Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman

Problem Solutions : Yates and Goodman,3.1.6 3.1.7 3.2.5 3.3.5 3.4.8 3.5.1 3.6.7 3.6.8 3.6.9 3.7.8 3.8.5 and 3.8.6

Problem 3.1.6

The joint PMF of X and N is $P_{N, X}(n, x)=P[N=n, X=x]$, which is the probability that $N=n$ and $X=x$. This means that both events must be satisfied. The approach we use is similar to that used in finding the Pascal PMF in Example 2.15. Since X can take on only the two values 0 and 1, let's consider each in turn. When $X=0$ that means that a rejection occurred on the last test and that the other $n-1$ rejections must have occurred in the previous $r-1$ tests. Thus,

$$
P_{N, X}(n, 0)=\binom{r-1}{n-1}(1-p)^{n-1} p^{r-1-(n-1)}(1-p) \quad n=1, \ldots, r
$$

When $X=1$ the last test was acceptable and therefore we know that the $N=n \leq r-1$ tails must have occurred in the previous $r-1$ tests. In this case,

$$
P_{N, X}(n, 1)=\binom{r-1}{n}(1-p)^{n} p^{r-1-n} p \quad n=0, \ldots, r-1
$$

We can combine these cases into a single complete expression for the joint PMF.

$$
P_{X, N}(x, n)= \begin{cases}\binom{r-1}{n-1}(1-p)^{n} p^{r-n} & x=0, n=1,2, \ldots, r \\ \binom{r-1}{n}(1-p)^{n} p^{r-n} & x=1, n=0,1, \ldots, r-1 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 3.1.7

Each circuit test produces an acceptable circuit with probability p. Let N denote the number of rejected circuits that occur in r tests and X is the number of acceptable circuits before the first reject. The joint PMF, $P_{N, X}(n, x)=P[N=n, X=x]$ can be found by realizing that $\{N=n, X=x\}$ occurs if and only if the following events occur:
A The first x tests must be acceptable.
B Test $x+1$ must be a rejection since otherwise we would have $x+1$ acceptable at the beginnning.
C The remaining $r-x-1$ tests must contain $n-1$ rejections.
Since the events A, B and C are independent, the joint PMF for $x+n \leq r, x \geq 0$ and $n \geq 0$ is

$$
P_{N, X}(n, x)=\underbrace{p^{x}}_{P[A]} \underbrace{(1-p)}_{P[B]} \underbrace{\binom{r-x-1}{n-1}(1-p)^{n-1} p^{r-x-1-(n-1)}}_{P[C]}
$$

After simplifying, a complete expression for the joint PMF is

$$
P_{N, X}(n, x)= \begin{cases}\binom{r-x-1}{n-1} p^{r-n}(1-p)^{n} & x+n \leq r, x \geq 0, n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 3.2.5

N is

$$
P_{N}(n)=\sum_{k} P_{N, K}(n, k)=\sum_{k=0}^{n} \frac{100^{n} e^{-100}}{(n+1)!}=\frac{100^{n} e^{-100}}{n!}
$$

For $k=0,1, \ldots$, the marginal PMF of K is

$$
\begin{aligned}
P_{K}(k) & =\sum_{n=k}^{\infty} \frac{100^{n} e^{-100}}{(n+1)!} \\
& =\frac{1}{100} \sum_{n=k}^{\infty} \frac{100^{n+1} e^{-100}}{(n+1)!} \\
& =\frac{1}{100} \sum_{n=k}^{\infty} P_{N}(n+1) \\
& =P[N>k] / 100
\end{aligned}
$$

Problem 3.3.5

The x, y pairs with nonzero probability are shown in the figure at right. From the figure, we observe that for $w=$ $0,1, \ldots, 10$,

$$
\begin{aligned}
P[W>w] & =P[\min (X, Y)>w] \\
& =P[X>w, Y>w] \\
& =0.01(10-w)^{2}
\end{aligned}
$$

To find the PMF of W, we observe that for $w=1, \ldots, 10$,

$$
\begin{aligned}
P_{W}(w) & =P[W>w-1]-P[W>w] \\
& =0.01\left[(10-w-1)^{2}-(10-w)^{2}\right] \\
& =0.01(21-2 w)
\end{aligned}
$$

The complete expression for the PMF of W is

$$
P_{W}(w)= \begin{cases}0.01(21-2 w) & w=1,2, \ldots, 10 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 3.4.8

