
Synchronization

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University



2

Synchronization

Basic problem:

Threads are concurrently accessing shared variables

The access should be controlled for predictable result.

Solution: Need a mechanism to control the access

Low-Level Mechanism

Locks

Higher Level Mechanism

Semaphores

Mutexes

Condition Variables 

Monitors

Rutgers University CS 416: Operating Systems



3

Higher-Level Synchronization primitives

Locks are useful for mutual exclusion. But programs have 

different requirements.

Examples:

•Say we had a shared variable where any number of threads could read

but only one thread could write.

•How would you do this with locks ?

•What’s wrong with this code ?

Rutgers University CS 416: Operating Systems



4

Semaphores

Semaphore 

•Higher level construct

•Shared Counter

Operations on Semaphores:

P() or wait() or down()

•Atomically wait for semaphore value to become > 0, then decrement it

V() or signal() or up()

•Atomically increments semaphore by 1

Rutgers University CS 416: Operating Systems



5

Semaphore Example

Semaphores can be used to implement Mutual Exclusion

Semaphore my_semaphore = 1 // Initialize to nonzero

int withdraw(account, amount) {

P(my_semaphore)

balance = get_balance()

balance = balance – amount; CRITICAL SECTION

put_balance(balance,account);

V(my_semaphore)

}

A semaphore where the counter value is only 0 or 1 is called a 

binary semaphore. A Binary Semaphore similar to lock

Rutgers University CS 416: Operating Systems



6

Simple Semaphore Implementation

What is wrong with the above code ?
Rutgers University CS 416: Operating Systems



7

Simple Semaphore Implementation

Rutgers University CS 416: Operating Systems



8

Semaphore Implementation

How do we ensure that the semaphore operations are atomic?

This is similar to Lock:

One Approach: Make them System Calls and ensure only one 

P() or V() operation can be executed by any process at a time

•This effectively puts a lock around the P() and V() operations

•Since system calls are executed in privileged mode, interrupts could be 

disabled to preserve atomicity

Second Approach: Use hardware support:

•Say the CPU had atomic P() and V() operations

Rutgers University CS 416: Operating Systems



9

Why are semaphores any better than Lock ?

• A binary semaphore is basically a lock

• The real value of Semaphores becomes apparent when the 

counter can be initialized to a value other than 0 or 1

• Say we initialize a semaphore’s value to 50

•What does this mean about P() and V() operations?

Rutgers University CS 416: Operating Systems



10

The Producer/Consumer Problem

Producer pushes items into a buffer

Consumer pulls items from the buffer

Producer needs to wait when buffer is full

Consumer needs to wait when the buffer is empty

Rutgers University CS 416: Operating Systems



11

One Implementation

int count=0 -> Shared Variable

Producer(){

int item;

while(TRUE) {

item = produce();

if(count==N) sleep();

insert_item(item);

count = count + 1;

if(count == 1)

wakeup(consumer);

}

}

Consumer(){

int item;

while(TRUE) {

if(count==0)

sleep();

item = remove_item();

count = count-1;

if(count == N-1)

wakeup(producer)

consume(item);

}

}

Rutgers University CS 416: Operating Systems

What is the problem with this code ? Context Switching ? – Lost wakeup problem !

Needs to be atomic



12

A Fix using Semaphore

Producer {

int item;

while(TRUE) {

item=produce();

P(empty);

p(mutex);

insert_item(item);

v(mutex);

v(full);

}

}

Consumer {

while(TRUE){

p(full);

p(mutex);

item = remove_item();

v(mutex);

v(empty);

consume(item);

}

}

Rutgers University CS 416: Operating Systems

Semaphore mutex=1;

Semaphore empty=N;

Semaphore full=0;

Does the order matter ?



