[
(X− µX)(X − µX)′

]
= E

[
YY′

]
= RY. (1)

It follows that the covariance matrix CX is positive semi-definite if and only if the correlation
matrix RY is positive semi-definite. Thus, it is sufficient to show that every correlation
matrix, whether it is denoted RY or RX, is positive semi-definite.

To show a correlation matrix RX is positive semi-definite, we write

a′RXa = a′E
[
XX′

]
a = E

[
a′XX′a

]
= E

[
(a′X)(X′a)

]
= E

[
(a′X)2

]
. (2)

We note that W = a′X is a random variable. Since E[W 2] ≥ 0 for any random variable W ,

a′RXa = E
[
W 2

]
≥ 0. (3)

Problem 5.7.6 Solution
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(a) From Theorem 5.13, Y has covariance matrix

CY = QCXQ′ (1)

=

[
cos θ − sin θ
sin θ cos θ

] [
σ2

1 0
0 σ2

2

] [
cos θ sin θ
− sin θ cos θ

]

(2)

=

[
σ2

1 cos2 θ + σ2
2 sin2 θ (σ2

1 − σ2
2) sin θ cos θ

(σ2
1 − σ2

2) sin θ cos θ σ2
1 sin2 θ + σ2

2 cos2 θ

]

. (3)

We conclude that Y1 and Y2 have covariance

Cov [Y1, Y2] = CY(1, 2) = (σ2
1 − σ2

2) sin θ cos θ. (4)

Since Y1 and Y2 are jointly Gaussian, they are independent if and only if Cov[Y1, Y2] =
0. Thus, Y1 and Y2 are independent for all θ if and only if σ2

1 = σ2
2 . In this case, when

the joint PDF fX(x) is symmetric in x1 and x2. In terms of polar coordinates, the
PDF fX(x) = fX1,X2

(x1, x2) depends on r =
√

x2
1 + x2

2 but for a given r, is constant
for all φ = tan−1(x2/x1). The transformation of X to Y is just a rotation of the
coordinate system by θ preserves this circular symmetry.

(b) If σ2
2 > σ2

1 , then Y1 and Y2 are independent if and only if sin θ cos θ = 0. This occurs
in the following cases:

• θ = 0: Y1 = X1 and Y2 = X2

• θ = π/2: Y1 = −X2 and Y2 = −X1

• θ = π: Y1 = −X1 and Y2 = −X2

• θ = −π/2: Y1 = X2 and Y2 = X1

In all four cases, Y1 and Y2 are just relabeled versions, possibly with sign changes,
of X1 and X2. In these cases, Y1 and Y2 are independent because X1 and X2 are
independent. For other values of θ, each Yi is a linear combination of both X1 and
X2. This mixing results in correlation between Y1 and Y2.

Problem 5.7.7 Solution

The difficulty of this problem is overrated since its a pretty simple application of Prob-
lem 5.7.6. In particular,

Q =

[
cos θ − sin θ
sin θ cos θ

]∣
∣
∣
∣
θ=45◦

=
1√
2

[
1 −1
1 1

]

. (1)

Since X = QY, we know from Theorem 5.16 that X is Gaussian with covariance matrix

CX = QCYQ′ (2)

=
1√
2

[
1 −1
1 1

] [
1 + ρ 0

0 1 − ρ

]
1√
2

[
1 1
−1 1

]

(3)

=
1

2

[
1 + ρ −(1 − ρ)
1 + ρ 1 − ρ

] [
1 1
−1 1

]

(4)

=

[
1 ρ
ρ 1

]

. (5)
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