
1 

 
 
 
 
 
 
 
 
 
 
 
 

Wireless Parking Meter—Final Project 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Omer Peleg 
Niraj Patel 

Jay Patel 
Dhairya Patel 
Paul Solecki 

5/8/04 
 Prof. Rose 

ECE 426: Wireless Personal Communication System 



2 

Table of Contents 
 
 

Introduction………………………………………………………3 
 

Hardware Implementation…………………………………….. 4 
 

Wireless Implementation……………………………………….7 
 

Software Implementation…………………………………..…10 
 

Manufacturability & Cost Analysis…………………………..11 
 

Difficulties………………………………………………………12 
 

Conclusion……………………………………………………..13 
 

Appendix A (Circuit Schematics)…………………………….15 
 

Appendix B (Mote Applications)……………………………..20 
 

Appendix C (Laptop Software)……………………………….27 
 

Appendix D (Dummy Help)…………………………………...33 
 

Appendix E (Images)………………………………………….34 
 
 
 
 
 
 
 
 
 
 



3 

Introduction 
 

In this project the main goal was to make the parking violation ticketing 

system more efficient.  Conventionally, a parking attendant has to personally 

check the status of the parking meter and write up a violation ticket.  Even then, 

not all the violators will ticketed because if the parking attendant does not get to 

an expired meter, the violator parked in the parking space will get away without 

paying the fine (free rider problem).  The aim was to speed up the process of 

ticketing and ticket all the possible violators as well as keeping the overall cost of 

the system minimal.  Hence, the idea of a wireless parking meter was born. 

The first step was to come up with a feasible idea by which a wireless 

system could be implemented.  After much brainstorming, it was decided to buy a 

digital parking meter.  For the wireless aspect of the project the best course of 

action was to use MICA2 motes build by Crossbow Industries.  The motes act as 

a transmitter and a receiver.  Programming the mote was done using the TinyOS 

operating system developed by UC-Berkeley.  The first task was to load TinyOS 

onto the PC and learning its commands.  TinyOS is an operating system 

developed for the mote, which uses a Unix interface and uses a programming 

language based on C.  Through a program loaded on to the motes with TinyOS, 

the motes would communicate with the parking meter and have the other mote 

(receiver) communicate with the laptop, which is to be used by the parking meter 

attendant to monitor the status of the meter.   

 To assist the parking attendant in locating the meter, we wrote a program, 

which embedded a map with the meter locations, displayed on the laptop.  This 

was accomplished by the use of a GPS card.  The status of the meter is always 

displayed on the laptop; if the meter is expired, the status of the meter changes 

to a red display.  However, when the meter is not expired or is in use, then the 

display on the laptop is green.   

   

 

 

 



4 

Hardware Implementation 
 
The first step in building the wireless parking meter is to get the Hardware logic 

off the meter.  This is a very integral part, as it will be needed to identify the state 

of the meter.  The meter is said to be “logic high” if there is time left in the meter, 

and said to be at “logic low” if there is no time left.  This task was more difficult 

then expected because of the lack of help from Duncan (manufacturer of parking 

meter).  We were successful in getting the logic off the meter but will first list-

failed methods. 

 

Failed methods of getting Hardware logic off meter: 

• Probing the micro controller of the meter to check status, this method was 

not effective because voltages of all the pins were the same at both meter 

states. 

• Use the integrated RS232 port on the meter.  Unfortunately this method 

was also unsuccessful because of the meter has a proprietary port.  

• Use the Infrared port on the meter.  This method was also successful 

because the meter’s IR port is not IRDA compliant. 

 

Successful methods of getting Hardware logic off the meter: 

 

Finally with the failed attempts in getting the hardware logic off the meter, we 

decided we would exploit a flashing LED that starts only when the meter is 

expired.  This LED presented us with an 800mV pulse with a duty cycle of just 

2%.   

 

 

 

 

 

 

 

 



Using knowledge of TTL, an amplifier limiter circuit was built 

 

 
 

This circuit uses the meter’s 800mV input, which is fed into a common emitter 

amplifier.  This common emitter inverts and amplifies the signal, which is then fed 

into a common collector that inverts the signal again producing a 4V P-P signal.  

