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Synchronization

Basic problem:

Threads are concurrently accessing shared variables

The access should be controlled for predictable result.

Solution: Need a mechanism to control the access

Low-Level Mechanism

Locks

Higher Level Mechanism

Mutexes

Semaphores

Condition Variables 

Monitors
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Shared Variable Example

Suppose we want to withdraw money from a bank

Suppose you are sharing this account (with $1500) with your 

friend and you both withdraw $100 from this account at the 

same time. – What happens ?
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Example (continued)

Suppose we represent this situation with a separate thread for 

each ATM user doing a withdrawal.

Both threads run on the same bank server

What is the problem with the above approach ?

What are the possible values for balance ?
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Interleaved Execution

The execution of the threads could be interleaved

Assume preemptive schedule

Each thread can context switch after every instruction
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Execution Schedule 

as seen by CPU

Context Switch

Context Switch

balance = $1500

balance = $1400

balance = $1500

balance = $1400

balance = $1400

balance = $1400
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Race Conditions

Two concurrent threads accessed a shared resource without any 

synchronization. This is called Race Condition.

The result of race condition is non-deterministic

By introducing synchronization, we bring in determinism

Synchronization is necessary for any shared data structure 

Queue, buffers, lists, hash-tables
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Which Resources are shared ?

Local Variables – Not Shared

Allocated in stack - private to every thread

Global Variables – Shared

Allocated in Global segment 

Dynamically Allocated Variables - Shared

Allocated in Heap 
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Mutual Exclusion

We want to use mutual exclusion to synchronize access to shared 

resources

Critical Section:

Code that uses mutual exclusion to synchronize its execution

Only one thread can execute in Critical Section at any time

All other threads are forced to wait on entry
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Critical Section Requirements

Mutual Exclusion

Only one thread is executing in the critical section

Progress

If Thread-1 is outside the critical section, Thread-1 cannot prevent 

Thread-2 from entering the critical section

Bounded Waiting

If Thread-1 is waiting outside the critical section, Thread-1 should 

ultimately be able to enter the critical section

Performance

The overhead of entering and exiting the critical section should be small 

compared to the work being done within the critical section
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Different Solutions

Software solutions to Mutual Exclusion (Peterson’s Solution)

• Hard to get it right in modern architecture

• Wastes CPU cycles 

Hardware Supported solutions

Low-Level Constructs

Locks

Higher-Level Constructs

Mutexes

Semaphores

Condition Variables

Monitors
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Software Solution to Mutual Exclusion

Rutgers 

University

CS 416: Operating 

Systems

flag[i] = TRUE;

turn = j;

while(flag[j] && turn ==j);

Critical Section

flag[i] = FALSE;

do {

} while(TRUE)

remainder section

Int turn

Boolean flag[2] Variables shared between 2 processes i,j

Busy Waiting Are CS conditions met?

-Mutual Exclusion

-Progress

-Bounded Waiting

What is the problem 

with the software 

solutions?
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Problem with software solution
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The way load and store 

instructions work on modern 

multiprocessor systems, there 

is no guarantee that software 

solutions would work

When a process/thread executes a store instruction, the data is 

put into the store buffer. The buffered data is sent to the 

cache sooner or later, but not necessarily right away.
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Locks

A Lock is an Object(in memory) with the following 2 operations:

acquire(): A thread calls this before entering the CS

release(): A thread calls this after leaving the CS

A call to acquire() MUST have a corresponding call to release()

Between acquire() and release(), the thread holds the lock

acquire() does not return until the caller holds the lock

At most one thread can hold a lock at any time

What happens if acquire() and release() are not paired ?
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Using locks

Why is the return statement outside the critical section ?
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Execution with locks
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Implementing Locks - Spinlocks

Spinlocks: Very simple way to implement locks

Why doesn’t this work ? Where is the race condition ?
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Implementing Spinlocks

Problem is that the internals of the lock acquire/release have 

critical sections too !

•The acquire() and release() actions must be atomic

•Atomic means that the code cannot be interrupted during execution
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Implementing Spinlocks

Problem is that the internals of the lock acquire/release have 

critical sections too.

Doing this requires help from the hardware:

•Atomic Instructions – CPU guarantees entire action will be atomic

•Test and Set

•Compare and Swap

•Disabling interrupts

•Why does this guarantee atomicity ?
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Spinlocks using Test and Set

CPU provides the following as an atomic instruction

So, to fix our broken spinlock, we do this:

Rutgers University CS 416: Operating Systems

What’s the 

catch here ?

Atomic Operation:

test_and_set
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Spinlocks using Compare and Swap
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void swap(bool *a, bool *b) {

bool temp = *a;

*a = *b;

*b = temp;

}

struct lock {

int held = 0;

}

void acquire(lock){

key = TRUE;

while(key == TRUE)

swap(&lock->held,&key);

}

void release(lock) {

lock ->held = 0;

}

Atomic Operation:

Compare and swap
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Problems with Spinlocks

Horribly wasteful !

•Threads perform busy waiting to acquire locks

•Eats up a lot of CPU Cycles, slows down other threads

•What happens if you have a lot of threads trying to acquire locks

We only want spinlocks as primitives for building higher level 

synchronization constructs. 
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Alternatives to Spinlocks

Disabling Interrupts

Can two threads disable or enable interrupts at the same time ?

What’s wrong about this approach ?

•Can only be implemented at the kernel level.(Why ?)

•Incorrect in multiprocessor system (Why ?)

•All locks in the system are mutually exclusive
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Mutual Exclusion(Mutex) using Blocking Locks

Really want a thread waiting to enter the Critical Section to Block

•Put the thread to sleep until it can enter the CS

•Free up the CPU for other threads to run

How to implement blocking Locks ? – TCB Queues

1. Check lock state

2. if(unlocked)

Set lock state to locked

Enter the CS Section
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Mutex - Blocking Locks

1. Check lock state

2. If(locked)

Add self to wait queue (sleep)
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Mutex – Blocking Locks

When a thread finished executing CS

1. Reset the lock to unlocked

2. Wake one thread from the wait-queue

3. Schedule it for execution of the CS
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Limitations of Locks

Locks are simple. What can they NOT easily accomplish?

•atomicity without disabling interrupts or CPU support

What if there is a Data structure where its OK for many threads to read the 

data, but only one thread to write the data?

•Example: Bank Account

•Locks only let one thread access the data structure at a time

What if you want to protect access to two (or more) data structures at a time

e.g, Transferring money from one bank account to another?

Simple Approach: Use two separate locks for each account

What happens if you have to transfer from account A->B at the same time as 

transfer from account B->A ?

•We may end up in a DEADLOCK!! 
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Deadlock illustration
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Acquire(account A)

Acquire(account B)

Critical Section

(Transfer Money)

release(account B)

release(account A)

Thread1: Transfer money 
from account A to B

Thread 2: Transfer money 
from account B to A

Acquire(account B)

Acquire(account A)

Critical Section

(Transfer Money)

release(account A)

release(account B)

Context Switch

Each process waits for the

other to release. Deadlock !!


