
CPU Scheduling – Continued.

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

2
Rutgers University

Scheduling Algorithms

FIFO is simple but leads to poor average response times. Short

processes are delayed by long processes that arrive before them

RR eliminate this problem, but favors CPU-bound jobs, which have

longer CPU bursts than I/O-bound jobs

SJN and SRT alleviate the problem with FIFO, but require

information on the length of each process. This information is not

always available (although it can sometimes be approximated based on

past history or user input)

Feedback is a way of alleviating the problem with FIFO without

information on process length

3
Rutgers University

It’s a Changing World

Assumption about bi-modal workload no longer holds

Interactive continuous media applications are sometimes processor-bound but

require good response times (Ex. Games)

New computing model requires more flexibility

How to match priorities of cooperative jobs, such as client/server jobs?

How to balance execution between multiple threads of a single process?

4

Lottery Scheduling [OSDI 1994]

 A kind of randomized priority scheduling scheme!

 Give each thread some number of “tickets”

The more tickets a thread has, the higher its priority

 On each scheduling interval:

Pick a random number between 1 and total # of tickets

Scheduling the job holding the ticket with this number

 How does this avoid starvation?

Even low priority threads have a small chance of running!

Rutgers University

5

Lottery Scheduling Example

Rutgers University

6

Advantages of Lottery Scheduling

 How about Flexible Control?

Ex. Monte Carlo Simulations. The first few rounds have larger errors but gives

an approximate answer.

Later runs have lower answers and try to converge to accurate answer

When errors are higher, The application could inflate the number of currencies

it holds and be scheduled with high priority to yield a quick answer.

When errors go down, the tickets could be lowered and this process could run

slow and return an accurate answer at a later time.

 How about Client Server Application ?

When Clients wait for server, clients can pass on some tickets to the server and

give server a higher of winning.

Rutgers University

7
Rutgers University

Traditional UNIX Scheduling

Multilevel feedback queues

128 priorities possible (0-127)

1 Round Robin queue per priority

Lower Number -> Higher Priority

Every scheduling event the scheduler picks the lowest number non-

empty queue and runs jobs in round-robin

Scheduling events:

Clock interrupt

Process does a system call

Process gives up CPU,e.g. to do I/O

8
Rutgers University

Traditional UNIX Scheduling

All processes assigned a baseline priority based on the type and

current execution status:

swapper 0

waiting for disk 20

waiting for lock 35

At scheduling events, all process’s priorities are adjusted based on

the amount of CPU used, the current load, and how long the process

has been waiting.

9
Rutgers University

UNIX Priority Calculation

Every 4 clock ticks a processes priority is updated:

The utilization of running process is incremented every clock tick by 1.

The Nice-Factor allows some control of job priority. It can be set from

–20 to 20. Users control the Nice Factor.

Jobs using a lot of CPU increase the priority value. Interactive jobs not

using much CPU will return to the baseline.

NiceFactor
nutilizatio

BASELINEP 2
4













10
Rutgers University

UNIX Priority Calculation

Very long running CPU bound jobs will get “stuck” at the highest

priority.

Decay function used to weight utilization to recent CPU usage.

A process’s utilization at time t is decayed every second:

The system-wide load is the average number of runnable jobs during

last 1 second

)1(

)12(

2












 tt u

load

load
u

11
Rutgers University

UNIX Priority Decay

1 job on CPU. load will thus be 1. Assume niceFactor is 0.

Compute utilization at time N:

+1 second:

+2 seconds

+N seconds

01

3

2
UU 

0
02

2

11

3

2

3

2

3

2

3

2
UUUUU 





















...
3

2

3

2

2

2

1









 

n
n UUU n

12

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses the

system data structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-

scheduling, all processes in common ready queue, or each has its

own private queue of ready processes

Currently, most common

 Processor affinity – process has affinity for processor on which it is

currently running

soft affinity

hard affinity

13

NUMA and CPU Scheduling

Note that memory-placement

algorithms can also consider affinity

14

Multicore Processors

 Recent trend to place multiple processor cores on same physical chip

 Faster and consumes less power

 Multiple threads per core also growing

Takes advantage of memory stall to make progress on another thread while

memory retrieve happens

15

Multithreaded Multicore System

16

Virtualization and Scheduling

 Virtualization software schedules multiple guests onto CPU(s)

 Each guest doing its own scheduling

Not knowing it doesn’t own the CPUs

Can result in poor response time

Can effect time-of-day clocks in guests

 Can undo good scheduling algorithm efforts of guests

17

Operating System Examples

 Solaris scheduling

 Windows XP scheduling

 Linux scheduling

18

Solaris

 Priority-based scheduling

 Six classes available

Time sharing (default)

Interactive

Real time

System

Fair Share

Fixed priority

 Given thread can be in one class at a time

 Each class has its own scheduling algorithm

 Time sharing is multi-level feedback queue

60 Priority Queues

~169 Priority Queues

19

Solaris Scheduling (Cont.)

 Scheduler converts class-specific priorities into a per-thread global

priority

Thread with highest priority runs next

Higher priority thread gets lower quantum

Runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority

thread

Multiple threads at same priority selected via RR

20

Windows Scheduling

 Windows uses priority-based preemptive scheduling

 32-level priority scheme

Variable class is 1-15, real-time class is 16-31

Priority 0 => Memory management thread (creates free frames)

Higher number => Higher Priority

Queue for each priority

 Highest-priority thread runs next

 Thread runs until

(1) blocks, (2) uses time slice, (3) preempted by higher-priority thread

 Real-time threads can preempt non-real-time

21

Windows XP Priorities

Base

Priority

R
el

at
iv

e
P

ri
o
ri

ty

Different Priority Classes

•If quantum expires, priority lowered, but never below base

•If wait occurs, priority boosted depending on what was waited for

•Waiting for I/O gets higher boost than disk

•Foreground window given 3x priority boost

22

Linux 2.6 Scheduling

 Preemptive, priority based

 Two priority ranges:

Real Time (0 – 99)

Time Sharing (100-139)

 Numerically lower values indicating higher priority

 Higher priority gets larger quantum

 Task run-able as long as time left in time slice (active)

 If no time left (expired), not run-able until all other tasks use their
slices

 When no more active, arrays are exchanged

23

Linux 2.6 Scheduling

 Each time-sharing task has two priorities: static priority and

dynamic priority

 Static priority

Ranges from 100-139, default value is 120

Only changed using the nice() system call – change by -20 (higher) to +19 (lower)

 Dynamic priority: This is the value actually used by the scheduler

Represents static priority plus a dynamic “bonus”

 How the “bonus” is calculated

Bonus range is between -5 (higher priority) to +5 (lower priority)

I/O bound tasks given boost of up to -5

CPU bound jobs given penalty of up to +5

Bonus calculated by taking ratio of task's “wait time” to “running time”

oIdea: Task that waits more often is probably I/O bound

24

Priorities and Time-slice length

25

List of Tasks Indexed according to Priorities

26
Rutgers University