After this signal is amplified it is sent through a limiter circuit that keeps the 

transistor on as long as there is a pulse coming in resulting in a VoL at the 

collector.  When the pulses stop (meter is at logic high) Q9 will be off and VoH is 

5V.  Although this method did successfully get logic off the meter, we found there 

could be an easier way that would use less power and be more efficient.  

 

 

 

 

 

 

 

 

 

 

 

5 



 

 

2) 555 Timer missing Pulse detector 

 
 

This circuit would also use the meter’s 800mV signal but it is much simpler and 

more efficient then the amp-limiter circuit.  The 555 timer’s pin 2 and 6 act as a 

comparator in which pin 6 is set to 6V.   If the voltage at pin 2 were less then 6V, 

the output voltage (pin 3) would be at 9V.  If pin 2 voltage is greater then 6V the 

output voltage is 0V.  When there is no pulse (meter has money in it) the voltage 

at pin 2 is 9V and Q1 is off which leaves a VoL at 0V.  Once the pulse starts the 

transistor will switch on every 2ms, draining the 10u capacitor through the 

transistor causing the voltage at pin 2 to go to 0 every 2ms, which in turn will 

change pin 3 to VoH.   

 

 

*Circuit Schematics and output files are located in Appendix A 

 
 
 
 
 
 
6 



 
Wireless Implementation 
Once the data is taken off the meter, it is now important to transmit this data.  

Initially the idea was to use 802.11 to send this data off the meter, but then 

quickly realized that 802.11 would be excessive for the amount of data we are 

sending, and inefficient because of power consumption.  We decided to use 

mica2 motes, a low power, low bandwidth programmable transmitter/receiver 

used for sensor networks.  

  
•  

 
To begin installing applications on the mote, Cygwin, a Unix emulation for 

windows, and TinyOS had to be installed on the PC.  Once these programs were 

installed on PC, a program can be installed on a mote via a command called 

make mica2 install.  An application and mote ID can be installed on the mote via 

this command, for example: 

• Processor Speed: 4MHz (ATmega 128L) 
• Processor has 128kbytes of flash memory to 

store the program 
• ATmega consumes only 8 milliamps when it is 

running, and only 15 micro amps in sleep mode
• Low power consumption allows a MICA mote to 

run for more than a year with two AA batteries 
• Transmits at 433Mhz (Radio Link) 
• Software implementation for the mote is done 

through OS called Tiny OS 
 Mica 2 Mote 

make mica2 install.4, installs an application and sets the mote ID to 4 

make mica2 install.6 installs an application and sets the mote ID to 6 

 

Once though Mote ID, now the focus was on reading meter status. 

Because of time constraints we decided to use a program that came with 

TinyOS, called SenseToRfm.  This program periodically samples the photo 

sensor and sends an ADC light reading in a packet over the radio.  From online 

literature we found that SenseToRfm uses ADC channel 1 which corresponds to 

pin 37 on the 

7 



 
 

8 

 
 
 

mote.  With this information this pin 

and program could be exploited be 

used to our advantage when 

transmitting data.  Once 

SenseToRfm was loaded on to the 

transmitter mote, we installed 

TOSbase to the receiver mote that 

sits on the programming board.  

TOSbase is a program that receives 

radio packets from all motes in 
Mote Pin Configuration 

the following hex data stream comes in through the serial port: 

7E 42 FF FF 04 7D 5D 03 03 01 00 60 63 7E 

7E 42 FF FF 04 7D 5D 03 03 01 00 60 63 7E 

7E 42 FF FF 04 7D 5D 03 03 01 00 60 63 7E 

7E 42 FF FF 04 7D 5D 03 03 01 00 60 63 7E 

Repeating… 

In this message basically only two words need to be interpreted.  The two words 

in bold represent meter ID, and the reading from the ADC channel.  From this 

data stream it can be interpreted that the meter ID is 1 and ADC reading is 3.  

Because the ADC pin reads for a voltage, we connected our 555-timer circuit to a 

relay that will be open (VoL), and leave the ADC pin with an open circuit, or close 

and ground the ADC pin (VoH).  When the ADC pin is grounded the following hex 

data stream comes in through the serial port: 

7E 42 FF FF 04 7D 5D 03 00 01 00 60 63 7E 

7E 42 FF FF 04 7D 5D 03 00 01 00 60 63 7E 

7E 42 FF FF 04 7D 5D 03 00 01 00 60 63 7E 

7E 42 FF FF 04 7D 5D 03 00 01 00 60 63 7E 

Repeating… 

The grounded ADC pin outputs a 0, corresponding to logic 0 on the meter.  When 

meter logic is high, the ADC pin will output a 3.   This relay circuit connects the 

meter to the mote.   