For this problem, calculating the marginal PMF of K is not easy. However, the marginal PMF of N is easy to find. For $n=1,2, \ldots$,

$$
P_{N}(n)=\sum_{k=1}^{n} \frac{(1-p)^{n-1} p}{n}=(1-p)^{n-1} p
$$

That is, N has a geometric PMF. From Appendix A, we note that

$$
E[N]=\frac{1}{p} \quad \operatorname{Var}[N]=\frac{1-p}{p^{2}}
$$

We can use these facts to find the second moment of N.

$$
E\left[N^{2}\right]=\operatorname{Var}[N]+(E[N])^{2}=\frac{2-p}{p^{2}}
$$

Now we can calculate the moments of K.

$$
E[K]=\sum_{n=1}^{\infty} \sum_{k=1}^{n} k \frac{(1-p)^{n-1} p}{n}=\sum_{n=1}^{\infty} \frac{(1-p)^{n-1} p}{n} \sum_{k=1}^{n} k
$$

Since $\sum_{k=1}^{n} k=n(n+1) / 2$,

$$
E[K]=\sum_{n=1}^{\infty} \frac{n+1}{2}(1-p)^{n-1} p=E\left[\frac{N+1}{2}\right]=\frac{1}{2 p}+\frac{1}{2}
$$

We now can calculate the sum of the moments.

$$
E[N+K]=E[N]+E[K]=\frac{3}{2 p}+\frac{1}{2}
$$

The second moment of K is

$$
E\left[K^{2}\right]=\sum_{n=1}^{\infty} \sum_{k=1}^{n} k^{2} \frac{(1-p)^{n-1} p}{n}=\sum_{n=1}^{\infty} \frac{(1-p)^{n-1} p}{n} \sum_{k=1}^{n} k^{2}
$$

Using the identity $\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6$, we obtain

$$
E\left[K^{2}\right]=\sum_{n=1}^{\infty} \frac{(n+1)(2 n+1)}{6}(1-p)^{n-1} p=E\left[\frac{(N+1)(2 N+1)}{6}\right]
$$

Applying the values of $E[N]$ and $E\left[N^{2}\right]$ found above, we find that

$$
E\left[K^{2}\right]=\frac{E\left[N^{2}\right]}{3}+\frac{E[N]}{2}+\frac{1}{6}=\frac{2}{3 p^{2}}+\frac{1}{6 p}+\frac{1}{6}
$$

Thus, we can calculate the variance of K.

$$
\operatorname{Var}[K]=E\left[K^{2}\right]-(E[K])^{2}=\frac{5}{12 p^{2}}-\frac{1}{3 p}+\frac{5}{12}
$$

To find the correlation of N and K,

$$
E[N K]=\sum_{n=1}^{\infty} \sum_{k=1}^{n} n k \frac{(1-p)^{n-1} p}{n}=\sum_{n=1}^{\infty}(1-p)^{n-1} p \sum_{k=1}^{n} k
$$

Since $\sum_{k=1}^{n} k=n(n+1) / 2$,

$$
E[N K]=\sum_{n=1}^{\infty} \frac{n(n+1)}{2}(1-p)^{n-1} p=E\left[\frac{N(N+1)}{2}\right]=\frac{1}{p^{2}}
$$

Finally, the covariance is

$$
\operatorname{Cov}[N, K]=E[N K]-E[N] E[K]=\frac{1}{2 p^{2}}-\frac{1}{2 p}
$$

Problem 3.5.1

The event A occurs iff $X>5$ and $Y>5$ and has probability

$$
P[A]=P[X>5, Y>5]=\sum_{x=6}^{10} \sum_{y=6}^{10} 0.01=0.25
$$

From Theorem 3.11,

$$
P_{X, Y \mid A}(x, y)=\left\{\begin{array}{ll}
\frac{P_{X, Y}(x, y)}{P[A]} & (x, y) \in A \\
0 & \text { otherwise }
\end{array}= \begin{cases}0.04 & x=6, \ldots, 10 ; y=6, \ldots, 20 \\
0 & \text { otherwise }\end{cases}\right.
$$

