CS416 — CPU Scheduling

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science
Rutgers University

Rutgers Sakal: 01:198:416 Sp11
(https://sakai.rutgers.edu)

Assumptions

Pool of jobs contending for the CPU

CPU is a scarce resource

Scheduler mediates between jobs to optimize some performance
criteria

Process States

admitted interrupt

terminated

Scheduling

We have already Discussed Context Switching
Context Switching — Mechanism

Scheduling — Policy
Which Thread to run next?

How to ensure every thread gets a chance to run (Fairness)?

How to prevent Starvation ?

Process Scheduling Vs Thread Scheduling : If the OS supports
kernel level threads, threads are scheduled. If not, processes are
scheduled.

We will use these terms interchangeably.

Scheduler

Scheduler is the OS component that decides which thread to run
next on the CPU
The Scheduler operates on the ready queue

Why does it not deal with the 1/0O queues ?

When does the scheduler run ?

When a threads exits

When a thread moves from ready queue to waiting queue (1/0, wait())

When a thread moves from waiting state to ready state(Completion of 1/0O)

When a thread moves from running state to ready state (Interrupt)
Scheduling can be preemptive(forced context-switch) or non-
preemptive
Batch vs Interactive Scheduling

Batch: Non-Preemptive and No other jobs run if they block

Interactive: Preemptive and other jobs do run if they block

Job Behavior

L]
L
L

load store
add store
read from file - CPL burst
Wl o 140D “ 110 burst
store increment
index CPU burst
write to file
wait for I/0 j 10 burst
load store
add store
read from file - CPL burst

wait for IO L 1O burst

Multiprogramming Example

Process A

. lsec |
| L | I | |
| | | | | / |
start Idle; input Idle; input stop
Process B
|] o | |
| | | | | / |
start Idle; input Idle; input stop

Time = 10 seconds

Multiprogramming Example (cont)

Process A Process B
A tatB ¥/
AP s
/2 |
start idle; input idle; input stop A idle; input idle; input stop B

Total Time = 20 seconds

Throughput = 2 jobs in 20 seconds = 0.1 jobs/second

Ave. Waiting Time = (0+10)/2 = 5 seconds

Multiprogramming Example (cont)

Process A
start idle; input idle; input stop A
A A
context switch context switch
to B to A
\ 4 \ 4
Process B H/ %
idle; input idle; input stop B

Throughput = 2 jobs in 11 seconds = 0.18 jobs/second

Ave. Waiting Time = (0+1)/2 = 0.5 seconds

Scheduling Goals

Goal of a scheduling policy 1s to achieve some “optimal” allocation
of CPU time in the system

Possible Goals
System-
Maximize CPU Utilization (% of time the CPU is busy) Oriented
Maximize CPU Throughput (No. of jobs completed per second)] Metrics

Minimize Turnaround time (Tio, eng — Tiob, start)

Minimize Waiting time (Total time spent Waiting on Queues)
Which Queue ?
Minimize job Response time (Tﬁrst_reSIOOnse — Tjob_start)
These goals often conflict
Batch Systems: Maximize the Job throughput and minimize turnaround time
Interactive Systems: Minimize response times of interactive jobs (eg. Editors)

Starvation

Schedulers often try to eliminate Starvation
e.g., If a high priority thread always gets to run before a low-priority thread

We say the low priority thread is starved

Not all schedulers have this goal !

Sometimes starvation is permitted to achieve other goals

Example: Real Time Systems
Some threads run under a specific deadline
In this case it is OK to starve other threads.

(Short-Term) CPU Scheduler

Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them.

Long term scheduler: decide which processes should be swapped-in/out

Dispatcher
Dispatcher module gives control of the CPU to the process selected
by the short-term scheduler; this involves:
switching context
switching to user mode
jumping to the proper location in the user program to restart that program

Dispatch latency — time it takes for the dispatcher to stop one
process and start another running.

Job Behavior

Two broad classes of processes : CPU bound and 1/0O bound
CPU Bound:

/O Bound

Examples of each Kind:
CPU Bound: Compiler, Number Crunching, games, MP3 encoder, etc
I/0 Bound: Web browser, database engine, word processor, etc

First-Come-First-Served

Jobs are scheduled in the order that they arrive
Also called FIFO

Used only for batch scheduling

Jobs run to completion — Never blocks or gets context swictched

Jobs treated equally
NO Starvation !