 

 
 
 
 
*Appendix B includes code to applications installed on motes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9 



10 

Software Implementation 
The user end of the Wireless Parking Meter involves a software 

application running on a laptop, tablet PC, or PDA, optionally mounted in the 

parking attendant’s vehicle.   The application is a GPS Navigation system that 

includes parking meters and their status.  Options such as a table of all parking 

meters in the system and parking meter history will also be available.  The 

interface is user friendly and visually simple, so the parking meter can focus on 

driving as well. 

The software application interfaces with two modules.  The first is the base 

receiver connected to the serial communications port.  The base receiver polls 

any incoming signals from nearby parking meters, and sends packets to the 

laptop.  The application reads the serial port and updates the status for that 

meter.  The communication is at 57600 baud, more than enough for the speed 

the system requires. 

The second module interfaced by the application is the GPS.  A PCMCIA 

or Compact Flash GPS card is connected to the computer.  GPS uses serial 

communication as well (Com5 on this system).  The global coordinates are used 

to display the parking meter attendant’s position on the city map, as well as 

surrounding parking meters.  The code for the application is in VB.NET, and is 

available at the end of this report. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11 

Manufacturability & Cost Analysis 
 

Wireless Parking Meter Cost Analysis 

Parts Quantity Cost 

Duncan Eagle 2000 Parking meter 1 $180 

Crossbow Mote Programming Board 1 $300 

Crossbow Mica2 Motes 1 $200 each 

Laptop Computer/ PDA 1 $500 

GPS PCMCIA Card 1 $100 

Total Cost $1280 

Total Cost of one Meter $380 

 

 To implement this system in practice, a manufacturability analysis is in 

order.  As evident from the table above, building this system will be fairly 

expensive on an individual level.  However, buying parts in bulk can lower cost.  

It is also important to state that the potential buyers for this system are most 

likely large municipal governments; hence, the budget is large and the system 

can be marketed.  Switching to this new system might be expensive for some 

cities but the revenue will also increase.  Why?  The city will have to hire less 

parking attendants because each expired meter can be attended to faster.  The 

free rider problem is resolved also because as soon as the meter has expired the 

attendant will know instantaneously and will reach the meter in time to ticket the 

violator. 

 

 

 

 
 
 
 

 



12 

Difficulties  
After we started working on this project, we made many strides but at 

same time we ran into problems.  One major problem was finding out the logic 

from the parking meter.  It was very important for our project because we needed 

to know the state in which the meter expires or is in service.  We had to build 

another relay circuit in order to find out the logic of the meter.  Another problem 

we faced was that we had a difficult time figuring out the mote ID and getting the 

motes talking to each other.  Once a mote was connected to the laptop, the mote 

would send data in which the mote ID, group address, source address etc. were 

listed. The interpretation for that code was important because once both motes 

were talking to each other it was easier to recognize the data, which was being 

sent back and forth.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



13 

Conclusion 
Working on this project was a great learning experience.  The objective 

was to make ticketing more efficient so that violators would not get away without 

paying the fine.   Majority of objective of the project was accomplished although, 

there were still things in the project that were not able to do due to time constraint 

and because the equipment needed for this project arrived late. The system was 

also supposed to locate the meter using the GPS system but GPS 

implementation was not done.  The order of the GPS card came late therefore; 

work on this aspect of the project was not finished.  With the help of the GPS 

card, the coordinates were obtained but interpreting the coordinates to the code 

was difficult.  There is still a lot of work that can be done to make this system 

much efficient and much better. 

