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Abstract—We consider a model where the interfering links for fair random access. The throughput characteristics of
employ on-off modulation in each transmission slot. In the on random access schemes have been studied in in [9], [10].

(active) state, a link obtains a data rate determined by the A recent work [11] characterizes the Pareto boundary of the
interference from other active links in the network. Based on

this model, we compare the throughput regions of centralized petwork t_ththUt regi.on as the family 9f splutions opzimi
scheduling and a probabilistic random access scheme, whereiniNg @ weighted proportional fairness objective, pararpetti
in each slot, a link is active with a fixed probability chosen by weights chosen by the links. The authors also propose a

independent of other interfering links. We observe that for the distributed random access scheme to achieve a desired point
case of two interfering links, the probabilistic scheme does not within the Pareto optimal boundary.

suffer any loss in the rate region relative to the centralized schem In thi K id del i hich links t
if the interference between the links is sufficiently low. For more n 's. WOrK, we consider a mode .|n w .'C 'n S wrn on
than two interfering links, the characterization of throughput ~and off in each slot. The rate obtained in a link depends

rate region for the probabilistic scheme becomes intractable and on the interference from other active links. We characteriz
similar observations are not easily forthcoming. However, we give and compare the achievable throughput region of a cerddhliz
a distributed algorithm where each link independently updates scheduling scheme with a probabilistic random access sehem

its transmission probability based on its measured throughput to . : ;
achieve any desired feasible rate vector in the throughput region In the centralized scheduling scheme, the scheduler mevid

of the probabilistic scheme and prove its convergence. the fraction of time a set of links are on, in order to maximize
an objective function. In the probabilistic random access
. INTRODUCTION scheme, each link turns on or off with a fixed probability cho-

Multiple access schemes has been a hot topic of reseaseim independent of other links in each slot. Section Il ésfin
for more than four decades. Recently, advances in radhe throughput region of both schemes. A natural question to
technology and spectrum policies have driven researchilt buask is whether the set of rates that can be achieved in both
interference aware systems like “cognitive radios” [1].0tr cases are the same. In section IV we attempt to characterize
earlier work [2], we studied the role of “spectrum servers” ahe throughput region of both schemes and identify conalitio
a centralized scheduler in devising fair and efficient saleed under which the throughput regions are the same. We derive
for interfering links that are capable of varying their mateanalytic expressions for the rate region of a network with
of transmission. In [3], we studied the role of the spectrutwo links and provide an intuitive geometric explanation. |
server to schedule end-to-end flows in a network of intarferi section V we then propose a distributed algorithm in which
links. The above mentioned schemes involved centralizedch link updates its probability of transmission basedtsn i
scheduling that requires the scheduler to know completeadjlo current rate. This memoryless policy allows to achieve any
information about the links. The information could be alfeasible point in the rate region. We prove convergencdtsesu
interference gains between each pair of links in the netwofflor the distributed algorithm.

More often, the availability of such global information texes We use boldface lowercase characters for vectors and bold-
a lot of overhead processing by the central entity. Hendagce uppercase for matrices. df is a vector,a” denotes its
perfect centralized scheduling schemes act as a benchmaakspose ané’b = Y. a;b; represents the inner product
for imperfect scheduling schemes [4] and decentralized of the vectorsa andb. The vector of all zeros and all ones
distributed multiple access schemes. are represented by and 1 respectively. Inequalities between

Distributed random access schemes, e.g., ALOHA havectors are component-wise inequalities.
been widely used in practical multiple access systems. The
CSMAJ/CA schemes used in the IEEE 802.11 networks are Il. SysTEM MODEL
very popular, thanks to the ease of implementation and decenConsider a wireless network wittv' nodes forming L
tralized control of these random access techniques. Of laiggical links sharing a common spectrum. The network can
a lot of research effort has been directed towards analyzibg represented as a directed grafy, £), where the nodes
the performance of these random access schemes. Stabifitghe network are represented by the set of vertitesf
properties of random access schemes have been studied intfi§ graph and the links are represented by a set of directed
[6]. In [7], [8], the authors propose distributed approacheedgese. Therefore the cardinalitied’| = N and|€| = L. A



examples show the rate matrices for a network with two and
three links respectively. For simplicity, in Sections IHdlV,