13

Readers/Writers Problem

Rutgers University CS 416: Operating Systems

•Want any number of threads to read simultaneously

•But only one thread should be able to write to a object at a time

writer() {

P(wrt)

do_write()

V(wrt)

}

semaphore wrt = 1

int readcount = 0

reader(){

readcount ++;

if(readcount == 1)

p(wrt);

}

do_read();

readcount --;

if(readcount ==0 )

V(wrt);

Where is the race condition ?



14

Readers/Writers Fixed

Rutgers University CS 416: Operating Systems

writer() {

P(wrt)

do_write()

V(wrt)

}

semaphore mutex = 1

semaphore wrt = 1

int readcount = 0

reader(){

p(mutex)

readcount ++;

if(readcount == 1)

p(wrt);

}

v(mutex)

do_read();

p(mutex)

readcount --;

if(readcount ==0 )

V(wrt);

v(mutex)

}

This is also called : 

First Readers Writers Problem

- Can lead to writer starvation



15

Second Readers/Writers Problem

Rutgers University CS 416: Operating Systems

-No writer should starve (The readers could starve).

-If a writer is waiting, no new reader can enter the shared memory

reader(){

p(mutex3)

p(read)

p(mutex)

readcount ++;

if(readcount == 1)

p(wrt);

}

v(mutex)

v(read)

V(mutex3)

do_read();

p(mutex)

readcount --;

if(readcount ==0 )

V(wrt);

v(mutex)

}

writer() {

P(mutex2)

writecount ++

If(writecount == 1)

p(read)

V(mutex2)

P(wrt)

do_write()

V(wrt)

P(mutex2)

writecount—

If(writecount==0)

v(read)

}

semaphore mutex = 1

semaphore wrt = 1, read = 1

semaphore mutex2 = 1, mutex3 =1

int readcount = 0

int writecount = 0

Only when all writers finish, 

the writer releases the read lock



16

Issues with Semaphore

Unlike locks, P() and V() do not have to be paired

Therefore, it is a lot easier to get into trouble with semaphore

•User needs to ensure its correctness

Wouldn’t it be nice if we had a clean, well-defined language 

support for synchronization..

•Java does ! 

Rutgers University CS 416: Operating Systems



17

Java Synchronization Support : Mutexes

Every Java object can be used as a mutex

Compiler ensures that the lock is released before exiting the 

synchronized block – Even if there is an exception.

Rutgers University CS 416: Operating Systems



18

Java Condition Variables

A conditional variable represents some condition that a thread can:

•Wait on, until the condition occurs

•Notify, other waiting threads that the condition has occurred

Three operations on Condition Variables

•wait(): Block on the condition variable

•notify(): Wake up one thread waiting on a CV

•notifyAll(): Wake up all threads waiting on a CV

Rutgers University CS 416: Operating Systems



19

Revisiting Producer/Consumer

Rutgers University CS 416: Operating Systems

int count=0 -> Shared Variable

Producer(){

int item;

while(TRUE) {

item = produce();

lock->acquire()

if(count==N) sleep();

insert_item(item);

count = count + 1;

if(count == 1)

wakeup(consumer);

lock->release()

}

}

Consumer(){

int item;

while(TRUE) {

lock->acquire()

if(count==0)

sleep();

item = remove_item();

count = count-1;

if(count == N-1)

wakeup(producer)

lock->release()

consume(item);

}

}

Whats wrong 

with this?



20

Producer/Consumer Fix-1 

Rutgers University CS 416: Operating Systems

int count=0 -> Shared Variable

Producer(){

int item;

while(TRUE) {

item = produce();

lock->acquire()

if(count==N){

lock->release()

sleep();

}

insert_item(item);

count = count + 1;

if(count == 1)

wakeup(consumer);

lock->release()

}

}

Consumer(){

int item;

while(TRUE) {

lock->acquire()

if(count==0){

lock->release()

sleep();

}

item = remove_item();

count = count-1;

if(count == N-1)

wakeup(producer)

lock->release()

consume(item);

}

}

Whats wrong 

with this?


