
CS416 – CPU Scheduling

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11
(https://sakai.rutgers.edu)

Assumptions

Pool of jobs contending for the CPU

CPU is a scarce resource

Scheduler mediates between jobs to optimize some performance

criteria

Process States

Scheduling

 We have already Discussed Context Switching

Context Switching – Mechanism

Scheduling – Policy

 Which Thread to run next?

 How to ensure every thread gets a chance to run (Fairness)?

 How to prevent Starvation ?

 Process Scheduling Vs Thread Scheduling : If the OS supports

kernel level threads, threads are scheduled. If not, processes are

scheduled.

We will use these terms interchangeably.

Scheduler

 Scheduler is the OS component that decides which thread to run

next on the CPU

 The Scheduler operates on the ready queue

Why does it not deal with the I/O queues ?

 When does the scheduler run ?

When a threads exits

When a thread moves from ready queue to waiting queue (I/O, wait())

When a thread moves from waiting state to ready state(Completion of I/O)

When a thread moves from running state to ready state (Interrupt)

 Scheduling can be preemptive(forced context-switch) or non-

preemptive

 Batch vs Interactive Scheduling

Batch: Non-Preemptive and No other jobs run if they block

Interactive: Preemptive and other jobs do run if they block

Job Behavior

Multiprogramming Example

Process A

Process B

Time = 10 seconds

idle; input idle; input stopstart

1 sec

idle; input idle; input stopstart

Multiprogramming Example (cont)

Total Time = 20 seconds

Process A Process B

idle; input idle; input stop Astart idle; input idle; input stop B

start B

Throughput = 2 jobs in 20 seconds = 0.1 jobs/second

Ave. Waiting Time = (0+10)/2 = 5 seconds

Multiprogramming Example (cont)

Process A

Process B

idle; input idle; input stop Astart

idle; input idle; input stop B

context switch

to B

context switch

to A

Throughput = 2 jobs in 11 seconds = 0.18 jobs/second

Ave. Waiting Time = (0+1)/2 = 0.5 seconds

Scheduling Goals

 Goal of a scheduling policy is to achieve some “optimal” allocation

of CPU time in the system

 Possible Goals

Maximize CPU Utilization (% of time the CPU is busy)

Maximize CPU Throughput (No. of jobs completed per second)

Minimize Turnaround time (Tjob_end – Tjob_start)

Minimize Waiting time (Total time spent Waiting on Queues)

oWhich Queue ?

Minimize job Response time (Tfirst_response – Tjob_start)

 These goals often conflict

Batch Systems: Maximize the Job throughput and minimize turnaround time

Interactive Systems: Minimize response times of interactive jobs (eg. Editors)

System-

Oriented

Metrics

Starvation

 Schedulers often try to eliminate Starvation

e.g., If a high priority thread always gets to run before a low-priority thread

We say the low priority thread is starved

 Not all schedulers have this goal !

Sometimes starvation is permitted to achieve other goals

 Example: Real Time Systems

Some threads run under a specific deadline

In this case it is OK to starve other threads.

(Short-Term) CPU Scheduler

Selects from among the processes in memory that are ready to

execute, and allocates the CPU to one of them.

Long term scheduler: decide which processes should be swapped-in/out

Dispatcher

Dispatcher module gives control of the CPU to the process selected

by the short-term scheduler; this involves:

switching context

switching to user mode

jumping to the proper location in the user program to restart that program

Dispatch latency – time it takes for the dispatcher to stop one

process and start another running.

Job Behavior

Two broad classes of processes : CPU bound and I/O bound

CPU Bound:

I/O Bound

 Examples of each Kind:

CPU Bound: Compiler, Number Crunching, games, MP3 encoder, etc

I/O Bound: Web browser, database engine, word processor, etc

First-Come-First-Served

 Jobs are scheduled in the order that they arrive

Also called FIFO

 Used only for batch scheduling

Jobs run to completion – Never blocks or gets context swictched

 Jobs treated equally

NO Starvation !

 Whats wrong with FCFS?