We would like to Thank Prof. Rose for giving us an opportunity to work on 

a project of this magnitude. He provided us with all the resources we needed as 

well as the guidance when we had trouble moving forward.  This project gave us 

real life experience because many of us will be working projects of this 

magnitude or much higher once we get into the professional environment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Appendix A 

Amp-Limiter Circuit 

 
 

15 



Amp-Limiter Circuit’s Graphs 
 

 
 
 
 
 

16 



 
Amp-Limiter Circuit’s Graphs 

 

 
 
 

17 



 
555 Timer Circuit 

 

 
 

18 



555 Timer Graphs 

19 



 
Appendix B (Mote Applications) 
 
TOSBase 
  
configuration TOSBase { 
} 
implementation { 
  components Main, TOSBaseM, RadioCRCPacket as Comm, FramerM, UART, LedsC; 
 
  Main.StdControl -> TOSBaseM; 
 
  TOSBaseM.UARTControl -> FramerM; 
  TOSBaseM.UARTSend -> FramerM; 
  TOSBaseM.UARTReceive -> FramerM; 
  TOSBaseM.UARTTokenReceive -> FramerM; 
  TOSBaseM.RadioControl -> Comm; 
  TOSBaseM.RadioSend -> Comm; 
  TOSBaseM.RadioReceive -> Comm; 
 
  TOSBaseM.Leds -> LedsC; 
 
  FramerM.ByteControl -> UART; 
  FramerM.ByteComm -> UART; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 



 
TOSBaseM 
 
module TOSBaseM { 
  provides interface StdControl; 
  uses { 
    interface StdControl as UARTControl; 
    interface BareSendMsg as UARTSend; 
    interface ReceiveMsg as UARTReceive; 
    interface TokenReceiveMsg as UARTTokenReceive; 
 
    interface StdControl as RadioControl; 
    interface BareSendMsg as RadioSend; 
    interface ReceiveMsg as RadioReceive; 
 
    interface Leds; 
  } 
} 
implementation 
{ 
  enum { 
    QUEUE_SIZE = 5 
  }; 
 
  enum { 
    TXFLAG_BUSY = 0x1, 
    TXFLAG_TOKEN = 0x2 
  }; 
 
 
  TOS_Msg gRxBufPool[QUEUE_SIZE];  
  TOS_MsgPtr gRxBufPoolTbl[QUEUE_SIZE]; 
  uint8_t gRxHeadIndex,gRxTailIndex; 
 
  TOS_Msg    gTxBuf; 
  TOS_MsgPtr gpTxMsg; 
  uint8_t    gTxPendingToken; 
  uint8_t    gfTxFlags; 
 
  task void RadioRcvdTask() { 
    TOS_MsgPtr pMsg; 
    result_t   Result; 
 
    dbg (DBG_USR1, "TOSBase forwarding Radio packet to UART\n"); 
    atomic { 
      pMsg = gRxBufPoolTbl[gRxTailIndex]; 

21 



      gRxTailIndex++; gRxTailIndex %= QUEUE_SIZE; 
    } 
    Result = call UARTSend.send(pMsg); 
    if (Result != SUCCESS) { 
      pMsg->length = 0; 
    } 
    else { 
      call Leds.greenToggle(); 
    } 
  } 
 
  task void UARTRcvdTask() { 
    result_t Result; 
 
    dbg (DBG_USR1, "TOSBase forwarding UART packet to Radio\n"); 
    gpTxMsg->group = TOS_AM_GROUP; 
    Result = call RadioSend.send(gpTxMsg); 
 
    if (Result != SUCCESS) { 
      atomic gfTxFlags = 0; 
    } 
    else { 
      call Leds.redToggle(); 
    } 
  } 
 
  task void SendAckTask() { 
     call UARTTokenReceive.ReflectToken(gTxPendingToken); 
     call Leds.yellowToggle(); 
     atomic { 
       gpTxMsg->length = 0; 
       gfTxFlags = 0; 
     } 
  }  
 
  command result_t StdControl.init() { 
    result_t ok1, ok2, ok3; 
    uint8_t i; 
 
    for (i = 0; i < QUEUE_SIZE; i++) { 
      gRxBufPool[i].length = 0; 
      gRxBufPoolTbl[i] = &gRxBufPool[i]; 
    } 
    gRxHeadIndex = 0; 
    gRxTailIndex = 0; 
 

