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Abstract— We consider a model where the interfering links
employ on-off modulation in each transmission slot. In the on
(active) state, a link obtains a data rate determined by the
interference from other active links in the network. Based on
this model, we compare the throughput regions of centralized
scheduling and a probabilistic random access scheme, wherein
in each slot, a link is active with a fixed probability chosen
independent of other interfering links. We observe that for the
case of two interfering links, the probabilistic scheme does not
suffer any loss in the rate region relative to the centralized scheme
if the interference between the links is sufficiently low. For more
than two interfering links, the characterization of throughput
rate region for the probabilistic scheme becomes intractable and
similar observations are not easily forthcoming. However, we give
a distributed algorithm where each link independently updates
its transmission probability based on its measured throughput to
achieve any desired feasible rate vector in the throughput region
of the probabilistic scheme and prove its convergence.

I. I NTRODUCTION

Multiple access schemes has been a hot topic of research
for more than four decades. Recently, advances in radio
technology and spectrum policies have driven research to build
interference aware systems like “cognitive radios” [1]. Inour
earlier work [2], we studied the role of “spectrum servers” as
a centralized scheduler in devising fair and efficient schedule
for interfering links that are capable of varying their rates
of transmission. In [3], we studied the role of the spectrum
server to schedule end-to-end flows in a network of interfering
links. The above mentioned schemes involved centralized
scheduling that requires the scheduler to know complete global
information about the links. The information could be all
interference gains between each pair of links in the network.
More often, the availability of such global information requires
a lot of overhead processing by the central entity. Hence,
perfect centralized scheduling schemes act as a benchmark
for imperfect scheduling schemes [4] and decentralized or
distributed multiple access schemes.

Distributed random access schemes, e.g., ALOHA have
been widely used in practical multiple access systems. The
CSMA/CA schemes used in the IEEE 802.11 networks are
very popular, thanks to the ease of implementation and decen-
tralized control of these random access techniques. Of late,
a lot of research effort has been directed towards analyzing
the performance of these random access schemes. Stability
properties of random access schemes have been studied in [5],
[6]. In [7], [8], the authors propose distributed approaches

for fair random access. The throughput characteristics of
random access schemes have been studied in in [9], [10].
A recent work [11] characterizes the Pareto boundary of the
network throughput region as the family of solutions optimiz-
ing a weighted proportional fairness objective, parametrized
by weights chosen by the links. The authors also propose a
distributed random access scheme to achieve a desired point
within the Pareto optimal boundary.

In this work, we consider a model in which links turn on
and off in each slot. The rate obtained in a link depends
on the interference from other active links. We characterize
and compare the achievable throughput region of a centralized
scheduling scheme with a probabilistic random access scheme.
In the centralized scheduling scheme, the scheduler provides
the fraction of time a set of links are on, in order to maximize
an objective function. In the probabilistic random access
scheme, each link turns on or off with a fixed probability cho-
sen independent of other links in each slot. Section III defines
the throughput region of both schemes. A natural question to
ask is whether the set of rates that can be achieved in both
cases are the same. In section IV we attempt to characterize
the throughput region of both schemes and identify conditions
under which the throughput regions are the same. We derive
analytic expressions for the rate region of a network with
two links and provide an intuitive geometric explanation. In
section V we then propose a distributed algorithm in which
each link updates its probability of transmission based on its
current rate. This memoryless policy allows to achieve any
feasible point in the rate region. We prove convergence results
for the distributed algorithm.

We use boldface lowercase characters for vectors and bold-
face uppercase for matrices. Ifa is a vector,aT denotes its
transpose andaT b =

∑

i aibi represents the inner product
of the vectorsa and b. The vector of all zeros and all ones
are represented by0 and1 respectively. Inequalities between
vectors are component-wise inequalities.