Short jobs get stuck behind long ones – Increases the waiting time, response

time

(FCFS) Scheduling - Example

Example: Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case.

Convoy effect: short process behind long process

 Low CPU and I/O utilization

P1P3P2

63 300

Round Robin (RR)

 Essentially FCFS with preemption

 A thread runs until it blocks or its CPU quantum expires.

 How to determine the ideal CPU quantum?

Quantum needs to be large compared to the context switch overhead

In modern systems, Quanta range from 10 to 100msec and CS time is < 10 μs

Waiting time for Job A : 8, Job B: 7, Job C: 8

Average Waiting Time = (8+7+8)/3 = 7.66 (Higher than SJF, Lower than FCFS)

Response Time is however the lowest !

Shortest Job First (SJF)

 Schedule Job with shortest expected CPU Burst

This is non-preemptive and will run until it blocks for I/O

 Idea:

Running short-CPU-burst jobs first gets them done, and out of the way.

Allows their I/O to overlap with each other: more efficient use of the CPU

Interactive programs often have a short CPU burst: Good to run them first

 How to predict a process’s CPU Burst ?

Get a pretty good guess by looking at the history

 We use exponential averaging

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.

1n

th

n
nt

 .1
1 nnn

t

Examples of Exponential Averaging

 =0

n+1 = n

Recent history does not count.

 =1

n+1 = tn

Only the actual last CPU burst counts.

If we expand the formula, we get:

n+1 = tn+(1 -) tn-1 + …

+(1 -)j tn-j + …

+(1 -)n-1 t0

Since both and (1 -) are less than or equal to 1, each successive

term has less weight than its predecessor.

SJF Example

Shortest Remaining Time First (SRTF)

 SJF is non-preemptive policy

 Preemptive variant: Shortest Remaining Time First (SRTF)

If a job becomes runnable with a shorter expected CPU burst, preempt current

job and run the new job

SRTF vs RR

Priority Scheduling

A priority number (integer) is associated with each process

Can be set by User/OS or combination of two.

The CPU is allocated to the process with the highest priority
(smallest integer highest priority).

Preemptive: Whenever higher priority process comes, lower priority process
gets preempted.

Non-preemptive: Puts the higher priority process at the head of the queue

SJF is a priority scheduling where priority is the predicted next CPU
burst time.

Problem: Starvation – low priority processes may never execute.

Solution: Aging – as time progresses increase the priority of the
process.

Multi-Level Queue

Multi-Level Queue

Ready queue is partitioned into separate queues:

oCould be one queue for each priority level

Each queue has its own scheduling algorithm,

Scheduling must be done between the queues.

Example: 2 Priority Levels (0 -> Foreground, 1-> Background)

Fixed priority scheduling: serve all foreground processes and then

serve background processes. Possibility of starvation.

Time slice: Each queue gets a certain amount of CPU time which

it can schedule amongst its processes; i.e.,

o80% to foreground in RR

o20% to background in FCFS

Multi-Level Feedback Queue (MLFQ)

Multi-Level Feedback Queue (MLFQ)

 Observation: Want to give higher priority to I/O-bound jobs

They are likely to be interactive and need CPU rapidly after I/O completes

However, jobs are not always I/O bound or CPU-bound during execution!

oWeb browser is mostly I/O bound and interactive but, becomes CPU bound when

running a Java applet

 Basic idea: Adjust priority of a thread in response to its CPU usage

Increase priority if job has a short CPU burst

Decrease priority if job has a long CPU burst (e.g., uses up CPU quantum)

Whenever processes with higher priority arrives, Preempt the lower priority job

Jobs with lower priorities get longer CPU quantum

 What is the rationale for this???

Don't want to give high priority to CPU-bound jobs...

oBecause lower-priority jobs can't preempt them if they get the CPU.

OK to give longer CPU quantum to low-priority jobs:

oI/O bound jobs with higher priority can still preempt when they become runnable.

MLFQ Implementation

MLFQ Implementation

MLFQ Implementation

MLFQ Implementation

MLFQ Implementation

MLFQ Implementation

