
Memory Management - Demand Paging and

Multi-level Page Tables

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11

(https://sakai.rutgers.edu)

2

Topics for the day

 What happens when a page is not in memory ?

 How do we prevent having page tables take up a huge amount of

physical memory themselves ?

Rutgers University
Gayathri Chandrasekaran

3

Questions from last week that needs clarification

 Question 1: With 20 bits allocated to the number of pages, the

number of page table entries could be : 4bytes * 220pages = 4MB

Is this entire 4MB space allocated contiguously in Physical Memory ?

(My Answer was Yes, But the answer is NO. We will see how it is held today)

 Are all processes having 4MB of Page Tables ?

They “could” have, but in practice, they are allocated at the time of process

creation to be “size of code” + fixed size partitions. The number of page tables

entries would be the “Maximum” number of pages allocated to this process.

 When there is a page fault, can a process kick out frames belonging

to other process ?

Yes, the OS handles Page replacement. Therefore, it can access the process‟s

page tables and mark the entry corresponding to the frame as “invalid”.

Rutgers University
CS416 – Operating Systems

4

Page Faults

 When a virtual address translation cannot be performed, it‟s called a

page fault

Rutgers University
Gayathri Chandrasekaran

5

Handling Page Fault

 Trap to the OS

 Save user Register and Process State

 Check whether the page reference was legal and determine the

location of the page on memory

 Issue a read from disk to a free frame

 Block for the disk operation to be complete

 On receiving “Interrupt” for disk transfer completion, save other

process state

 Serve the interrupt from the disk and Fix the page table entry

 Wait for the CPU to be allocated to this process again

 Restore state and continue execution

Rutgers University
CS416 – Operating Systems

6

Page Faults

 Valid Bit indicates whether a page translation is valid

If Valid bit is set to 0, then a page fault will occur

 Protection Bits tells whether a page is readable, writeable, executable

Page fault occurs when we attempt to write a read-only page

This is sometimes called “Protection Fault”

Rutgers University
CS416 – Operating Systems

7

Demand Paging

 Does it make sense to read an entire program into memory at once

No! Remember we talked about an example where some code never executes

For example, if you never use the “Save as PDF” function in office

Rutgers University
CS416 – Operating Systems

What are these holes

in the virtual address

space mean ?

8

What are these holes ?

Three kinds of holes in a process‟s page tables:

 Pages that are on disk

Swapped out to disk due to lack of space in Physical Memory

oWhen a page fault occurs, load the corresponding page from the disk

 Pages that have not been accessed yet

For Example, newly allocated memory

oWhen a page fault occurs, allocate a new physical page

 Pages that are invalid

For example, the NULL POINTER always points to page at address 0x0

oWhen a NULL address is accessed, we get segmentation fault !

oTrying to access 0x0 creates page fault, and the OS kills the offending process

Rutgers University
CS416 – Operating Systems

9

Starting up a process

 What does a process address space looks like when it starts ?

Rutgers University
CS416 – Operating Systems

10

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

11

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

12

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

13

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

14

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

15

Starting up a process

 What does the process‟s address space look like when it first starts up

Rutgers University
CS416 – Operating Systems

16

Uninitialized Variables and the heap

 Page faults bring in pages from the executable file for:

Code (text segment) pages, Initialized variables

 What about Un-initialized variables and the heap ?

 Say I have a global variable “int c” in the program ..What happens

when the process first accesses it ?

Page fault occurs

OS looks at the page and realizes that it corresponds to a Zero Page

Allocates a new frame in the main memory and sets all bytes to ZERO

Maps the frame into the address space

 What about the heap ?

malloc() just maps new zero pages into the address space

Brings in new empty pages into the frame only when page fault occurs

Rutgers University
CS416 – Operating Systems

17

More Demand Paging Tricks

 Paging can be used by processes to share memory

A significant portion of many process‟s address space is identical

Rutgers University
CS416 – Operating Systems

18

More Demand Paging Tricks

 This can be used to let different processes share memory

UNIX supports shared memory through the shmget/shmat/shmdt system calls

Allocates a region of memory that is shared across multiple processes

Some of the benefits of multiple threads per process, but the rest of the processes

address space is protected

oWhy not just use multiple processes with shared memory regions?