II. SYSTEM MODEL

Consider a wireless network withN nodes formingL
logical links sharing a common spectrum. The network can
be represented as a directed graphG(V, E), where the nodes
in the network are represented by the set of verticesV of
the graph and the links are represented by a set of directed
edgesE . Therefore the cardinalities|V| = N and |E| = L. A
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Fig. 1. Graph of network showing the nodes and directed links
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Fig. 2. Graph of network showing transmission mode corresponding to
(1 0 1 0)

directed edge from a nodem to noden implies thatm wishes
to communicate data to noden.

Define the set oftransmission modes T = {0, 1, . . . ,M −
1}, whereM = 2L denotes the number of possible transmis-
sion modes. Then themode activity vector tj of mode j is
a binary vector, indicating the on-off activity of the links. If
tj = (t1j , t2j , . . . , tLj) is a mode activity vector, then

tlj =

{

1, link l is active under transmission modej,
0, otherwise.

(1)
Figure 1 shows a representative network and Figure 2 shows

particular transmission mode for the set of links. Note that
there areM possible transmission modes including the mode
in which all links are off. LetT = [tlj ] be the transmission
mode matrix. Similarly, we can construct theL×M rate matrix
CL = [clj ], whereclj is the rate obtained by linkl in modej.
By construction,tlj = 0 ⇒ clj = 0. We impose an additional
constraint on the entries ofCL: any additional interference
reduces the rate of an active link. In other words, ifLj is the
set of active links in modej andLj′ ⊂ Lj is the set of active
links in modej′ 6= j, thenclj < clj′ for every l ∈ Lj′ ∩ Lj .

Many systems with interfering links can be modeled using
the CL described above, e.g., [2], [12]. The following two

examples show the rate matrices for a network with two and
three links respectively. For simplicity, in Sections III and IV,
we will assume that each link gets a normalized rate of 1 unit,
when it transmits in isolation. However, this assumption isnot
necessary in Section V.

Example 1: C2 =

[

0 1 0 α
0 0 1 β

]

,

Example 2: C3 =





0 1 0 a 0 c 0 g
0 0 1 b 0 0 e h
0 0 0 0 1 d f i



 .

The conditions forC2 are

α, β < 1, (2)

and the conditions forC3

a, b, c, d, e, f < 1, (3)

g < a, c, (4)

h < b, e, (5)

i < d, f. (6)

III. R ATE REGIONS

We define therate region as the set of rate vectors that can
be achieved by a multiple access scheme. In this paper, we
compare the rate regions of a centralized scheduling scheme
with a probabilistic random access scheme.

A. Centralized scheduling

In this scheme, a schedule is the specified by fractions of
time each transmission mode is active. A centralized scheduler
can be used to compute the the optimum time fractions of
activity, to maximize a certain utility function [2]. Letxj be
the fraction of time that transmission modej is active andrl

be the average data rate of linkl. The average data rate in link
l is the time average of the data rates of all the transmission
modes that include linkl. Thus,

rl =
∑

j

cljxj , (7)

or in vector form,
r = CLx. (8)

Thus the rate region for the centralized scheduling scheme is
given by

RS
L := {(r1, . . . , rL) : r = CLx,x ≥ 0,xT 1 = 1}. (9)

Clearly, the regionRS
L is a polytope defined by its2L vertices

which are given by the column vectors ofCL.

B. Random Access Scheme

In this scheme, linkl transmits with a probabilitypl chosen
independent of the other links in the network. The rate region
for the random access scheme is given by

RP
L := {(r1, . . . , rL) : r = CLx,x = f(p), 0 ≤ p ≤ 1}

(10)



wheref : RL → R2L

is given by

f(p) =















(1 − p1)(1 − p2) . . . (1 − pL)
p1(1 − p2) . . . (1 − pL)

...
(1 − p1)p2 . . . pL

p1 . . . pL















. (11)

It is easy to see thatRP
L ⊆ RS

L. Also, sincef(.) is a continuous
mapping, the set{x : x = f(p), 0 ≤ p ≤ 1} must be a closed
and continuous region and thereforeRP

L must also be closed
and continuous. Our aim will be to characterize the Pareto
boundary ofRP

L and find out the conditions, if any, under
whichRP

L ≡ RS
L. We first consider the following simple cases

for getting some insight into the shape of the rate regions.