Problem 3.6.7

The key to solving this problem is to find the joint PMF of M and N. Note that $N \geq M$. For $n>m$, the joint event $\{M=m, N=n\}$ has probability

$$
\begin{aligned}
P[M=m, N=n] & =P[\overbrace{d d \cdots d} \stackrel{\begin{array}{c}
m-1 \\
\text { calls }
\end{array}}{\begin{array}{c}
d d \cdots d \\
\text { calls }
\end{array}} \begin{array}{rl}
n-m-1
\end{array} \\
& =(1-p)^{m-1} p(1-p)^{n-m-1} p \\
& =(1-p)^{n-2} p^{2}
\end{aligned}
$$

A complete expression for the joint PMF of M and N is

$$
P_{M, N}(m, n)= \begin{cases}(1-p)^{n-2} p^{2} & m=1,2, \ldots, n-1 ; n=m+1, m+2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

For $n=2,3, \ldots$, the marginal PMF of N satisfies

$$
P_{N}(n)=\sum_{m=1}^{n-1}(1-p)^{n-2} p^{2}=(n-1)(1-p)^{n-2} p^{2}
$$

Similarly, for $m=1,2, \ldots$, the marginal PMF of M satisfies

$$
\begin{aligned}
P_{M}(m) & =\sum_{n=m+1}^{\infty}(1-p)^{n-2} p^{2} \\
& =p^{2}\left[(1-p)^{m-1}+(1-p)^{m}+\cdots\right] \\
& =(1-p)^{m-1} p
\end{aligned}
$$

The complete expressions for the marginal PMF's are

$$
\begin{aligned}
P_{M}(m) & = \begin{cases}(1-p)^{m-1} p & m=1,2, \ldots \\
0 & \text { otherwise }\end{cases} \\
P_{N}(n) & = \begin{cases}(n-1)(1-p)^{n-2} p^{2} & n=2,3, \ldots \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Not surprisingly, if we view each voice call as a successful Bernoulli trial, M has a geometric PMF since it is the number of trials up to and including the first success. Also, N has a Pascal PMF since it is the number of trials required to see 2 successes. The conditional PMF's are now easy to find.

$$
P_{N \mid M}(n \mid m)=\frac{P_{M, N}(m, n)}{P_{M}(m)}= \begin{cases}(1-p)^{n-m-1} p & n=m+1, m+2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

The interpretation of the conditional PMF of N given M is that given $M=m, N=m+N^{\prime}$ where N^{\prime} has a geometric PMF with mean $1 / p$. The conditional PMF of M given N is

$$
P_{M \mid N}(m \mid n)=\frac{P_{M, N}(m, n)}{P_{N}(n)}= \begin{cases}1 /(n-1) & m=1, \ldots, n-1 \\ 0 & \text { otherwise }\end{cases}
$$

Given that call $N=n$ was the second voice call, the first voice call is equally likely to occur in any of the previous $n-1$ calls.

Problem 3.6.8

(a) The number of buses, N, must be greater than zero. Also, the number of minutes that pass cannot be less than the number of buses. Thus, $P[N=n, T=t]>0$ for integers n, t satisfying $1 \leq n \leq t$.
(b) First, we find the joint PMF of N and T by carefully considering the possible sample paths. In particular, $P_{N, T}(n, t)=P[A B C]=P[A] P[B] P[C]$ where the events A, B and C are

$$
\begin{aligned}
& A=\{n-1 \text { buses arrive in the first } t-1 \text { minutes }\} \\
& B=\{\text { none of the first } n-1 \text { buses are boarded }\} \\
& C=\{\text { at time } t \text { a bus arrives and is boarded }\}
\end{aligned}
$$

These events are independent since each trial to board a bus is independent of when the buses arrive. These events have probabilities

$$
\begin{aligned}
& P[A]=\binom{t-1}{n-1} p^{n-1}(1-p)^{t-1-(n-1)} \\
& P[B]=(1-q)^{n-1} \\
& P[C]=p q
\end{aligned}
$$

Consequently, the joint PMF of N and T is

$$
P_{N, T}(n, t)= \begin{cases}\binom{t-1}{n-1} p^{n-1}(1-p)^{t-n}(1-q)^{n-1} p q & n \geq 1, t \geq n \\ 0 & \text { otherwise }\end{cases}
$$

(c) It is possible to find the marginal PMF's by summing the joint PMF. However, it is much easier to obtain the marginal PMFs by consideration of the experiment. Specifically, when a bus arrives, it is boarded with probability q. Moreover, the experiment ends when a bus is boarded. By viewing whether each arriving bus is boarded as an independent trial, N is the number of trials until the first success. Thus, N has the geometric PMF

$$
P_{N}(n)= \begin{cases}(1-q)^{n-1} q & n=1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