3 we will assume that each link gets a normalized rate of 1 unit,
4 when it transmits in isolation. However, this assumptionas
3 necessary in Section V.
Example 1: C, = 0 10 «a
p - 2 — O O 1 /6 Y
01 0 a 0 ¢ 0 g
2 Example2: C5=| 0 0 1 b 0 0 e h
00001 d f i
),@ The conditions forC, are
@ a, <1, (2)
Fig. 1. Graph of network showing the nodes and directed links ~ and the conditions foC;
a‘7b7 C? d? e?f < 1? (3)
Q @ g < ac 4)
h < be, (5)
i < d,f. (6)
@ 3 I1l. RATE REGIONS
Q We define theate region as the set of rate vectors that can
Q be achieved by a multiple access scheme. In this paper, we
@ compare the rate regions of a centralized scheduling scheme
with a probabilistic random access scheme.

A. Centralized scheduling

In this scheme, a schedule is the specified by fractions of
Fig. 2. Graph of network showing transmission mode correspan  time each transmission mode is active. A centralized sdbedu
(1010) can be used to compute the the optimum time fractions of
activity, to maximize a certain utility function [2]. Let; be
the fraction of time that transmission moglés active andr,
be the average data rate of lihkThe average data rate in link
[ is the time average of the data rates of all the transmission

directed edge from a node to noden implies thatm wishes
to communicate data to node

Define the set ofransmission modes 7 = {0,1,...,M — modes that include link. Thus
1}, where M = 2& denotes the number of possible transmis- ’ '
sion modes. Then thenode activity vector ¢; of mode j is "= chjzj’ 7)
a binary vector, indicating the on-off activity of the linki ;
t; = (t1,t25,...,tr;) is @ mode activity vector, then

or in vector form,
; { 1, link [ is active under transmission moge r=Crx. (8)
=

0, otherwise. ) ) ) )
(1) Thus the rate region for the centralized scheduling scheme i

Figure 1 shows a representative network and Figure 2 shodi¥en by

particular transmission mode for the set of links. Note that __g T
. L. . . = r= > =1t.

there are)M possible transmission modes including the mode Ri=A{(r,orp) ir=Crx,x 2 0,x71 =1} (9)
in which all links are off. LetT = [t;;] be the transmission Clearly, the regiorR? is a polytope defined by it3” vertices
mode matrix. Similarly, we can construct thex M rate matrix which are given by the column vectors 6f;.
Cr. = [a;], wherec,; is the rate obtained by linkin modej.
By constructiont;; = 0 = ¢;; = 0. We impose an additional B. Random Access Scheme
constraint on the entries df;: any additional interference In this scheme, link transmits with a probability; chosen

reduces the rate of an active link. In other wordsZjfis the  j,qenendent of the other links in the network. The rate mregio
set of active links in modg andL;: C £; is the set of active ¢, the random access scheme is given by

links in mode;’ # j, thenc;; < ¢ for everyl € L N L;.
Many systems with interfering links can be modeled using Rf ={(r1,...,7) :r=Crx,x=1f(p), 0<p <1}
the C described above, e.g., [2], [12]. The following two (10)



wheref : RL — R2" is given by r, A

2
(1-p1)A—=p2)...(1—pr) D = (1-pl).A + pl.B
p1(1=p2)...(1—p1) E = (1-p1).0 + p1.C
f(p) = : .oy AOD F = (1-p2).E + p2.D
(1—p1)p2...pL

b1...pL

Itis easy to see tha®T C RY. Also, sincef(.) is a continuous
mapping, the sefx : x = f(p),0 < p < 1} must be a closed
and continuous region and therefdR&’ must also be closed
and continuous. Our aim will be to characterize the Pareto
boundary of RY and find out the conditions, if any, under
whichRY = R7. We first consider the following simple cases
for getting some insight into the shape of the rate regions.