IV. CHARACTERIZATION OF RP
L

A. L = 2

Using (10) and definition ofC2 from Example 1, the rates
on two links are

r1 = p1(1 − p2) + αp1p2, (12)

r2 = (1 − p1)p2 + βp1p2. (13)

The above equations can be rewritten as

r1 = p2(p1α + (1 − p1).0) + (1 − p2)(p1.1 + (1 − p1).0),
(14)

r2 = p2(p1β + (1 − p1).1) + (1 − p2)(p1.0 + (1 − p1).0).
(15)

In vector form,
[

r1

r2

]

= p2

(

p1

[

α
β

]

+ (1 − p1)

[

0
1

])

+ (1 − p2)

(

p1

[

1
0

]

+ (1 − p1)

[

0
0

])

(16)

The above representation of the rate vector, as a nested convex
combination of the polytope vertices, is useful in visualizing
the rate regionRP

2 . We now consider two different cases.
1) α+β ≥ 1: Figure 3 showsRS

2 . Any point in the quadri-
lateralOABC can be achieved using centralized scheduling.
Notice that the vertices of the polytopeOABC are the
columns ofC2. For a given probability vectorp = [p1 p2]

T ,
the rate vectorr given by (16) is shown as pointF in Figure 3.
As p1 varies between0 and 1, points D and E completely
trace the line segmentsAB andOC respectively. Asp2 varies
between0 and1, the pointF traverses the line segmentED
completely. Hence, it can be seen that by varyingp, the
achieved rate regionRP

L is the same asRS
L.

Analytically, we can write (derivation given in the Ap-
pendix VI-A)

RP
L =











(r1, r2) :

0 ≤ r1 ≤ α ⇒ 0 ≤ r2 ≤ α−(1−β)r1

α
,

α ≤ r1 ≤ 1 ⇒ 0 ≤ r2 ≤ β(1−r1)
1−α

.











. (17)
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(0,0) (1,0) 1
r
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D = (1-p1).A + p1.B 

E = (1-p1).O + p1.C 

F = (1-p2).E + p2.D 

F
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Fig. 3. RS

L
andRP

L
for the caseα + β ≥ 1. RP

L
≡ RS

L
and is given by

the area enclosed byOABC. B represents(α, β).

2) α + β < 1: In this case,RS
L is given by the triangle

formed by pointsO, A andC in Figure 4. As in the previous
case, pointF in Figure 4 corresponds to the rate vectorr

achieved for a givenp = [p1 p2]
T . If p1 = 1, the line segment

DE coincides withBC. As p1 varies from1 to 0, DE moves
from BC to an intermediate positionHG to finally AO (for
p1 = 0) tracing out the regionRP

L as the area enclosed by
OAHIC. Note that the boundaryAHIC of the region is
convex (verified from the analytical expression forRP

L in the
appendix) and contains two linear componentsAH and IC.
The presence of linear componentAH can be geometrically
understood by observing that asDE moves fromHG to AO,
endpointD always lies on the linear segmentAH. In order
to intuitively understand the presence ofIC, it helps to notice
that asp1 varies from1 to 0, J , the point of intersection of
DE andBC initially moves fromB towardsC, goes up to a
certain pointI, and then moves back towardsB.

Note that we could also have expressed the rate equations
as

[

r1

r2

]

= p1

(

p2

[

α
β

]

+ (1 − p2)

[

1
0

])

+ (1 − p1)

(

p2

[

0
1

]

+ (1 − p2)

[

0
0

])

(18)

The above equations give an alternate equivalent way of
looking at the region, where now instead of linesAB and
OC, we consider linesBC andAO.