Whats wrong with FCFS?

Short jobs get stuck behind long ones — Increases the waiting time, response
time
T —- IE.?’?? £

I o> e

(FCFS) Scheduling - Example

Example: Process Burst Time
P, 24
P, 3
P, 3

Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

Py P, P

0 24 27 30

Waiting time for P, =0; P, =24, P,=27
Average waiting time: (0 + 24 + 27)/3 =17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P,,P;,P,.
The Gantt chart for the schedule is:

P, P Py

0 3 6 30
Waiting time for P, =6;P,=0.P;=3

Average waiting time: (6 +0+ 3)/3=3

Much better than previous case.

Convoy effect: short process behind long process
Low CPU and 1/0O utilization

Round Robin (RR)

Essentially FCFS with preemption
A thread runs until it blocks or its CPU quantum expires.

How to determine the ideal CPU quantum?
Quantum needs to be large compared to the context switch overhead
In modern systems, Quanta range from 10 to 100msec and CS time is < 10 us

> lime
rers [ENCHEN job B [SEICH

> [Ime

= [EN N BN

Waiting time for Job A : 8, Job B: 7, Job C: 8
Average Waiting Time = (8+7+8)/3 = 7.66 (Higher than SJF, Lower than FCFS)
Response Time is however the lowest !

Shortest Job First (SJF)

Schedule Job with shortest expected CPU Burst
This is non-preemptive and will run until it blocks for 1/0
Idea:

Running short-CPU-burst jobs first gets them done, and out of the way.

Allows their 1/0O to overlap with each other: more efficient use of the CPU

Interactive programs often have a short CPU burst: Good to run them first
How to predict a process’s CPU Burst ?

Get a pretty good guess by looking at the history

1. t = actual lenght of n"CPU burst

2. r.,, = predicted value for the next CPU burst
3. a,0<a <1

4. Define

We use exponential averaging « =at +(l-a)r

n+1 n-"

Examples of Exponential Averaging

o =0

Th+1 = Ty

Recent history does not count.
o =1

Th+1 = 1:n

Only the actual last CPU burst counts.
If we expand the formula, we get:
Ta-ot+l-a)at +...
+(l-aYat +..
+(1- o)

Since both o and (1 - o) are less than or equal to 1, each successive
term has less weight than its predecessor.

SJF Example

Job A&

Job B
Job C

fﬁ@ ufﬁng schedule:

B i/o

0O
i/0
A i/o Bis noton the ready queue!

C i/o

Shortest Remaining Time First (SRTF)

SJF is non-preemptive policy

Preemptive variant: Shortest Remaining Time First (SRTF)

If a job becomes runnable with a shorter expected CPU burst, preempt current
job and run the new job

SRTF vs RR

Say we have three jobs:

* Job A and B: both CPU-bound, will run for hours on the CPU with no I/O
* Job C: Requires a 1ms burst of CPU followed by 10ms 1/O operation

RR with 25 ms time slice:

C C
IS | : Lo~
|
RR with 1 ms time slice: Job C's I/O
-
Job C's I/O
* Lots of pointless context switches between Jobs A and B!

SRTF:

* Job A runs to completion, then Job B starts
* C gets scheduled whenever it needs the CPU

Priority Scheduling

A priority number (integer) is associated with each process
Can be set by User/OS or combination of two.

The CPU is allocated to the process with the highest priority
(smallest integer = highest priority).

Preemptive: Whenever higher priority process comes, lower priority process
gets preempted.

Non-preemptive: Puts the higher priority process at the head of the queue

SJF is a priority scheduling where priority is the predicted next CPU
burst time.

Problem: Starvation — low priority processes may never execute.

Solution: Aging — as time progresses increase the priority of the
process.