To find the PMF of T, suppose we regard each minute as an independent trial in which a success occurs if a bus arrives and that bus is boarded. In this case, the success probability is $p q$ and T is the number of minutes up to and including the first success. The PMF of T is also geometric.

$$
P_{T}(t)= \begin{cases}(1-p q)^{t-1} p q & t=1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

(d) Once we have the marginal PMFs, the conditional PMFs are easy to find.

$$
P_{N \mid T}(n \mid t)=\frac{P_{N, T}(n, t)}{P_{T}(t)}= \begin{cases}\binom{t-1}{n-1}\left(\frac{p(1-q)}{1-p q}\right)^{n-1}\left(\frac{1-p}{1-p q}\right)^{t-1-(n-1)} & n=1,2, \ldots, t \\ 0 & \text { otherwise }\end{cases}
$$

That is, given you depart at time $T=t$, the number of buses that arrive during minutes $1, \ldots, t-$ 1 has a binomial PMF since in each minute a bus arrives with probability p. Similarly, the conditional PMF of T given N is

$$
P_{T \mid N}(t \mid n)=\frac{P_{N, T}(n, t)}{P_{N}(n)}= \begin{cases}\binom{t-1}{n-1} p^{n}(1-p)^{t-n} & t=n, n+1, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

This result can be explained. Given that you board bus $N=n$, the time T when you leave is the time for n buses to arrive. If we view each bus arrival as a success of an independent trial, the time for n buses to arrive has the above Pascal PMF.

Problem 3.6.9

what type of call (if any) that arrived in any 1 millisecond period, it will be apparent that a fax call arrives with probability $\alpha=p q r$ or no fax arrives with probability $1-\alpha$. That is, whether a fax message arrives each millisecond is a Bernoulli trial with success probability α. Thus, the time required for the first success has the geometric PMF

$$
P_{T}(t)= \begin{cases}(1-\alpha)^{t-1} \alpha & t=1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Note that N is the number of trials required to observe 100 successes. Moreover, the number of trials needed to observe 100 successes is $N=T+N^{\prime}$ where N^{\prime} is the number of trials needed to observe successes 2 through 100. Since N^{\prime} is just the number of trials needed to observe 99 successes, it has the Pascal PMF

$$
P_{N^{\prime}}(n)= \begin{cases}\binom{n-1}{98} \alpha^{98}(1-\alpha)^{n-98} & n=99,100, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Since the trials needed to generate successes 2 though 100 are independent of the trials that yield the first success, N^{\prime} and T are independent. Hence

$$
P_{N \mid T}(n \mid t)=P_{N^{\prime} \mid T}(n-t \mid t)=P_{N^{\prime}}(n-t)
$$

Applying the PMF of N^{\prime} found above, we have

$$
P_{N \mid T}(n \mid t)= \begin{cases}\binom{n-1}{98} \alpha^{98}(1-\alpha)^{n-t-98} & n=99+t, 100+t, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Finally the joint PMF of N and T is

$$
\begin{aligned}
P_{N, T}(n, t) & =P_{N \mid T}(n \mid t) P_{T}(t) \\
& = \begin{cases}\binom{n-t-1}{98} \alpha^{99}(1-\alpha)^{n-99} \alpha & t=1,2, \ldots ; n=99+t, 100+t, \ldots \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

This solution can also be found a consideration of the sample sequence of Bernoulli trials in which we either observe or do not observe a fax message. To find the conditional PMF $P_{T \mid N}(t \mid n)$, we first must recognize that N is simply the number of trials needed to observe 100 successes and thus has the Pascal PMF

$$
P_{N}(n)= \begin{cases}\binom{n-1}{99} \alpha^{100}(1-\alpha)^{n-100} & n=100,101, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Hence the conditional PMF is

$$
P_{T \mid N}(t \mid n)=\frac{P_{N, T}(n, t)}{P_{N}(n)}=\frac{\binom{n-t-1}{98}}{\binom{n-1}{99}} \frac{1-\alpha}{\alpha}
$$

Problem 3.7.8

The key to this problem is understanding that "Factory Q " and "Factory R " are synonyms for $M=60$ and $M=180$. Similarly, "small", "medium", and "large" orders correspond to the events $B=1, B=2$ and $B=3$.
(a) The following table given in the problem statement

	Factory Q	Factory R
small order	0.3	0.2
medium order	0.1	0.2
large order	0.1	0.1

can be translated into the following joint PMF for B and M.

