
Synchronization

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

2

Synchronization

Basic problem:

Threads are concurrently accessing shared variables

The access should be controlled for predictable result.

Solution: Need a mechanism to control the access

Low-Level Mechanism

Locks

Higher Level Mechanism

Mutexes

Semaphores

Condition Variables

Monitors

Rutgers University CS 416: Operating Systems

3

Shared Variable Example

Suppose we want to withdraw money from a bank

Suppose you are sharing this account (with $1500) with your

friend and you both withdraw $100 from this account at the

same time. – What happens ?

Rutgers University CS 416: Operating Systems

4

Example (continued)

Suppose we represent this situation with a separate thread for

each ATM user doing a withdrawal.

Both threads run on the same bank server

What is the problem with the above approach ?

What are the possible values for balance ?

Rutgers University CS 416: Operating Systems

5

Interleaved Execution

The execution of the threads could be interleaved

Assume preemptive schedule

Each thread can context switch after every instruction

Rutgers University CS 416: Operating Systems

Execution Schedule

as seen by CPU

Context Switch

Context Switch

balance = $1500

balance = $1400

balance = $1500

balance = $1400

balance = $1400

balance = $1400

6

Race Conditions

Two concurrent threads accessed a shared resource without any

synchronization. This is called Race Condition.

The result of race condition is non-deterministic

By introducing synchronization, we bring in determinism

Synchronization is necessary for any shared data structure

Queue, buffers, lists, hash-tables

Rutgers University CS 416: Operating Systems

7

Which Resources are shared ?

Local Variables – Not Shared

Allocated in stack - private to every thread

Global Variables – Shared

Allocated in Global segment

Dynamically Allocated Variables - Shared

Allocated in Heap

Rutgers University CS 416: Operating Systems

8

Mutual Exclusion

We want to use mutual exclusion to synchronize access to shared

resources

Critical Section:

Code that uses mutual exclusion to synchronize its execution

Only one thread can execute in Critical Section at any time

All other threads are forced to wait on entry

Rutgers University CS 416: Operating Systems

9

Critical Section Requirements

Mutual Exclusion

Only one thread is executing in the critical section

Progress

If Thread-1 is outside the critical section, Thread-1 cannot prevent

Thread-2 from entering the critical section

Bounded Waiting

If Thread-1 is waiting outside the critical section, Thread-1 should

ultimately be able to enter the critical section

Performance

The overhead of entering and exiting the critical section should be small

compared to the work being done within the critical section

Rutgers University CS 416: Operating Systems

10

Different Solutions

Software solutions to Mutual Exclusion (Peterson’s Solution)

• Hard to get it right in modern architecture

• Wastes CPU cycles

Hardware Supported solutions

Low-Level Constructs

Locks

Higher-Level Constructs

Mutexes

Semaphores

Condition Variables

Monitors

Rutgers University CS 416: Operating Systems

11

Software Solution to Mutual Exclusion

Rutgers

University

CS 416: Operating

Systems

flag[i] = TRUE;

turn = j;

while(flag[j] && turn ==j);

Critical Section

flag[i] = FALSE;

do {

} while(TRUE)

remainder section

Int turn

Boolean flag[2] Variables shared between 2 processes i,j

Busy Waiting Are CS conditions met?

-Mutual Exclusion

-Progress

-Bounded Waiting

What is the problem

with the software

solutions?

12

Problem with software solution

Rutgers University CS 416: Operating Systems

The way load and store

instructions work on modern

multiprocessor systems, there

is no guarantee that software

solutions would work

When a process/thread executes a store instruction, the data is

put into the store buffer. The buffered data is sent to the

cache sooner or later, but not necessarily right away.

13

Locks

A Lock is an Object(in memory) with the following 2 operations:

acquire(): A thread calls this before entering the CS

release(): A thread calls this after leaving the CS

A call to acquire() MUST have a corresponding call to release()

Between acquire() and release(), the thread holds the lock

acquire() does not return until the caller holds the lock

At most one thread can hold a lock at any time

What happens if acquire() and release() are not paired ?

Rutgers University CS 416: Operating Systems

14

Using locks

Why is the return statement outside the critical section ?

