
CS416 – CPU Scheduling

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11
(https://sakai.rutgers.edu)

Assumptions

Pool of jobs contending for the CPU

CPU is a scarce resource

Scheduler mediates between jobs to optimize some performance

criteria

Process States

Scheduling

 We have already Discussed Context Switching

Context Switching – Mechanism

Scheduling – Policy

 Which Thread to run next?

 How to ensure every thread gets a chance to run (Fairness)?

 How to prevent Starvation ?

 Process Scheduling Vs Thread Scheduling : If the OS supports

kernel level threads, threads are scheduled. If not, processes are

scheduled.

We will use these terms interchangeably.

Scheduler

 Scheduler is the OS component that decides which thread to run

next on the CPU

 The Scheduler operates on the ready queue

Why does it not deal with the I/O queues ?

 When does the scheduler run ?

When a threads exits

When a thread moves from ready queue to waiting queue (I/O, wait())

When a thread moves from waiting state to ready state(Completion of I/O)

When a thread moves from running state to ready state (Interrupt)

 Scheduling can be preemptive(forced context-switch) or non-

preemptive

 Batch vs Interactive Scheduling

Batch: Non-Preemptive and No other jobs run if they block

Interactive: Preemptive and other jobs do run if they block

Job Behavior

Multiprogramming Example

Process A

Process B

Time = 10 seconds

idle; input idle; input stopstart

1 sec

idle; input idle; input stopstart

Multiprogramming Example (cont)

Total Time = 20 seconds

Process A Process B

idle; input idle; input stop Astart idle; input idle; input stop B

start B

Throughput = 2 jobs in 20 seconds = 0.1 jobs/second

Ave. Waiting Time = (0+10)/2 = 5 seconds

Multiprogramming Example (cont)

Process A

Process B

idle; input idle; input stop Astart

idle; input idle; input stop B

context switch

to B

context switch

to A

Throughput = 2 jobs in 11 seconds = 0.18 jobs/second

Ave. Waiting Time = (0+1)/2 = 0.5 seconds

Scheduling Goals

 Goal of a scheduling policy is to achieve some “optimal” allocation

of CPU time in the system

 Possible Goals

Maximize CPU Utilization (% of time the CPU is busy)

Maximize CPU Throughput (No. of jobs completed per second)

Minimize Turnaround time (Tjob_end – Tjob_start)

Minimize Waiting time (Total time spent Waiting on Queues)

oWhich Queue ?

Minimize job Response time (Tfirst_response – Tjob_start)

 These goals often conflict

Batch Systems: Maximize the Job throughput and minimize turnaround time

Interactive Systems: Minimize response times of interactive jobs (eg. Editors)

System-

Oriented

Metrics

Starvation

 Schedulers often try to eliminate Starvation

e.g., If a high priority thread always gets to run before a low-priority thread

We say the low priority thread is starved

 Not all schedulers have this goal !

Sometimes starvation is permitted to achieve other goals

 Example: Real Time Systems

Some threads run under a specific deadline

In this case it is OK to starve other threads.

(Short-Term) CPU Scheduler

Selects from among the processes in memory that are ready to

execute, and allocates the CPU to one of them.

Long term scheduler: decide which processes should be swapped-in/out

Dispatcher

Dispatcher module gives control of the CPU to the process selected

by the short-term scheduler; this involves:

switching context

switching to user mode

jumping to the proper location in the user program to restart that program

Dispatch latency – time it takes for the dispatcher to stop one

process and start another running.

Job Behavior

Two broad classes of processes : CPU bound and I/O bound

CPU Bound:

I/O Bound

 Examples of each Kind:

CPU Bound: Compiler, Number Crunching, games, MP3 encoder, etc

I/O Bound: Web browser, database engine, word processor, etc

First-Come-First-Served

 Jobs are scheduled in the order that they arrive

Also called FIFO

 Used only for batch scheduling

Jobs run to completion – Never blocks or gets context swictched

 Jobs treated equally

NO Starvation !

 Whats wrong with FCFS?