$P_{B, M}(b, m)$	$m=60$	$m=180$
$b=1$	0.3	0.2
$b=2$	0.1	0.2
$b=3$	0.1	0.1

(b) Before we find $E[B]$, it will prove helpful for the remainder of the problem to find the marginal PMFs $P_{B}(b)$ and $P_{M}(m)$. These can be found from the row and column sums of the table of the joint PMF

$P_{B, M}(b, m)$	$m=60$	$m=180$	$P_{B}(b)$
$b=1$	0.3	0.2	0.5
$b=2$	0.1	0.2	0.3
$b=3$	0.1	0.1	0.2
$P_{M}(m)$	0.5	0.5	

The expected number of boxes is

$$
E[B]=\sum_{b} b P_{B}(b)=1(0.5)+2(0.3)+3(0.2)=1.7
$$

(c) From the marginal PMF of B, we know that $P_{B}(2)=0.3$. The conditional PMF of M given $B=2$ is

$$
P_{M \mid B}(m \mid 2)=\frac{P_{B, M}(2, m)}{P_{B}(2)}= \begin{cases}1 / 3 & m=60 \\ 2 / 3 & m=180 \\ 0 & \text { otherwise }\end{cases}
$$

(d) The conditional expectation of M given $B=2$ is

$$
E[M \mid B=2]=\sum_{m} m P_{M \mid B}(m \mid 2)=60(1 / 3)+180(2 / 3)=140
$$

(e) From the marginal PMFs we calculated in the table of part (b), we can conclude that B and M are not independent. since $P_{B, M}(1,60) \neq P_{B}(1) P_{M}(m) 60$.
(f) In terms of M and B, the cost (in cents) of sending a shipment is $C=B M$. The expected value of C is

$$
\begin{aligned}
E[C]= & \sum_{b, m} b m P_{B, M}(b, m) \\
= & 1(60)(0.3)+2(60)(0.1)+3(60)(0.1) \\
& \quad+1(180)(0.2)+2(180)(0.2)+3(180)(0.1)=210
\end{aligned}
$$

Problem 3.8.5

is added to the jackpot,

$$
J_{i-1}=J_{i}+\frac{N_{i}}{2}
$$

Given $J_{i}=j, N_{i}$ has a Poisson distribution with mean j. so that $E\left[N_{i} \mid J_{i}=j\right]=j$ and that $\operatorname{Var}\left[N_{i} \mid J_{i}=j\right]=$ j. This implies

$$
E\left[N_{i}^{2} \mid J_{i}=j\right]=\operatorname{Var}\left[N_{i} \mid J_{i}=j\right]+\left(E\left[N_{i} \mid J_{i}=j\right]\right)^{2}=j+j^{2}
$$

In terms of the conditional expectations given J_{i}, these facts can be written as

$$
E\left[N_{i} \mid J_{i}\right]=J_{i} \quad E\left[N_{i}^{2} \mid J_{i}\right]=J_{i}+J_{i}^{2}
$$

This permits us to evaluate the moments of J_{i-1} in terms of the moments of J_{i}. Specifically,

$$
E\left[J_{i-1} \mid J_{i}\right]=E\left[J_{i} \mid J_{i}\right]+\frac{1}{2} E\left[N_{i} \mid J_{i}\right]=J_{i}+\frac{J_{i}}{2}=\frac{3 J_{i}}{2}
$$

This implies

$$
E\left[J_{i-1}\right]=\frac{3}{2} E\left[J_{i}\right]
$$

We can use this the calculate $E\left[J_{i}\right]$ for all i. Since the jackpot starts at 1 million dollars, $J_{6}=10^{6}$ and $E\left[J_{6}\right]=10^{6}$. This implies

$$
E\left[J_{i}\right]=(3 / 2)^{6-i} 10^{6}
$$

Now we will find the second moment $E\left[J_{i}^{2}\right]$. Since $J_{i-1}^{2}=J_{i}^{2}+N_{i} J_{i}+N_{i}^{2} / 4$, we have

$$
\begin{aligned}
E\left[J_{i-1}^{2} \mid J_{i}\right] & =E\left[J_{i}^{2} \mid J_{i}\right]+E\left[N_{i} J_{i} \mid J_{i}\right]+E\left[N_{i}^{2} \mid J_{i}\right] / 4 \\
& =J_{i}^{2}+J_{i} E\left[N_{i} \mid J_{i}\right]+\left(J_{i}+J_{i}^{2}\right) / 4 \\
& =(3 / 2)^{2} J_{i}^{2}+J_{i} / 4
\end{aligned}
$$