22 



    gTxBuf.length = 0; 
    gpTxMsg = &gTxBuf; 
    gfTxFlags = 0; 
 
    ok1 = call UARTControl.init(); 
    ok2 = call RadioControl.init(); 
    ok3 = call Leds.init(); 
 
    dbg(DBG_BOOT, "TOSBase initialized\n"); 
 
    return rcombine3(ok1, ok2, ok3); 
  } 
 
  command result_t StdControl.start() { 
    result_t ok1, ok2; 
     
    ok1 = call UARTControl.start(); 
    ok2 = call RadioControl.start(); 
 
    return rcombine(ok1, ok2); 
  } 
 
  command result_t StdControl.stop() { 
    result_t ok1, ok2; 
     
    ok1 = call UARTControl.stop(); 
    ok2 = call RadioControl.stop(); 
 
    return rcombine(ok1, ok2); 
  } 
 
  event TOS_MsgPtr RadioReceive.receive(TOS_MsgPtr Msg) { 
    TOS_MsgPtr pBuf; 
 
    dbg(DBG_USR1, "TOSBase received radio packet.\n"); 
 
    if (Msg->crc) { 
 
      /* Filter out messages by group id */ 
      if (Msg->group != TOS_AM_GROUP) 
        return Msg; 
 
      atomic { 
 pBuf = gRxBufPoolTbl[gRxHeadIndex]; 
 if (pBuf->length == 0) { 
   gRxBufPoolTbl[gRxHeadIndex] = Msg; 

23 



   gRxHeadIndex++; gRxHeadIndex %= QUEUE_SIZE; 
 } 
 else { 
   pBuf = NULL; 
 } 
      } 
       
      if (pBuf) { 
 post RadioRcvdTask(); 
      } 
      else { 
 pBuf = Msg; 
      } 
    } 
    else { 
      pBuf = Msg; 
    } 
 
    return pBuf; 
  } 
   
  event TOS_MsgPtr UARTReceive.receive(TOS_MsgPtr Msg) { 
    TOS_MsgPtr  pBuf; 
 
    dbg(DBG_USR1, "TOSBase received UART packet.\n"); 
 
    atomic { 
      if (gfTxFlags & TXFLAG_BUSY) { 
        pBuf = NULL; 
      } 
      else { 
        pBuf = gpTxMsg; 
        gfTxFlags |= (TXFLAG_BUSY); 
        gpTxMsg = Msg; 
      } 
    } 
 
    if (pBuf == NULL) { 
      pBuf = Msg;  
    } 
    else { 
      post UARTRcvdTask(); 
    } 
 
    return pBuf; 
 

24 



  } 
 
  event TOS_MsgPtr UARTTokenReceive.receive(TOS_MsgPtr Msg, uint8_t Token) { 
    TOS_MsgPtr  pBuf; 
     
    dbg(DBG_USR1, "TOSBase received UART token packet.\n"); 
 
    atomic { 
      if (gfTxFlags & TXFLAG_BUSY) { 
        pBuf = NULL; 
      } 
      else { 
        pBuf = gpTxMsg; 
        gfTxFlags |= (TXFLAG_BUSY | TXFLAG_TOKEN); 
        gpTxMsg = Msg; 
        gTxPendingToken = Token; 
      } 
    } 
 
    if (pBuf == NULL) { 
      pBuf = Msg;  
    } 
    else { 
 
      post UARTRcvdTask(); 
    } 
 
    return pBuf; 
  } 
   
  event result_t UARTSend.sendDone(TOS_MsgPtr Msg, result_t success) { 
    Msg->length = 0; 
    return SUCCESS; 
  } 
   
  event result_t RadioSend.sendDone(TOS_MsgPtr Msg, result_t success) { 
 
 
    if ((gfTxFlags & TXFLAG_TOKEN)) { 
      if (success == SUCCESS) { 
         
        post SendAckTask(); 
      } 
    } 
    else { 
      atomic { 

25 



        gpTxMsg->length = 0; 
        gfTxFlags = 0; 
      } 
    } 
    return SUCCESS; 
  } 
}   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

26 



Appendix C (Laptop Software) 
 
Public Class Form1 
    Inherits System.Windows.Forms.Form 
 
#Region " Windows Form Designer generated code " 
 
    Public Sub New() 
        MyBase.New() 
 
        'This call is required by the Windows Form Designer. 
        InitializeComponent() 
 
        'Add any initialization after the InitializeComponent() call 
 
    End Sub 
 
    'Form overrides dispose to clean up the component list. 
    Protected Overloads Overrides Sub Dispose(ByVal disposing As 
Boolean) 
        If disposing Then 
            If Not (components Is Nothing) Then 
                components.Dispose() 
            End If 
        End If 
        MyBase.Dispose(disposing) 
    End Sub 
 