Short jobs get stuck behind long ones – Increases the waiting time, response

time

(FCFS) Scheduling - Example

Example: Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case.

Convoy effect: short process behind long process

 Low CPU and I/O utilization

P1P3P2

63 300

Round Robin (RR)

 Essentially FCFS with preemption

 A thread runs until it blocks or its CPU quantum expires.

 How to determine the ideal CPU quantum?

Quantum needs to be large compared to the context switch overhead

In modern systems, Quanta range from 10 to 100msec and CS time is < 10 μs

Waiting time for Job A : 8, Job B: 7, Job C: 8

Average Waiting Time = (8+7+8)/3 = 7.66 (Higher than SJF, Lower than FCFS)

Response Time is however the lowest !

Shortest Job First (SJF)

 Schedule Job with shortest expected CPU Burst

This is non-preemptive and will run until it blocks for I/O

 Idea:

Running short-CPU-burst jobs first gets them done, and out of the way.

Allows their I/O to overlap with each other: more efficient use of the CPU

Interactive programs often have a short CPU burst: Good to run them first

 How to predict a process’s CPU Burst ?

Get a pretty good guess by looking at the history

 We use exponential averaging

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.












1n

th

n
nt

  .1
1 nnn

t  


Examples of Exponential Averaging

 =0

n+1 = n

Recent history does not count.

 =1

n+1 = tn

Only the actual last CPU burst counts.

If we expand the formula, we get:

n+1 =  tn+(1 - )  tn-1 + …

+(1 - )j  tn-j + …

+(1 - )n-1 t0

Since both  and (1 - ) are less than or equal to 1, each successive

term has less weight than its predecessor.

SJF Example

Shortest Remaining Time First (SRTF)

 SJF is non-preemptive policy

 Preemptive variant: Shortest Remaining Time First (SRTF)

If a job becomes runnable with a shorter expected CPU burst, preempt current

job and run the new job

SRTF vs RR

Priority Scheduling

A priority number (integer) is associated with each process

Can be set by User/OS or combination of two.

The CPU is allocated to the process with the highest priority
(smallest integer  highest priority).

Preemptive: Whenever higher priority process comes, lower priority process
gets preempted.

Non-preemptive: Puts the higher priority process at the head of the queue

SJF is a priority scheduling where priority is the predicted next CPU
burst time.

Problem: Starvation – low priority processes may never execute.

Solution: Aging – as time progresses increase the priority of the
process.

Multi-Level Queue

Multi-Level Queue

Ready queue is partitioned into separate queues:

oCould be one queue for each priority level

Each queue has its own scheduling algorithm,

Scheduling must be done between the queues.

Example: 2 Priority Levels (0 -> Foreground, 1-> Background)

Fixed priority scheduling: serve all foreground processes and then

serve background processes. Possibility of starvation.

Time slice: Each queue gets a certain amount of CPU time which

it can schedule amongst its processes; i.e.,

o80% to foreground in RR

o20% to background in FCFS

Multi-Level Feedback Queue (MLFQ)

Multi-Level Feedback Queue (MLFQ)

 Observation: Want to give higher priority to I/O-bound jobs

They are likely to be interactive and need CPU rapidly after I/O completes

However, jobs are not always I/O bound or CPU-bound during execution!

oWeb browser is mostly I/O bound and interactive but, becomes CPU bound when

running a Java applet

 Basic idea: Adjust priority of a thread in response to its CPU usage

Increase priority if job has a short CPU burst

Decrease priority if job has a long CPU burst (e.g., uses up CPU quantum)

Whenever processes with higher priority arrives, Preempt the lower priority job

Jobs with lower priorities get longer CPU quantum

 What is the rationale for this???

Don't want to give high priority to CPU-bound jobs...

oBecause lower-priority jobs can't preempt them if they get the CPU.

OK to give longer CPU quantum to low-priority jobs:

oI/O bound jobs with higher priority can still preempt when they become runnable.

MLFQ Implementation

MLFQ Implementation

MLFQ Implementation

MLFQ Implementation

MLFQ Implementation

MLFQ Implementation