The analytical characterization of the above region is given
below (derivation given in the Appendix VI-A)
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Fig. 4. RS

L
andRP

L
for the case:α + β < 1. RS

L
is given by the area

enclosed byOAC and RP

L
is given by the area enclosed byOAHIC.

B = (α, β).

RP
L =























(r1, r2) :

0 ≤ r1 ≤ α2

1−β
⇒ 0 ≤ r2 ≤ α−(1−β)r1

α
,

α2

1−β
< r1 < 1 − β ⇒ 0 ≤ r2 ≤ (

√
(1−β)r1−1)2

1−α
,

1 − β ≤ r1 ≤ 1 ⇒ 0 ≤ r2 ≤ β(1−r1)
1−α

.























.

(19)

B. L = 3

The analytical characterization of the rate region is cumber-
some for the three dimensional case because of the number of
sub-cases that need to be considered. However, the geometric
intuition that we developed for the two link case can easily
be extended to this case. Using the definition ofC3, we can
write the rate vectorr(p) in the following form:





r1

r2

r3



 = p3







p2



p1





g
h
i



 + (1 − p1)





0
e
f









+ (1 − p2)



p1





c
0
d



 + (1 − p1)





0
0
1















+ (1 − p3)







p2



p1





a
b
0



 + (1 − p1)





0
1
0









+ (1 − p2)



p1





1
0
0



 + (1 − p1)





0
0
0















(20)

Figure 5 illustrates the nested convex combination structure
given above, where pointN corresponds to the rate vector
r(p). Working with our geometric intuition, we make the
following claim (without proof):

A (010)

C (100)

E (ab0)

J

D (0ef) H

B (001) I F (c0d)

O

K

L

M
G(ghi)

N

Fig. 5. Visualizing the rate region for theL = 3 case

Claim 1: RP
L ≡ RS

L ⇔ following conditions are satisfied:

• a + b ≥ 1, c + d ≥ 1, e + f ≥ 1.
• Points{(0, 0, 1), (c, 0, d), (g, h, i), (0, e, f)} are coplanar.
• Points{(1, 0, 0), (a, b, 0), (g, h, i), (c, 0, d)} are coplanar.
• Points{(0, 1, 0), (0, e, f), (g, h, i), (a, b, 0)} are coplanar.

V. D ISTRIBUTED ALGORITHM

In this section, we present a distributed random access
algorithm to achieve a feasible point in the rate regionRP

L

for a network withL links. Each link updates its probability
of transmission based on the rate it achieves in the previous
slot. We start by identifying a property of the functionri(p)
(Lemma 1) that is the key for proving the convergence of our
distributed algorithm.

The rateri(p) achieved by linki in the random access
scheme can be written as

ri(p) =

M
∑

j=1

cij

L
∏

l=1

[tljpl + (1 − tlj)(1 − pl)] (21)

= pi

∑

j:tij=1

cij

∏

l 6=i

[tljpl + (1 − tlj)(1 − pl)] (22)

(23)

Let us define

gi(p−i) =
∑

j:tij=1

cij

∏

l 6=i

[tljpl + (1 − tlj)(1 − pl)] (24)

where
p−i = [p1, . . . , pi−1, pi+1, . . . , pL]T (25)

Thenri(p) can be written as

ri(p) = pigi(p−i) (26)



Lemma 1: gi(.) is a positive and strictly decreasing function
of pj for all j 6= i. Therefore,ri(.) is a strictly increasing
function of pi and a strictly decreasing function ofpj for all
j 6= i.

Proof: See Appendix VI-B.
Now for each linki, consider the following iterative update
of pi(n) based on the current rateri(n) and the desired rate
rd
i . In practice the current rateri(n) is measured by averaging

the rates obtained over many slots.

pi(n + 1) =
rd
i

ri(n)
pi(n) (27)

Theorem 1: Given a feasible rate vectorrd ∈ RP
L , if all

the links perform the above iteration independently starting
with p(0) = 0, then their iterations converge to a fixed point
(p∗, r∗) such thatr∗ = rd andp(n) ≤ 1 for all n.