Rutgers University CS 416: Operating Systems

15

Execution with locks

Rutgers University CS 416: Operating Systems

16

Implementing Locks - Spinlocks

Spinlocks: Very simple way to implement locks

Why doesn’t this work ? Where is the race condition ?

Rutgers University CS 416: Operating Systems

17

Implementing Spinlocks

Problem is that the internals of the lock acquire/release have

critical sections too !

•The acquire() and release() actions must be atomic

•Atomic means that the code cannot be interrupted during execution

Rutgers University CS 416: Operating Systems

18

Implementing Spinlocks

Problem is that the internals of the lock acquire/release have

critical sections too.

Doing this requires help from the hardware:

•Atomic Instructions – CPU guarantees entire action will be atomic

•Test and Set

•Compare and Swap

•Disabling interrupts

•Why does this guarantee atomicity ?

Rutgers University CS 416: Operating Systems

19

Spinlocks using Test and Set

CPU provides the following as an atomic instruction

So, to fix our broken spinlock, we do this:

Rutgers University CS 416: Operating Systems

What’s the

catch here ?

Atomic Operation:

test_and_set

20

Spinlocks using Compare and Swap

Rutgers University CS 416: Operating Systems

void swap(bool *a, bool *b) {

bool temp = *a;

*a = *b;

*b = temp;

}

struct lock {

int held = 0;

}

void acquire(lock){

key = TRUE;

while(key == TRUE)

swap(&lock->held,&key);

}

void release(lock) {

lock ->held = 0;

}

Atomic Operation:

Compare and swap

21

Problems with Spinlocks

Horribly wasteful !

•Threads perform busy waiting to acquire locks

•Eats up a lot of CPU Cycles, slows down other threads

•What happens if you have a lot of threads trying to acquire locks

We only want spinlocks as primitives for building higher level

synchronization constructs.

Rutgers University CS 416: Operating Systems

22

Alternatives to Spinlocks

Disabling Interrupts

Can two threads disable or enable interrupts at the same time ?

What’s wrong about this approach ?

•Can only be implemented at the kernel level.(Why ?)

•Incorrect in multiprocessor system (Why ?)

•All locks in the system are mutually exclusive

Rutgers University CS 416: Operating Systems

23

Mutual Exclusion(Mutex) using Blocking Locks

Really want a thread waiting to enter the Critical Section to Block

•Put the thread to sleep until it can enter the CS

•Free up the CPU for other threads to run

How to implement blocking Locks ? – TCB Queues

1. Check lock state

2. if(unlocked)

Set lock state to locked

Enter the CS Section

Rutgers University CS 416: Operating Systems

24

Mutex - Blocking Locks

1. Check lock state

2. If(locked)

Add self to wait queue (sleep)

Rutgers University CS 416: Operating Systems

25

Mutex – Blocking Locks

When a thread finished executing CS

1. Reset the lock to unlocked

2. Wake one thread from the wait-queue

3. Schedule it for execution of the CS

Rutgers University CS 416: Operating Systems

26

Limitations of Locks

Locks are simple. What can they NOT easily accomplish?

•atomicity without disabling interrupts or CPU support

What if there is a Data structure where its OK for many threads to read the

data, but only one thread to write the data?

•Example: Bank Account

•Locks only let one thread access the data structure at a time

What if you want to protect access to two (or more) data structures at a time

e.g, Transferring money from one bank account to another?

Simple Approach: Use two separate locks for each account

What happens if you have to transfer from account A->B at the same time as

transfer from account B->A ?

•We may end up in a DEADLOCK!!

Rutgers University CS 416: Operating Systems

27

Deadlock illustration

Rutgers University CS 416: Operating Systems

Acquire(account A)

Acquire(account B)

Critical Section

(Transfer Money)

release(account B)

release(account A)

Thread1: Transfer money
from account A to B

Thread 2: Transfer money
from account B to A

Acquire(account B)

Acquire(account A)

Critical Section

(Transfer Money)

release(account A)

release(account B)

Context Switch

Each process waits for the

other to release. Deadlock !!