>

IV. CHARACTERIZATION OF RY 0 (0,0) C (1,0 rl'

A L=2

Using (10) and definition ofC, from Example 1, the rates
on two links are

Fig. 3. Rf andRF for the casen + 8 > 1. RY = RY and is given by
the area enclosed b9 ABC'. B representga, 3).

r1 = p1(1 = p2) + apips, (12)

r2 = (1= p1)p2+ Bpipa. (13) 2) a+ f < 1: In this case,R} is given by the triangle
The above equations can be rewritten as formed by points0D, A andC' in Figure 4. As in the previous
case, pointF' in Figure 4 corresponds to the rate vecior
ri=pa(pra+ (1 =p1).0) + (1 =p2)(pr-1 + (1 = p1)-0),  achieved for a givem = [p; po]7. If p1 = 1, the line segment
(14)  DE coincides withBC. As py varies froml to 0, DE moves
ro =pa(p1B+ (1 —p1).1) + (1 —p2)(p1.0+ (1 —p;1).0). from BC to an intermediate positiof/ G to finally AO (for
(15) p; = 0) tracing out the regiorR’ as the area enclosed by
OAHIC. Note that the boundarn HIC' of the region is
convex (verified from the analytical expression ff in the
{ e ] b (p1 { o } i —p) { 0 D appendix) and contains two linear components and IC.
T2 B 1 The presence of linear componeafd can be geometrically
1 0 understood by observing that &5 moves fromH G to AO,
+(1=p2) (p1 [ 0 ] +(1=p) [ 0 D (16) endpointD always lies on the linear segmentH. In order
) to intuitively understand the presenceld?, it helps to notice
The above representation of the rate vector, as a nestedmoqy]at asp, varies from1 to 0, J, the point of intersection of

combination of the polytope vertices, is useful in visualiz and BC initially moves from B towardsC’, goes up to a
the rate regioriRY’. We now consider two different cases. certain point/, and then moves back towards

1) a+3 > 1: Figure 3 showsk5. Any point in the quadri- )
lateral OABC can be achieved using centralized scheduling Note that we could also have expressed the rate equations
Notice that the vertices of the polytop@ ABC are the S
columns ofC,. For a given probability vectop = [p; po]7,
the rate vector given by (16) is shown as poid in Figure 3.

As p; varies betweer) and 1, points D and E completely , o 1
AR

In vector form,

trace the line segment$B andOC respectively. A9, varies 0

between) and 1, the pointF traverses the line segmehtD

completely. Hence, it can be seen that by varyimgthe +(1—p1) (p2 [ 0 ] + (1 —ps) [ 0 ]) (18)

achieved rate regioR?” is the same a®?. 1 0
Analytically, we can write (derivation given in the Ap-

T2

pendix VI-A) _ ) _
The above equations give an alternate equivalent way of
(r1,72) looking at the region, where now instead of lind$3 and
RE={ 0<rm<a = 0<rp<e=08n 1 (17) OC, we consider lines3C and AO.
a<r <l = 0<r< %. The analytical characterization of the above region ismive

below (derivation given in the Appendix VI-A)



2 A
D=(1-pl).A+plB
A (010)
E = (1-p1).0 + pl.C
A(0,1) F=(1-p2).E + p2.D

AH/AB = OG/OC

_'/
D (0ef) \s H
\\
0(0,0) G E C (1,0 I
F (cod
Fig. 4. R7 andRT for the caser + 8 < 1. RY is given by the area /EBOl) I (cOd)
enclosed byOAC and Rf is given by the area enclosed WYyAHIC.
B = (a,8).
Fig. 5. Visualizing the rate region for the = 3 case
( ) Claim 1: RY = R? « following conditions are satisfied:
r1,T2)
0<m < o? = 0<r <a—(l—ﬁ)’r1 oa—ﬁ—bZl,c—i—le,e—l—fEI
RP — ="'l =1-p =12 = o ', » Points{(0,0,1), (¢,0,d), (g, h,3), (0,e, f)} are coplanar.
L < <l-f= 0<ry< WIEARTD » Points{(1,0,0), (a,b,0), (¢, k), (c,0,d)} are coplanar.
1-<mrm<1 = 0<ry < /3(117—;-1) « Points{(0,1,0),(0,e, f), (g, h,1), (a,b,0)} are coplanar.