    'Required by the Windows Form Designer 
    Private components As System.ComponentModel.IContainer 
 
    'NOTE: The following procedure is required by the Windows Form 
Designer 
    'It can be modified using the Windows Form Designer.   
    'Do not modify it using the code editor. 
    Friend WithEvents box1 As System.Windows.Forms.Label 
    Friend WithEvents box2 As System.Windows.Forms.Label 
    Friend WithEvents Timer1 As System.Windows.Forms.Timer 
    Friend WithEvents PictureBox2 As System.Windows.Forms.PictureBox 
    Friend WithEvents Label1 As System.Windows.Forms.Label 
    Friend WithEvents Label2 As System.Windows.Forms.Label 
    Friend WithEvents Label3 As System.Windows.Forms.Label 
    Friend WithEvents Label4 As System.Windows.Forms.Label 
    Friend WithEvents Label5 As System.Windows.Forms.Label 
    Friend WithEvents Label6 As System.Windows.Forms.Label 
    Friend WithEvents Label7 As System.Windows.Forms.Label 
    Friend WithEvents Label8 As System.Windows.Forms.Label 
 
    <System.Diagnostics.DebuggerStepThrough()> Private Sub 
InitializeComponent() 
        Me.components = New System.ComponentModel.Container 
        Dim resources As System.Resources.ResourceManager = New 
System.Resources.ResourceManager(GetType(Form1)) 
        Me.box1 = New System.Windows.Forms.Label 
        Me.box2 = New System.Windows.Forms.Label 
        Me.Timer1 = New System.Windows.Forms.Timer(Me.components) 

27 



        Me.PictureBox2 = New System.Windows.Forms.PictureBox 
        Me.Label1 = New System.Windows.Forms.Label 
        Me.Label2 = New System.Windows.Forms.Label 
        Me.Label3 = New System.Windows.Forms.Label 
        Me.Label4 = New System.Windows.Forms.Label 
        Me.Label5 = New System.Windows.Forms.Label 
        Me.Label6 = New System.Windows.Forms.Label 
        Me.Label7 = New System.Windows.Forms.Label 
        Me.Label8 = New System.Windows.Forms.Label 
        Me.SuspendLayout() 
        ' 
        'box1 
        ' 
        Me.box1.BackColor = System.Drawing.Color.Lime 
        Me.box1.Location = New System.Drawing.Point(356, 160) 
        Me.box1.Name = "box1" 
        Me.box1.Size = New System.Drawing.Size(32, 32) 
        Me.box1.TabIndex = 29 
        ' 
        'box2 
        ' 
        Me.box2.BackColor = System.Drawing.Color.Lime 
        Me.box2.Location = New System.Drawing.Point(432, 160) 
        Me.box2.Name = "box2" 
        Me.box2.Size = New System.Drawing.Size(32, 32) 
        Me.box2.TabIndex = 30 
        ' 
        'Timer1 
        ' 
        ' 
        'PictureBox2 
        ' 
        Me.PictureBox2.Image = 
CType(resources.GetObject("PictureBox2.Image"), System.Drawing.Image) 
        Me.PictureBox2.Location = New System.Drawing.Point(16, 4) 
        Me.PictureBox2.Name = "PictureBox2" 
        Me.PictureBox2.Size = New System.Drawing.Size(676, 548) 
        Me.PictureBox2.SizeMode = 
System.Windows.Forms.PictureBoxSizeMode.StretchImage 
        Me.PictureBox2.TabIndex = 32 
        Me.PictureBox2.TabStop = False 
        ' 
        'Label1 
        ' 
        Me.Label1.BackColor = System.Drawing.Color.Lime 
        Me.Label1.Location = New System.Drawing.Point(208, 380) 
        Me.Label1.Name = "Label1" 
        Me.Label1.Size = New System.Drawing.Size(16, 16) 
        Me.Label1.TabIndex = 33 
        ' 
        'Label2 
        ' 
        Me.Label2.BackColor = System.Drawing.Color.Lime 
        Me.Label2.Location = New System.Drawing.Point(124, 220) 
        Me.Label2.Name = "Label2" 
        Me.Label2.Size = New System.Drawing.Size(16, 16) 
        Me.Label2.TabIndex = 34 