By taking the expectation over J_{i} we have

$$
E\left[J_{i-1}^{2}\right]=(3 / 2)^{2} E\left[J_{i}^{2}\right]+E\left[J_{i}\right] / 4
$$

This recursion allows us to calculate $E\left[J_{i}^{2}\right]$ for $i=6,5, \ldots, 0$. Since $J_{6}=10^{6}, E\left[J_{6}^{2}\right]=10^{12}$. From the recursion, we obtain

$$
\begin{aligned}
& E\left[J_{5}^{2}\right]=(3 / 2)^{2} E\left[J_{6}^{2}\right]+E\left[J_{6}\right] / 4=(3 / 2)^{2} 10^{12}+\frac{1}{4} 10^{6} \\
& E\left[J_{4}^{2}\right]=(3 / 2)^{2} E\left[J_{5}^{2}\right]+E\left[J_{5}\right] / 4=(3 / 2)^{4} 10^{12}+\frac{1}{4}\left[(3 / 2)^{2}+(3 / 2)\right] 10^{6} \\
& E\left[J_{3}^{2}\right]=(3 / 2)^{2} E\left[J_{4}^{2}\right]+E\left[J_{4}\right] / 4=(3 / 2)^{6} 10^{12}+\frac{1}{4}\left[(3 / 2)^{4}+(3 / 2)^{3}+(3 / 2)^{2}\right] 10^{6}
\end{aligned}
$$

The same recursion will also allow us to show that

$$
\begin{aligned}
& E\left[J_{2}^{2}\right]=(3 / 2)^{8} 10^{12}+\frac{1}{4}\left[(3 / 2)^{6}+(3 / 2)^{5}+(3 / 2)^{4}+(3 / 2)^{3}\right] 10^{6} \\
& E\left[J_{1}^{2}\right]=(3 / 2)^{10} 10^{12}+\frac{1}{4}\left[(3 / 2)^{8}+(3 / 2)^{7}+(3 / 2)^{6}+(3 / 2)^{5}+(3 / 2)^{4}\right] 10^{6} \\
& E\left[J_{0}^{2}\right]=(3 / 2)^{12} 10^{12}+\frac{1}{4}\left[(3 / 2)^{10}+(3 / 2)^{9}+\cdots+(3 / 2)^{5}\right] 10^{6}
\end{aligned}
$$

Finally, day 0 is the same as any other day in that $J=J_{0}+N_{0} / 2$ where N_{0} is a Poisson random variable with mean J_{0}. By the same argument that we used to develop recursions for $E\left[J_{i}\right]$ and $E\left[J_{i}^{2}\right]$, we can show

$$
E[J]=(3 / 2) E\left[J_{0}\right]=(3 / 2)^{7} 10^{6} \approx 17 \times 10^{6}
$$

and

$$
\begin{aligned}
E\left[J^{2}\right] & =(3 / 2)^{2} E\left[J_{0}^{2}\right]+E\left[J_{0}\right] / 4 \\
& =(3 / 2)^{14} 10^{12}+\frac{1}{4}\left[(3 / 2)^{12}+(3 / 2)^{11}+\cdots+(3 / 2)^{6}\right] 10^{6} \\
& =(3 / 2)^{14} 10^{12}+\frac{10^{6}}{2}(3 / 2)^{6}\left[(3 / 2)^{7}-1\right]
\end{aligned}
$$

Finally, the variance of J is

$$
\operatorname{Var}[J]=E\left[J^{2}\right]-(E[J])^{2}=\frac{10^{6}}{2}(3 / 2)^{6}\left[(3 / 2)^{7}-1\right]
$$

Since the variance is hard to interpret, we note that the standard deviation of J is $\sigma_{J} \approx 9572$. Although the expected jackpot grows rapidly, the standard deviation of the jackpot is fairly small.