Multi-Level Queue

highest priority

system processes

batch processes

| |
|

student processes

lowest priority

Multi-Level Queue

Ready queue is partitioned into separate queues:

Could be one queue for each priority level
Each queue has its own scheduling algorithm,
Scheduling must be done between the queues.
Example: 2 Priority Levels (O -> Foreground, 1-> Background)

Fixed priority scheduling: serve all foreground processes and then
serve background processes. Possibility of starvation.

Time slice: Each queue gets a certain amount of CPU time which
It can schedule amongst its processes; I.e.,
80% to foreground in RR
20% to background in FCFS

Multi-Level Feedback Queue (MLFQ)

quantum = 8

quantum = 16

FCFS

Ikl

Multi-Level Feedback Queue (MLFQ)

Observation: Want to give higher priority to 1/0O-bound jobs
They are likely to be interactive and need CPU rapidly after 1/0O completes

However, jobs are not always 1/0 bound or CPU-bound during execution!

Web browser is mostly 1/0 bound and interactive but, becomes CPU bound when
running a Java applet

Basic idea: Adjust priority of a thread in response to its CPU usage
Increase priority if job has a short CPU burst
Decrease priority if job has a long CPU burst (e.g., uses up CPU guantum)
Whenever processes with higher priority arrives, Preempt the lower priority job
Jobs with lower priorities get longer CPU quantum

What is the rationale for this???

Don't want to give high priority to CPU-bound jobs...
Because lower-priority jobs can't preempt them if they get the CPU.
OK to give longer CPU quantum to low-priority jobs:

I/0 bound jobs with higher priority can still preempt when they become runnable.

MLFQ Implementation

/"_'-\

'P-\I:HL- /=ﬁ'11}4277, ‘T_fl’\ PID 4301, Tz
. State: Ready_ State: Ready_

High prio e »l Fo

A\, 'ﬁgﬂfsmﬁ /) ‘ﬁgﬂt’smﬁ

wj
'ﬁ']‘l?g:nz, T1
State: Re adg_

Medium prio ———» PC

'ﬁgﬂfsmﬁ

Low prio —>

MLFQ Implementation

'ﬁ'ﬂ?qgg}l, T
State: Re ady_
High prio — PC
Registers Uses entire CPU burst (preempted)
Placed into lower priority queue
'ﬁ'ﬂjgznz, Ti ‘15‘ID4:7,7, To
State: Re ady_ State: 'R’ad_g_
Medium prio > fc - e
'ﬁgﬂfsmﬁ 'ﬁgﬂismﬁ

Low prio —»

MLFQ Implementation

High prio

Medium prio

Low prio

Pl

/'1;'1174391,]"5\

State: Re ady_
PC

N 'ﬁ&gﬁim’rs y.

k//

-

'}5'1'173102, T1
State: Re miy_

PC
‘ﬁ@ﬂfsl’ﬂﬁ

PID 4277, To
State: Re adgﬁ

PC

‘ﬁgﬂﬁmrs

—h..

MLFQ Implementation

High prio

Medium prio

Low prio

E——

.

'T;"JD:}QU::, T1
State: Ready

Preempted

PC

$ID 4277, T0
State: Re adgﬁ

PC

‘ﬁgﬂﬂil’ﬂﬁ

'ﬁ@]ismrs

4...

$ID 4301, ‘T_ﬁ
State: Re adyﬂ

PC

‘ﬁg_gi‘imﬁ

MLFQ Implementation

High prio

Medium prio

Low prio

$PID 4277, T0
State: Re adg_

PID 4301, T2
State: Re adg_

S

— >
h
'p_\url_- /’T"I.E'g:uz, Tl\
o SII]!?:‘RHHJE_
PC
\ ‘ﬁgﬂﬂil’ﬂﬁ /
~—
—

PC

PC

'ﬁQgiSL‘ETS

‘ﬁgﬂism“rs

MLFQ Implementation

PID 3202, T1 ZRQﬂswrﬁﬁSPLHTE“PIIEHHI’
State: Ready_ | (blocks on J0)

High prio —> PC

'ﬁgﬂistﬁﬁ

PID 4277, To PID 4301, T2
State: Re adg_ﬁ State: fRfadHH
Medium prio = e —> PC

Gﬁgﬂfsmﬁ 'ﬁg—_gisrers

Low prio —>

