
Memory Management – Page Replacement

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11

(https://sakai.rutgers.edu)

2

Page Replacement

 How do we decide which frames to kick out if the memory is tight?

 How do we decide how much of physical memory should be

allocated to each process ?

Rutgers University
Gayathri Chandrasekaran

3

Paging and Swapping

 To achieve good performance, the OS must kick “inactive” frames

out of main memory into the disk

What constitutes an “inactive” page?

How do we choose the right set of pages to copy out to disk ?

How do we decide when to move back a page into memory?

 Swapping

Usually refers to moving the memory for an entire process onto the disk

This effectively puts the process to sleep until the OS decided to swap it in

 Paging

Refers to moving individual pages out to disk

Rutgers University
Gayathri Chandrasekaran

4

Page Replacement

5

Page eviction and locality

 When do we decide to evict a page from memory?

Usually at the time when we are trying to allocate a frame for currently

executing process

However, the OS keeps a pool of “free pages” around, even when memory is

tight, so that allocating a new page can be done quickly.

Therefore, OS does this periodically in the background.

 Exploiting locality: Locality helps reduce frequency of paging

Temporal Locality: Memory accessed recently tends to be accessed again

Spatial Locality: Memory locations near recently-accessed memory is likely

to be referenced soon

 Frequency of paging depends on

The amount of locality and reference patterns in a program

The page replacement policy

The amount of physical memory and the application footprint
Rutgers University

6

Locality Example

Program structure

Array A[1024, 1024] of integer

Each row is stored in one page

One frame

Program 1 for j := 1 to 1024 do
for i := 1 to 1024 do

A[i,j] := 0;

1024 x 1024 page faults ! – Poor Locality

Program 2 for i := 1 to 1024 do
for j := 1 to 1024 do

A[i,j] := 0;

1024 page faults !

Rutgers University
CS416 – Operating Systems

7

Evicting the best pages

 Goal of the page replacement algorithm:

Reduce page fault rate by selecting the “best” page to evict

 The “best” pages are those that will never be used again

 However, it's impossible to know in general whether a page will be touched.

If you happened to have information on future access patterns, you can prove

that evicting those pages that will be used the furthest in the future will minimize

the page fault rate

 What is the best algorithm for deciding the order to evict pages?

Rutgers University
Gayathri Chandrasekaran

8

Page Replacement Basics

 Most page replacement algorithms operate on some data structure

that represents physical memory:

Might consist of a bitmap, one bit per physical page

Might be more involved, e.g., a reference count for each page

Free list consists of pages that are unallocated

Rutgers University
CS416 – Operating Systems

9

Algorithm #1: OPT (a.k.a MIN)

 Evict page that won't be used for the longest time in the future

Of course, this requires that we can see into the future...

So OPT cannot be implemented!

 This algorithm has the provably optimal performance

Hence the name “OPT”

Also called “MIN” (for “minimal”)

 OPT is useful as a “yardstick” to compare the performance of other

(implementable) algorithms against

Rutgers University
CS416 – Operating Systems

10

Algorithms #2 and 3: Random and FIFO

 Random: Throw out a random page

Obviously not the best scheme

Although very easy to implement!

 FIFO: Throw out pages in the order that they were allocated

Maintain a list of allocated pages

When the length of the list grows to cover all of physical memory, pop first

page off list and allocate it

 Why might FIFO be good?

Maybe the page allocated very long ago isn't being used anymore

 Why might FIFO not be so good?

For Example, a variable initialized early on in the code gets referenced later.

Suffers from Belady's Anomaly: Performance of an application might get

worse as the size of physical memory increases!!!

Rutgers University
CS416 – Operating Systems

11

Belady’s Anamoly

Rutgers University
CS416 – Operating Systems

In a system with smaller memory, whatever that was recently accessed kept

coming in at the end of the queue since it had higher chances of being chucked

out due to small size.

12

Algorithm #4: Least Recently Used (LRU)

 Evict the page that was used the longest time ago

Keep track of when pages are referenced to make a better decision

Use past behavior to predict future behavior

oLRU uses past information, while MIN uses future information

 Implementation

Every time a page is accessed, record a timestamp of the access time

When choosing a page to evict, scan over all pages and throw out page with

oldest timestamp

 Problems with this implementation?

32-bit timestamp for each page would double the size of every PTE

Scanning all of the PTEs for the lowest timestamp would be slow

So, we need an approximation!

 Why doesn’t LRU suffer from Belady’s Anamoly ?

Rutgers University
CS416 – Operating Systems

13

Approximating LRU : Counter

Have a reference bit and software counter for each page frame

At each clock interrupt, the OS adds the reference bit of each frame

to its counter and then clears the reference bit

When need to evict a page, choose frame with lowest counter

What’s the problem?

Doesn’t forget anything, no sense of time – hard to evict a page that was

reference a lot sometime in the past but is no longer relevant to the computation

Updating counters is expensive, especially since memory is getting rather large

these days

Can be improved with an aging scheme: counters are shifted right

before adding the reference bit and the reference bit is added to the

leftmost bit (rather than to the rightmost one)

Rutgers University
CS416 – Operating Systems

14

Approximating LRU : Using Clock (Second Chance)

 “Clock hand” scans over all physical pages in the system

Clock hand loops around to beginning of memory when it gets to end

 If PTE reference bit == 1, clear bit and advance hand

 If PTE reference bit == 0, evict this page

No need for a counter in the PTE!