(19) V. DISTRIBUTED ALGORITHM
B.L=3 In this section, we present a distributed random access
The analytical characterization of the rate region is cumbealgorithm to achieve a feasible point in the rate regidfi
some for the three dimensional case because of the numbefosfa network with L links. Each link updates its probability
sub-cases that need to be considered. However, the geométitransmission based on the rate it achieves in the previous
intuition that we developed for the two link case can easilot. We start by identifying a property of the functief(p)
be extended to this case. Using the definitionGyf, we can (Lemma 1) that is the key for proving the convergence of our
write the rate vector(p) in the following form: distributed algorithm.
The rater;(p) achieved by linki in the random access
scheme can be written as

1 g 0
ro | =psS<pa|pr| b | +(1—p1)]| e Mok
3 i f ri(p) = Z Cij H [tiipr + (1 —t;)(1 = p1)] (21)
~ j=1 1=1
c 0
+(1=p2) P | 0| +(1X=p1)| O =Di cij [[tp+ A —t)(A=p)]  (22)
d 1 Jitij=1 1#1
a 0 (23)
+(L=ps)dp2p | b | +(Q—p1)| 1 Let us define
0 0
M1 0 gip—i) = Y i [[ltup + (1 —t))1—=p)]  (24)
+(@=p)[p | O | +(1—=p1)]| O (20) iy =t I
| 0 0 where
Figure 5 illustrates the nested convex combination stractu P—i = [P1,- s Dimt, Pitts -5 DL (25)

given above, where poinV corresponds to the rate vector Then,;(p) can be written as
r(p). Working with our geometric intuition, we make the
following claim (without proof): ri(P) = pigi(P—i) (26)



Lemma 1: g¢;(.) is a positive and strictly decreasing function (b) We prove this by showing that for alln,

of p; for all j # i. Therefore,r;(.) is a strictly increasing min{p;(n)rd/r;(n),1} = pi(n)rd/ri(n) which implies
function of p; and a strictly decreasing function pf for all  (using proof of Theorem 1) that; = r¢. To see that
j#i. pi(n)rd/ri(n) < 1 for all n, consider the following chain of
Proof: See Appendix VI-B. W inequalities using Lemma 1:
Now for each linki, consider the following iterative update d d d 1
of p;(n) based on the current ratg(n) and the desired rate L pi(n) = s < i< i1 (31
r?. In practice the current rate(n) is measured by averaging ri(n) gi(p—i(n)) ~ ¢:(1) = (1)
the rates obtained over many slots. (c) We want to show that if? is infeasible and? > r!,
4 thenp] = p5 = 1. We prove this by contradiction. It is not
piln+1) = Lpi(n) (27) Possible that botp} < 1 andp; < 1 because this would then
ri(n) imply thatr? was feasible. Without loss of generality assume

thatp < 1 andpj = 1. Then we can write:{ = 7, (p3,1) <
(1,1) = r{ < r¢ (using Lemma 1) which is a contradiction.
[

Theorem 1: Given a feasible rate vectar® € RT, if all
the links perform the above iteration independently sigrti '
with p(0) = 0, then their iterations converge to a fixed point
(p*,r*) such thatr* = r? andp(n) < 1 for all n. VI. CONCLUSIONS

Proof: Using (26), we can rewrite (27) as ) . .
In this paper, we compared the achievable throughput region

of a probabilistic transmission scheme with that of central
ized scheduling. We also presented a distributed algortthm
achieve any feasible rate vector in the throughput regich®f

- —0i tarati _
Substitutingp(0) = 0 in the iteration, we gep(1) = r® and ,papijistic transmission scheme and proved its convexge
thereforep(1) > p(0). Using lemma 1 with the above fact,

it follows that p(2) > p(1) and in generap(n + 1) > p(n) APPENDIX
for all n. Therefore, ifp(n) is bounded from above by,
asn increases, it must converge to a fixed pajrit and the
corresponding* is then equal ta“.

Now we prove that ifr? is feasible, thenp(n) remains
bounded belowl. Feasibility of r means that there exists2nd (13) as,
0 < p? <1 such that

i
pi(n+1) = 7p_a() (28)

A. Derivation of the pareto-boundary of the rate region for
L =2 case

Letyy, =1 —a and~; =1 — 8. Then we can write (12)

rr = pi(l—7ip2), (32)

¢ (29) r2 = p2(l —ep1). (33)

r
= 9:(p%;(n)) o - -
P The Pareto boundary of the rate region is obtained by maxi-