Proof: Using (26), we can rewrite (27) as

pi(n + 1) =
rd
i

gi(p−i(n))
(28)

Substitutingp(0) = 0 in the iteration, we getp(1) = rd and
thereforep(1) ≥ p(0). Using lemma 1 with the above fact,
it follows that p(2) ≥ p(1) and in generalp(n + 1) ≥ p(n)
for all n. Therefore, ifp(n) is bounded from above by1,
as n increases, it must converge to a fixed pointp∗ and the
correspondingr∗ is then equal tord.

Now we prove that ifrd is feasible, thenp(n) remains
bounded below1. Feasibility of rd means that there exists
0 ≤ pd ≤ 1 such that

pd
i =

rd
i

gi(pd
−i(n))

(29)

By definition, pd ≥ p(0). Using (28) and (29), we can see
thatpd ≥ p(1) and in generalpd ≥ p(n) for all n. Therefore
p(n) must also remain bounded below1.

In case the users choose an infeasiblerd, the above iteration
will lead to a situation where somepi(n)’s exceed1. To fix
this, we can modify the iteration to the one given below.

pi(n + 1) = min

{

rd
i

ri(n)
pi(n), 1

}

(30)

The above iteration converges to the desired rate vectorrd

if rd is feasible. In case the users start with an infeasible
rd, we make some simple observations that are stated below
as Lemma 2. Letr1 denote the rate vector corresponding to
p = 1 and (p∗, r∗) denote the probability and rate vectors
obtained when the above iteration converges for alli.

Lemma 2: Assumerd is infeasible. Then for any linki, the
following conditions hold true: (a)rd

i > r1
i ⇒ r∗i ≥ r1

i , (b)
rd
i ≤ r1

i ⇒ r∗i = rd
i . (c) If L = 2, thenrd > r1 ⇒ r∗ = r1.

Proof: (a) Clearly, p∗ ≤ 1. If p∗i = 1, then r∗i =
1.gi(p

∗
−i) ≥ 1.gi(1) = r1

i (using Lemma 1). Ifp∗i <
1, then using the convergence condition we get,p∗i =
min{p∗i rd

i /r∗i , 1} = p∗i r
d
i /r∗i which givesr∗i = rd

i > r1
i .

(b) We prove this by showing that for alln,
min{pi(n)rd

i /ri(n), 1} = pi(n)rd
i /ri(n) which implies

(using proof of Theorem 1) thatr∗i = rd
i . To see that

pi(n)rd
i /ri(n) ≤ 1 for all n, consider the following chain of

inequalities using Lemma 1:

rd
i

ri(n)
pi(n) =

rd
i

gi(p−i(n))
≤ rd

i

gi(1)
≤ r1

i

gi(1)
= 1 (31)

(c) We want to show that ifrd is infeasible andrd > r1,
then p∗1 = p∗2 = 1. We prove this by contradiction. It is not
possible that bothp∗1 < 1 andp∗2 < 1 because this would then
imply that rd was feasible. Without loss of generality assume
that p∗1 < 1 andp∗2 = 1. Then we can writerd

1 = r1(p
∗
1, 1) ≤

r1(1, 1) = r1
1 < rd

1 (using Lemma 1) which is a contradiction.

VI. CONCLUSIONS

In this paper, we compared the achievable throughput region
of a probabilistic transmission scheme with that of central-
ized scheduling. We also presented a distributed algorithmto
achieve any feasible rate vector in the throughput region ofthe
probabilistic transmission scheme and proved its convergence.