Rutgers University
CS416 – Operating Systems

What is the

problem with this

scheme ?

- Don’t have a

count of number

of times any page

was accessed

recently.

15

Approximating LRU : Nth Chance (Counter + Clock)

 Use the PTE reference bit and a small counter per page

(Use a counter of, say, 2 or 3 bits in size, and store it in the PTE)

 On Page fault, Advance clock hand.

If the page has not been accessed (PTE reference bit == 0), increment the

counter

If the page has been accessed (reference bit == 1), set counter to zero

o(WHY? Is this necessary ?)

Clear the PTE reference bit in either case!

 Counter will contain the number of scans since the last reference to

this page.

If counter < N, go on. Otherwise this is our Victim

 What is the problem if N is too large ?

Rutgers University
CS416 – Operating Systems

16

Swap Files

 What happens to the page that we choose to evict?

Depends on what kind of page it is and what state it's in!

 OS maintains one or more swap files or partitions on disk

Special data format for storing pages that have been swapped out

Rutgers University

17

Page Eviction

 How we evict a page depends on its type.

 Code page:

Just chuck it from memory – can recover it from the executable file on disk!

 Unmodified (clean) data page:

If the page has previously been swapped to disk, just chuck it from memory

oAssuming that page's backing store on disk has not been overwritten

If the page has never been swapped to disk, allocate new swap space and write the page

to it (This is just an optimization since swapping the page in is faster from swap space)

Exception: unmodified zero page – no need to write out to swap at all!

 Modified (dirty) data page:

If the page has previously been swapped to disk, write page out to the swap space

If the page has never been swapped to disk, allocate new swap space and write the page

to it

Rutgers University
CS416 – Operating Systems

18

Physical Frame Allocation

 How do we allocate physical memory across multiple processes?

When we evict a page, which process should we evict it from?

How do we ensure fairness?

How do we avoid one process hogging the entire memory of the system?

 Fixed-space algorithms

Per-process limit on the physical memory usage of each process

When a process reaches its limit, it evicts pages from itself

 Variable-space algorithms

Physical size of processes can grow and shrink over time

Allow processes to evict pages from other processes

 One process paging can impact performance of entire system!

One process that does a lot of paging will induce more disk I/O

Rutgers University
CS416 – Operating Systems

19

Thrashing

 As system becomes more loaded, spends more of its time paging

Eventually, no useful work gets done!

 System is overcommitted!

If the system has too little memory, the page replacement algorithm doesn't matter

 Solutions?

Change scheduling priorities to “slow down” processes that are thrashing

Identify process that are hogging the system and kill them?

20

Reasons for Thrashing

 Process doesn’t reuse memory, so caching doesn’t work

(past != future)

 Process does reuse memory, but it does not “fit”

 Individually, all processes fit and reuse memory, but too many for

system

This could be solved !

Rutgers University
CS416 – Operating Systems

21

Dealing with Thrashing

 Approach 1: Working set

How much memory does the process need in order to make reasonable

progress (its working set)?

Only run processes whose memory requirements can be satisfied

 Approach 2: Page Fault Frequency

PFF = page faults / instructions executed

If PFF rises above threshold, process needs more memory

oNot enough memory on the system? Swap out.

If PFF sinks below threshold, memory can be taken away

Rutgers University
CS416 – Operating Systems

22

Working Set

 A process's working set is the set of pages that it currently “needs”

 Definition:

WS(P, t, w) = the set of pages that process P accessed in the time interval [t-w, t]

“w” is usually counted in terms of number of page references

oA page is in WS if it was referenced in the last w page references

 Working set changes over the lifetime of the process

Periods of high locality exhibit smaller working set

Periods of low locality exhibit larger working set

 Basic idea: Give process enough memory for its working set

If WS is larger than physical memory allocated to process, it will tend to swap

If WS is smaller than memory allocated to process, it's wasteful

This amount of memory grows and shrinks over time

Rutgers University
CS416 – Operating Systems

23

Estimating the Working Set

 How do we determine the working set of a process?

 Simple approach

Approximate with interval timer + a reference bit

Example: t = 10,000

Timer interrupts after every 5000 time units.

Keep in memory 2 bits for each page.

Whenever a timer interrupts, shift the bits to right and copy the reference bit

value onto the high order bit and sets the values of all reference bits to 0.

If one of the bits in memory = 1 page in working set.

Why is this not completely accurate?

Not sure when exactly in the last 5000 time units was this page accessed

Improvement = 10 bits and interrupt every 1000 time units.

Rutgers University
CS416 – Operating Systems

24

Working Set

 Now that we know the working set, how do we allocate memory?

If working sets for all processes fit in physical memory, done!

Otherwise, reduce memory allocation of larger processes

oIdea: Big processes will swap anyway, so let the small jobs run.

Very similar to shortest-job-first scheduling: give smaller processes better

chance of fitting in memory

 How do we decide the working set time limit T?

If T is too large, very few processes will fit in memory

If T is too small, system will spend more time swapping

Rutgers University
CS416 – Operating Systems

25

Page-Fault Frequency Scheme

 Page Fault Rate = (#Page Faults)/No of Executed Instructions

 Establish “acceptable” page-fault rate

If actual rate too low, process loses frame

If actual rate too high, process gains frame (or is swapped out)