 Memory-mapped files

Idea: Make a file on disk look like a block of memory

Works just like faulting in pages from executable files

 In fact, many OS's use the same code for both

 One wrinkle: Writes to the memory region must be reflected in the file

 How does this work?

oWhen writing to the page, mark the “modified” bit in the PTE

oWhen page is removed from memory, write back to original file

Rutgers University
CS416 – Operating Systems

19

Remember fork()

 fork() creates an exact copy of a process

What does this imply about page tables?

 When we fork a new process, does it make sense to make a copy of

all of its memory?

Why or why not?

 What if the child process doesn't end up touching most of the

memory the parent was using?

What happens if a process does an exec() immediately after fork()?

Rutgers University
CS416 – Operating Systems

20

Copy on Write

 Share the pages among parent and child, but don‟t let the child

write to any pages directly

Parents forks a child, Child gets a copy of the parent‟s page tables.

Rutgers University
CS416 – Operating Systems

21

Copy on Write

 All Pages (both parent and child) marked read-only

Why ?

Rutgers University
CS416 – Operating Systems

22

Copy on Write

 What happens when the child “writes” the pages

Protection fault occurs

OS copies the page and maps it R/W into child‟s address space

Rutgers University
CS416 – Operating Systems

23

Page Tables

 Recall that page tables for every process could be as large as 4MB

Rutgers University
CS416 – Operating Systems

24

Multi-Level Page Tables

 Can‟t hold all of the page tables in memory

 Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

Rutgers University
CS416 – Operating Systems

25

Multi-Level Page Tables

 Can‟t hold all of the page tables in memory

 Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

Rutgers University
CS416 – Operating Systems

26

Multi-Level Page Tables

 Can‟t hold all of the page tables in memory

 Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

Rutgers University
CS416 – Operating Systems

27

Multi-Level Page Tables

 Can‟t hold all of the page tables in memory

 Solution: Page the page tables

Allow portions of the page tables to be kept in memory at one time

Rutgers University
CS416 – Operating Systems

28

Multilevel page tables

 With two levels of page tables, how big is each table?

Say we allocate 10 bits to the primary page, 10 bits to the secondary page, 12 bits to the page offset

Primary page table is then 2^10 * 4 bytes per PTE == 4 KB

Secondary page table is also 4 KB

oHey ... that's exactly the size of a page on most systems ... cool

 What happens on a page fault?

MMU looks up index in primary page table to get secondary page table

oAssume this is “wired” to physical memory

MMU tries to access secondary page table

oMay result in another page fault to load the secondary table!

MMU looks up index in secondary page table to get PFN

CPU can then access physical memory address

 Issues

Page translation has very high overhead

oUp to three memory accesses plus two disk I/Os!!

TLB usage is clearly very important.

Rutgers University
CS416 – Operating Systems

29
Rutgers University

CS 416: Operating Systems

Multilevel Paging and Performance

Since each level is stored as a separate table in memory, covering a

logical address to a physical one may take three memory accesses.

CPU Generates an address

Use the first 10 bits to read a memory location (outer page table) – first access

Use the first page table to locate the frame for second page table – Second access

Get the (frame number + offset) and read the actual memory location. – Third access

Average page fault service time = 8ms

Average memory access time = 200ns

Let the probability of page fault be „p‟

Effective Access time per memory access : (1-p)*200ns + p*8ms

30

Where does caching fit here ?

 After the Physical Address is Identified, the CPU first check the

Cache to see if the entire block is already in cache !

 If yes, accesses are much faster

 If not, the block is transferred to the cache.

Rutgers University
CS416 – Operating Systems

A

B

C

0

1

2

3

B

C

Memory Disk

Cache

A

Virtual Memory

31
Rutgers University

CS 416: Operating Systems

Inverted Page Table

One entry for each real frame of memory.

Entry consists of the virtual address of the page stored in that real

memory location, with information about the process that owns that

page.

Decreases memory needed to store each page table, but increases

time needed to search the table when a page reference occurs.

32
Rutgers University

CS 416: Operating Systems

Inverted Page Table Architecture

33

Next Lecture

 Page Replacement Algorithms !

Rutgers University
CS416 – Operating Systems