Problem 3.8.6

(a) The sample space is

$$
\begin{aligned}
& S_{X, Y, Z}=\{(x, y, z) \mid x+y+z=5, x \geq 0, y \geq 0, z \geq 0, x, y, z \text { integer }\} \\
& =\left\{\begin{array}{lllll}
(0,0,5), & & & \\
(0,1,4), & (1,0,4), & & & \\
(0,2,3), & (1,1,3), & (2,0,3), & & \\
(0,3,2), & (1,2,2), & (2,1,2), & (3,0,2), & \\
(0,4,1), & (1,3,1), & (2,2,1), & (3,1,1), & (4,0,1), \\
(0,5,0), & (1,4,0), & (2,3,0), & (3,2,0), & (4,1,0), \\
(5,0,0)
\end{array}\right\}
\end{aligned}
$$

(b) As we see in the above list of elements of $S_{X, Y, Z}$, just writing down all the elements is not so easy. Similarly, representing the joint PMF is usually not very straightforward. Here are the probabilities in a list.

(x, y, z)	$P_{X, Y, Z}(x, y, z)$	$P_{X, Y, Z}(x, y, z)($ decimal $)$
$(0,0,5)$	$(1 / 6)^{5}$	1.29×10^{-4}
$(0,1,4)$	$5(1 / 2)(1 / 6)^{4}$	1.93×10^{-3}
$(1,0,4)$	$5(1 / 3)(1 / 6)^{4}$	1.29×10^{-3}
$(0,2,3)$	$10(1 / 2)^{2}(1 / 6)^{3}$	1.16×10^{-2}
$(1,1,3)$	$20(1 / 3)(1 / 2)(1 / 6)^{3}$	1.54×10^{-2}
$(2,0,3)$	$10(1 / 3)^{2}(1 / 6)^{3}$	5.14×10^{-3}
$(0,3,2)$	$10(1 / 2)^{3}(1 / 6)^{2}$	3.47×10^{-2}
$(1,2,2)$	$30(1 / 3)(1 / 2)^{2}(1 / 6)^{2}$	6.94×10^{-2}
$(2,1,2)$	$30(1 / 3)^{2}(1 / 2)(1 / 6)^{2}$	4.63×10^{-2}
$(3,0,2)$	$10(1 / 2)^{3}(1 / 6)^{2}$	1.03×10^{-2}
$(0,4,1)$	$5(1 / 2)^{4}(1 / 6)$	5.21×10^{-2}
$(1,3,1)$	$20(1 / 3)(1 / 2)^{3}(1 / 6)$	1.39×10^{-1}
$(2,2,1)$	$30(1 / 3)^{2}(1 / 2)^{2}(1 / 6)$	1.39×10^{-1}
$(3,1,1)$	$20(1 / 3)^{3}(1 / 2)(1 / 6)$	6.17×10^{-2}
$(4,0,1)$	$5(1 / 3)^{4}(1 / 6)$	1.03×10^{-2}
$(0,5,0)$	$(1 / 2)^{5}$	3.13×10^{-2}
$(1,4,0)$	$5(1 / 3)(1 / 2)^{4}$	1.04×10^{-1}
$(2,3,0)$	$10(1 / 3)^{2}(1 / 2)^{3}$	1.39×10^{-1}
$(3,2,0)$	$10(1 / 3)^{3}(1 / 2)^{2}$	9.26×10^{-2}
$(4,1,0)$	$5(1 / 3)^{4}(1 / 2)$	3.09×10^{-2}
$(5,0,0)$	$(1 / 3)^{5}$	4.12×10^{-3}

(c) Note that Z is the number of three page faxes. In principle, we can sum the joint PMF $P_{X, Y, Z}(x, y, z)$ over all x, y to find $P_{Z}(z)$. However, it is better to realize that each fax has 3 pages with probability $1 / 6$, independent of any other fax. Thus, Z has the binomial PMF

$$
P_{Z}(z)= \begin{cases}\binom{5}{z}(1 / 6)^{z}(5 / 6)^{5-z} & z=0,1, \ldots, 5 \\ 0 & \text { otherwise }\end{cases}
$$

(d) From the properties of the binomial distribution given in Appendix A, we know that $E[Z]=$ 5(1/6).
(e) We want to find the conditional PMF of the number X of 1-page faxes and number Y of 2-page faxes given $Z=2$ 3-page faxes. Note that given $Z=2, X+Y=3$. Hence for non-negative integers x, y satisfying $x+y=3$,

$$
P_{X, Y \mid Z}(x, y \mid 2)=\frac{P_{X, Y, Z}(x, y, 2)}{P_{Z}(2)}=\frac{\frac{5!}{x!y!2!}(1 / 3)^{x}(1 / 2)^{y}(1 / 6)^{2}}{\binom{5}{2}(1 / 6)^{2}(5 / 6)^{3}}
$$