APPENDIX

A. Derivation of the pareto-boundary of the rate region for
L = 2 case

Let γ1 = 1 − α and γ2 = 1 − β. Then we can write (12)
and (13) as,

r1 = p1(1 − γ1p2), (32)

r2 = p2(1 − γ2p1). (33)

The Pareto boundary of the rate region is obtained by maxi-
mizing r2 (or r1) for each value ofr1 (or r2). The constraints
are0 ≤ p1, p2 ≤ 1. If we substitutep1 = r1/(1−γ1p2) in the
expression forr2, then constraints0 ≤ p1 ≤ 1 imply that

0 ≤ p2 ≤ min

{

1 − r1

γ1
, 1

}

.

Now, for a givenr1 ∈ [0, 1], we can findr2 that lies on
the Pareto boundary by solving the following optimization
problem:

r2 = max
p2

(

p2 −
γ2p2r1

1 − γ1p2

)

subject to 0 ≤ p2 ≤ min

{

1 − r1

γ1
, 1

}

. (34)

Since r2 = 0 at p2 = 0, the maximum occurs either at the
boundary pointp2 = min{(1− r1)/γ1, 1} or at a point where
the derivative of the above function w.r.t.p2 is zero. Setting
the derivativer′2(p2) = 0 givesp2 = (1±√

γ2r1)/γ1. One of
these values is greater than1 and can be discarded. For the
other value ofp2 to be valid, we need

0 ≤ 1 −√
γ2r1

γ1
≤ min

{

1 − r1

γ1
, 1

}

,



which is satisfied only if(1 − γ1)
2/γ2 ≤ r1 ≤ γ2. Rewriting

in terms ofα andβ,

α2

1 − β
≤ r1 ≤ 1 − β. (35)

We now consider the following two cases:
1) α + β ≥ 1: In this case, the maximum value ofr2

always occurs at the boundary pointp2 = min{(1− r1)/(1−
α), 1}. The optimal value ofp2 that maximizesr2 is either
(1 − r1)/(1 − α) or 1 depending on whetherr1 ≥ α or not.
Substituting the maximizing value ofp2 in (34), we obtain the
rate region given by (17).

2) α + β < 1: In this case, we have to consider separately
the following ranges ofr1:

0 ≤ r1 ≤ α2

1 − β
,

α2

1 − β
< r1 < 1 − β,

1 − β ≤ r1 ≤ 1. (36)

The optimal values ofp2 corresponding to the above three

ranges ofr1 are p2 =

[

1,
1−

√
(1−β)r1

1−α
, 1−r1

1−α

]

. Substituting

in (34), we obtain the rate region given by (19).

B. Proof of lemma 1

Positivity of gi(.) is evident from its definition. We must
now show thatgi(.) is a strictly decreasing function ofpk for
all k 6= i. Computing the partial derivative ofgi w.r.t. pk we
get

∂gi

∂pk

=
∑

j:tij=1

cij(2tkj − 1)
∏

l 6=i,l 6=k

[tljpl + (1 − tlj)(1 − pl)]

(37)
In the above expression, the indexj counts all the trans-

mission modes in whichtij = 1. Lets denote this set by
Ti=1. The setTi=1 can be partitioned into two disjoint sets
Ti=1,k=1 and Ti=1,k=0 depending on whether the linkk is
active or not. Then for eachj ∈ Ti=1,k=1, there exists a unique
j′ ∈ Ti=1,k=0 such thattlj = tlj′ for all l 6= k. Now noting
that j ∈ Ti=1,k=1 implies by definition that(2tkj − 1) = 1
and similarlyj′ ∈ Ti=1,k=0 implies that(2tkj′ −1) = −1, we
can write [ 37] as

∂gi

∂pk

=
∑

j∈Ti=1,k=1

(cij − cij′)
∏

l 6=il 6=k

[tljpl + (1 − tlj)(1 − pl)]

(38)
Using the properties ofCL, we know thatcij < cij′ for all

j ∈ Ti=1,k=1. Therefore the above expression is negative and
the result follows.
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