28 



        ' 
        'Label3 
        ' 
        Me.Label3.BackColor = System.Drawing.Color.Lime 
        Me.Label3.Location = New System.Drawing.Point(208, 408) 
        Me.Label3.Name = "Label3" 
        Me.Label3.Size = New System.Drawing.Size(16, 16) 
        Me.Label3.TabIndex = 35 
        ' 
        'Label4 
        ' 
        Me.Label4.BackColor = System.Drawing.Color.Lime 
        Me.Label4.Location = New System.Drawing.Point(364, 372) 
        Me.Label4.Name = "Label4" 
        Me.Label4.Size = New System.Drawing.Size(16, 16) 
        Me.Label4.TabIndex = 36 
        ' 
        'Label5 
        ' 
        Me.Label5.BackColor = System.Drawing.Color.Lime 
        Me.Label5.Location = New System.Drawing.Point(148, 220) 
        Me.Label5.Name = "Label5" 
        Me.Label5.Size = New System.Drawing.Size(16, 16) 
        Me.Label5.TabIndex = 37 
        ' 
        'Label6 
        ' 
        Me.Label6.BackColor = System.Drawing.Color.Lime 
        Me.Label6.Location = New System.Drawing.Point(364, 396) 
        Me.Label6.Name = "Label6" 
        Me.Label6.Size = New System.Drawing.Size(16, 16) 
        Me.Label6.TabIndex = 38 
        ' 
        'Label7 
        ' 
        Me.Label7.BackColor = System.Drawing.Color.Lime 
        Me.Label7.Location = New System.Drawing.Point(208, 360) 
        Me.Label7.Name = "Label7" 
        Me.Label7.Size = New System.Drawing.Size(16, 16) 
        Me.Label7.TabIndex = 39 
        ' 
        'Label8 
        ' 
        Me.Label8.BackColor = System.Drawing.Color.Lime 
        Me.Label8.Location = New System.Drawing.Point(172, 220) 
        Me.Label8.Name = "Label8" 
        Me.Label8.Size = New System.Drawing.Size(16, 16) 
        Me.Label8.TabIndex = 40 
        ' 
        'Form1 
        ' 
        Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13) 
        Me.ClientSize = New System.Drawing.Size(708, 569) 
        Me.Controls.Add(Me.Label8) 
        Me.Controls.Add(Me.Label7) 
        Me.Controls.Add(Me.Label6) 
        Me.Controls.Add(Me.Label5) 

29 



        Me.Controls.Add(Me.Label4) 
        Me.Controls.Add(Me.Label3) 
        Me.Controls.Add(Me.Label2) 
        Me.Controls.Add(Me.Label1) 
        Me.Controls.Add(Me.box1) 
        Me.Controls.Add(Me.box2) 
        Me.Controls.Add(Me.PictureBox2) 
        Me.Name = "Form1" 
        Me.Text = "h" 
        Me.ResumeLayout(False) 
 
    End Sub 
 
#End Region 
 
    Dim WithEvents objPort As SerialNET.Port 
    Dim str As String 
    Dim message As Byte() 
    Dim i As Integer = 0 
 
    Structure Meter 
        Dim status As String 
        Dim node As Integer 
        Dim x As Integer 
        Dim y As Integer 
        Dim Timeout As Integer 
    End Structure 
    Dim Meters() As Meter 
 
 
    Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles MyBase.Load 
        ' You can get a valid developer key at 
        ' franson.biz/serialtools/ 
        ' That key will be valid for 14 days. Just cut and paste that 
key into the statement below. 
        ' To get a key that do not expire you need to purchase a 
license 
        Dim license As New SerialNET.License 
        license.LicenseKey = "o8h1h84qtTkkTIKiv2Cnnxjdn6yefj6YoCi6" 
 
        objPort = New SerialNET.Port 
        Timer1.Interval = 500 
        Timer1.Enabled = True 
 
        ReDim Meters(4) 
 
        For i = 0 To Meters.GetUpperBound(0) 
            Meters(i).node = i 
 
        Next 
 
        box1.BackColor = System.Drawing.Color.Green 
        box1.Text = "" 
 
        Try 
            objPort.ComPort = 1 

30 



            objPort.BaudRate = 57600 
 
            ' objPort.Timeout = 5000 
            objPort.StartTrigger = "~" 
            objPort.EndTrigger = "~" 
            objPort.Enabled = True 
            'objPort.StopBits = 126 
 