With some algebra, the complete expression of the conditional PMF is

$$
P_{X, Y \mid Z}(x, y \mid 2)= \begin{cases}\frac{3!}{x!y!}(2 / 5)^{x}(3 / 5)^{y} & x+y=3, x \geq 0, y \geq 0 ; x, y \text { integer } \\ 0 & \text { otherwise }\end{cases}
$$

To interpret the above expression, we observe that if $Z=2$, then $Y=3-X$ and

$$
P_{X \mid Z}(x \mid 2)=P_{X, Y \mid Z}(x, 3-x \mid 2)= \begin{cases}\binom{3}{x}(2 / 5)^{x}(3 / 5)^{3-x} & x=0,1,2,3 \\ 0 & \text { otherwise }\end{cases}
$$

That is, given $Z=2$, there are 3 faxes left, each of which independently could be a 1-page fax. The conditonal PMF of the number of 1-page faxes is binomial where $2 / 5$ is the conditional probability that a fax has 1 page given that it either has 1 page or 2 pages. Moreover given $X=x$ and $Z=2$ we must have $Y=3-x$.
(f) Given $Z=2$, the conditional PMF of X is binomial for 3 trials and success probability $2 / 5$. The conditional expectation of X givn $Z=2$ is $E[X \mid Z=2]=3(2 / 5)=6 / 5$.
(g) There are several ways to solve this problem. The most straightforward approach is to realize that for integers $0 \leq x \leq 5$ and $0 \leq y \leq 5$, the event $\{X=x, Y=y\}$ occurs iff $\{X=x, Y=y, Z=5-(x+y)\}$. For the rest of this problem, we assume x and y are non-negative integers so that

$$
\begin{aligned}
P_{X, Y}(x, y) & =P_{X, Y, Z}(x, y, 5-(x+y)) \\
& = \begin{cases}\frac{5!}{x!y!(5-x-y)!}\left(\frac{1}{3}\right)^{x}\left(\frac{1}{2}\right)^{y}\left(\frac{1}{6}\right)^{5-x-y} & 0 \leq x+y \leq 5, x \geq 0, y \geq 0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Tha above expression may seem unwieldy and it isn't even clear that it will sum to 1 . To simplify the expression, we observe that

$$
P_{X, Y}(x, y)=P_{X, Y, Z}(x, y, 5-x-y)=P_{X, Y \mid Z}(x, y \mid 5-x+y) P_{Z}(5-x-y)
$$

Using $P_{Z}(z)$ found in part (c), we can calculate $P_{X, Y \mid Z}(x, y \mid 5-x-y)$ for $0 \leq x+y \leq 5$. integer valued.

$$
\begin{aligned}
P_{X, Y \mid Z}(x, y \mid 5-x+y) & =\frac{P_{X, Y, Z}(x, y, 5-x-y)}{P_{Z}(5-x-y)} \\
& =\binom{x+y}{x}\left(\frac{1 / 3}{1 / 2+1 / 3}\right)^{x}\left(\frac{1 / 2}{1 / 2+1 / 3}\right)^{y} \\
& =\binom{x+y}{x}\left(\frac{2}{5}\right)^{x}\left(\frac{3}{5}\right)^{(x+y)-x}
\end{aligned}
$$

In the above expression, it is wise to think of $x+y$ as some fixed value. In that case, we see that given $x+y$ is a fixed value, X and Y have a joint PMF given by a binomial distribution in x. This should not be surprising since it is just a generalization of the case when $Z=2$. That is, given that there were a fixed number of faxes that had either one or two pages, each of those faxes is a one page fax with probability $(1 / 3) /(1 / 2+1 / 3)$ and so the number of one page faxes should have a binomial distribution, Moreover, given the number X of one page faxes, the number Y of two page faxes is completely specified. Finally, by rewriting $P_{X, Y}(x, y)$ given above, the complete expression for the joint PMF of X and Y is

$$
P_{X, Y}(x, y)= \begin{cases}\binom{5}{5-x-y}\left(\frac{1}{6}\right)^{5-x-y}\left(\frac{5}{6}\right)^{x+y}\binom{x+y}{x}\left(\frac{2}{5}\right)^{x}\left(\frac{3}{5}\right)^{y} & x+y \leq 5, x \geq 0, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