By definition, p¢ > p(0). Using (28) and (29), we can seemizing r (or r;) for each value of, (or ). The constraints
thatp? > p(1) and in generap® > p(n) for all n. Therefore are0 < pi,ps < 1. If we substitutep; = r1/(1—~1p2) in the

p(n) must also remain bounded belaw m expression for,, then constraint® < p; < 1 imply that
In case the users choose an infeasilfiethe above iteration 1—r
will lead to a situation where some (n)'s exceedl. To fix 0<p2 < min{ ” ,1} :

this, we can modify the iteration to the one given below.
Now, for a givenr; € [0,1], we can findry that lies on

. rd the Pareto boundary by solving the following optimization
pi(n+1) = min {sz)pl(n), 1} (30) problem:
The above iteration converges to the desired rate vector ry o — ( _ 2b2m )
. i . : . . 2 = max |py—  ———
if r? is feasible. In case the users start with an infeasible P2 1—v1p2
r?, we make some simple observations that are stated below biect t 0< py < mi 1-7rm 1 34
as Lemma 2. Ler' denote the rate vector corresponding to subject to = P2 = i e (34

p = 1 and (p*,r*) denote the probability and rate vectors

obtained when the above iteration converges for.all S'nced” - 0. at pQ_: ,0’ tr11e maX|mu1m OCCE[”S e|§hter ‘? the
Lemma 2: Assumer? is infeasible. Then for any link the oundary poinp; = min{(1—71)/71,1} or at a point where

following conditions hold true: (a};i >l =t > 7l (b) the der_|vat_|ve /of the aboye function w.ri; is zero. Setting
pd < pl = o = pd. () If L =2, thenrd > rl = r* = rl. the denvatlver_g(pg) =0 givespy, = (1 ,/yg_rl)/ﬂyl. One of
LSS : N N N these values is greater thanand can be discarded. For the
Proof: (a) Clearly,p* < 1. If pf = 1, thenr; .
other value ofp, to be valid, we need

Lgi(p*;) > 1l.gi(1) = r! (using Lemma 1). Ifp; <
1, then using the convergence condition we ggl, = 1 —72rm . fl=r

: *o.d /% P H H * d 1 0 S _— S min ,1 s
min{pfre/ri, 1} = pire/r which givesr? = rf > r}. T "



which is satisfied only if(1 — v1)2 /72 < 71 < 2. Rewriting
in terms ofa and 3,

(1]
a2
m <rn <1-8. (35) 2]
We now consider the following two cases: 3]
1) a+ B > 1. In this case, the maximum value of
always occurs at the boundary poat = min{(1 —ry)/(1 — [4]
a),1}. The optimal value ofp, that maximizesr, is either
(1 —-7r1)/(1 — ) or 1 depending on whether; > « or not. -

Substituting the maximizing value of, in (34), we obtain the [
rate region given by (17).

2) a+ B < 1: In this case, we have to consider separately6l
the following ranges of:

2 [7]
0 <r < 1C17ﬁ’
o [8]
1-3 <r < 1=,
1-8 <r < 1. (36) [

The optimal values of, corresponding to the above thred!®l
ranges ofr, arep, = |1,V =B 1-m

- 11—« P l-a |

in (34), we obtain the rate region given by (19).

Substituting

(12]
B. Proof of lemma 1
Positivity of g;(.) is evident from its definition. We must
now show thay;(.) is a strictly decreasing function @f, for
all k£ # i. Computing the partial derivative af, w.r.t. p;, we
get

0g;
Opk

= > ety =1 [[ e+ =t = p))

144,14k
(37)

In the above expression, the indgxcounts all the trans-
mission modes in whicht;; = 1. Lets denote this set by
7;—1. The set7;,_; can be partitioned into two disjoint sets
Ti=1,5=1 and T;—1 =0 depending on whether the link is
active or not. Then for eache 7,—; ;—1, there exists a unique
j" € Ti=1 x=o such thatt;; = t;;, for all I # k. Now noting
that j € 7,—; =1 implies by definition that(2t;; — 1) = 1
and similarlyj” € 7;—1 x=¢ implies that(2¢; —1) = —1, we
can write [ 37] as

>

J€Ti=1,k=1

Jitij=1

0gi
Opk

(cij —cijr) [T Tpe+ (1 —ti;)(1 = p)]

1#il#k
(38)
Using the properties of’';,, we know thatc;; < ¢;; for all
J € Ti=1,x,=1. Therefore the above expression is negative and
the result follows.
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