        Catch ex As Exception 
            MessageBox.Show(ex.Message) 
        End Try 
    End Sub 
 
    Private Sub Form1_Closing(ByVal sender As Object, ByVal e As 
System.ComponentModel.CancelEventArgs) Handles MyBase.Closing 
        ' You must dispose the object before the form unloads 
        ' else Port might throw events to the unloaded form with a 
crash as result. 
        objPort.Dispose() 
    End Sub 
 
    Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles Timer1.Tick 
 
        Dim Node As Integer 
        Dim status As Integer 
 
        str = objPort.Read(0, 5000) 
        message = SerialNET.Port.StringToByteArray(str) 
        Node = message(9) 
        status = message(8) 
 
 
        If (Node = 1) Then 
            If (status = 0) Then 
                box1.BackColor = System.Drawing.Color.Red 
            Else 
                box1.BackColor = System.Drawing.Color.Green 
            End If 
        End If 
 
        If (Node = 4) Then 
            If (status = 0) Then 
                box2.BackColor = System.Drawing.Color.Red 
            Else 
                box2.BackColor = System.Drawing.Color.Green 
            End If 
        End If 
 
        'Meters(1).status = message(8) 
        'Meters(1).node = message(9) 
 
        'If Meters(i).Timeout = 5 Then 
        '    box1.BackColor = System.Drawing.Color.Yellow 
        '    Meters(i).status = "No Communication" 
 
        'End If 

31 



 
        'If str Is Nothing Then 
        '    Meters(i).Timeout = Meters(i).Timeout + 1 
        'End If 
 
 
        '    Else 
        'message = SerialNET.Port.StringToByteArray(str) 
        'Meters(1).status = message(8) 
        'Meters(1).node = message(9) 
 
        'If Meters(1).node = 1 Then 
        '    Text1.Text = Meters(1).status 
 
        '    If (Meters(1).status = 0) Then 
        '        box1.BackColor = System.Drawing.Color.Red 
        '    Else : box1.BackColor = System.Drawing.Color.Green 
        '    End If 
 
 
        'End If 
        '    End If 
 
        'For i = 0 To Meters.GetUpperBound(0) 
        '    If Meters(i).node <> node Then 
        '        If Meters(i).Timeout = 10 Then 
 
        '        End If 
        '    End If 
        'Next 
    End Sub 
 
 
    Private Sub PictureBox2_Click(ByVal sender As System.Object, ByVal 
e As System.EventArgs) Handles PictureBox2.Click 
 
    End Sub 
End Class 
 
 
 
 
 
 
 
 
 
 
 
 

32 



Appendix D (Dummy Help) 
 
Step 1. 
After all the products have been obtained, the first objective should be to build 
the relay circuit in order to read the logic from the parking meter (Refer to 
Appendix A for relay circuit).   
 
Step 2.   
Connect a mote to the parking meter. 
 
Step 3 
Once the mote at the parking meter is transmitting the meter id and status, 
connect the base mote to the laptop via serial connection. 
 
Step 4 
After the base mote communicates with the laptop properly now the mote-to-
mote communication should be implemented. 
 
Step 5 
 Write a program to implement the meter location on the laptop.   
 
Step  6 
Put the money into the meter and see if the status of the meter on the laptop 
changes. If yes, then project is successful. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

33 



 
Appendix E (Images) 
 
 

Project Flow Chart 

 
 
 
 

 
      
 

 
No Money in Meter                              LED Pulses                       
 

 
 

 

Mica2 Mote 

 
 

 
 

 
Base Mote 

 
 

 
 
 
 

34 
 
LED pulses cause a 
VoH, turning the relay 
on which grounds 
ADC1 Pin on the mote. 

 

    555 Timer Circuit 

When ADC pin is 
grounded the mote 
begins transmitting 
msg corresponding 
to expired meter.  

 


	Wireless Parking Meter—Final Project
	Table of Contents
	Introduction………………………………………………………3
	Conclusion……………………………………………………..13


	Wireless Implementation
	Software Implementation
	Manufacturability & Cost Analysis
	Appendix A
	Amp-Limiter Circuit
	Appendix B (Mote Applications)

	Project Flow Chart


