CS416 — Filesystems
Buffer Cache, Page Cache, FFS

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science
Rutgers University

Rutgers Sakal: 01:198:416 Sp11
(https://sakai.rutgers.edu)

Inode structure: UNIX Filesystem

mode

owners (2)

timestamps (3)

——» data

size block count
> data
—» data
direct blocks . :

—» data

—» data > Jata

single indirect —/—>

—> data
double indirect 5

——»{ data

triple indirect » > data

——» data

Size = 64 Bytes, (10 direct blocks, 1 single indirect, 1 double indirect
and 1 triple indirect

Recall Filesystem Layout...

superblock inodes File and directory data blocks

Superblock:
Filesystem Type
Number of Free inodes
Number of Free blocks
Mount Status of the filesystem
Block Size
Location of first inode (“/)
Pointer to the first free block.

Array to represent free inodes

Free-Space Management

Bit vector (n blocks) - Held in memory
01 2 n-1

o 0 = block]i] free
bit[i] =
1 = block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

Linked Free Space List on Disk

This pointer is held in memory ™

free-space list head

20 121 227 23]]

24 |25[[26] |27

28[129 130[131[]
_//

Page Cache

A page cache caches pages rather than disk blocks using
virtual memory techniques

Memory-mapped I/O uses a page cache

Routine 1/0 through the file system uses the buffer (disk)
cache

This leads to the following figure

/0O Without a Unified Buffer Cache

I/0O using

memory-mapped 1/O read() and write()

I

page cache
What Is \
Memory-mapped buffer cache

/0 ? I

file system

File System Caching

Most filesystems cache significant amounts of disk in memory
* e.g., Linux tries to use all “free” physical memory as a giant cache
» Avoids huge overhead for going to disk for every /O

User
Kernel
. Provides illusion of
Filesystem files and and
directories

Maintains memory cache
Buffer cache of recently accessed disk
blocks

: Performs low-level
Low-level disk I/O access to raw disk blocks

Caching Issue

Reliability issues
» What happens when you write to the cache but the system crashes?
» What if you update some of the blocks on disk but not others?
« Example: Update the inode on disk but not the data blocks?
» Write-through cache: All writes immediately sent to disk
» Write-back cache: Cache writes stored in memory until evicted (then written to disk)
« Which is better for performance? For reliability ?

User
Kernel
. Provides illusion of
Filesystem files and and
directories

Maintains memory cache

Buffer cache of recently accessed disk
blocks

: Performs low-level
Low-level disk /O access to raw disk blocks

/O Using a Unified Buffer Cache

/O using

memory-mapped /O read() and write()

N/

pPage cache

|

file system

Berkley Fast File system (FFS)

Motivated by performance problems with older UNIX filesystems:
Older UNIX FS had small blocks (512 bytes)
Free list was unordered; no notion of allocating chunks of space at a time
Inodes and data blocks may be located far from each other (long seek time)
Related files (in same directory) might be very far apart
No symbolic links, limited filenames (12 chars), no quotas

Main goal of FFS was to improve performance:
Use a larger block size — why does this help??
Allocate blocks of a file (and files in same directory) near each other on the
disk
Entire filesystem described by a superblock
Contains free block bitmap, location of root directory inode, etc.

Copies of superblock stored at multiple locations on disk (for safety)

Disk Layout

Disks consist of one or more platters divided into fracks
* Each platter may have one or two heads that perform read/write operations
» Each track consists of multiple sectors *
» The set of sectors across all platters is a cylinder

Platter

Sector Heads

2

Track

FFS Cylinder Groups

Store related blocks on nearby tracks but on different platters
* That is, a whole group of cylinders:

data blocks ©

inode blocks —
superblock -

inode blocks —
data blocks <>

Allocate blocks in a rotationally optimal fashion:

» Try to estimate rotation speed of disk and allocate next block where the disk head will
happen to be when the next read will be ready!

Colocating inodes and directories

Problem: Reading small files is slow. Why?
* What happens when you try to read all files in a directory (e.g., “Is -I" or “grep foo *”) ?
» Must first read directory.
» Then read inode for each file.
» Then read data pointed to by inode.

Solution: Embed the inodes in the directory itself!
« Recall: Directory just a set of <name, inode #> values
* Why not stuff inode contents in the directory file itself?
» What filesystem feature do we possibly give up when doing this?

Problem #2: Must still seek to read contents of each file
In the directory.
» Solution: Pack all files in a directory in a contiguous set of blocks.

Colocating inodes and datablocks

Each Cylinder Group has
A bitmap of free inodes

A bitmap of free datablocks

Inodes and data blocks are allocated from the same cylinder group to reduce
disk seek time

FFS Block Size

Older UNIX filesystems used small blocks (512B or 1KB)

* Low disk bandwidth utilization
« Maximum file size is limited (how many blocks each inode could keep track of)

FFS introduced larger block sizes (4KB)

» Allows multiple sectors to be read/written at once
* Introduces internal fragmentation: a whole block may not be used

Fix: Block “fragments” (1KB)

» The last block in a file may consist of 1, 2, or 3 fragments
» Fragments from different files stored on the same block
* jnhode needed to store both block ID and “fragment index” of fragment within block

Longer File Names

Directory Structure changed to accommodate long names

Unix Directory Entry

<12 bytes Filename> <inode>

D
0 4
4 2
6 1
7 1
8 1
9 3
Directory Entry 1
12 4
16 2
18 1
19 1
20 2
22 2
Directory Entry 2
24 4
28 2
30 1
31 1
32 1
45 3

irectory Entry 0

inode number: 783362
record length: 12

name length: 1

file type: EXT2_FT_DIR=2
name: .

padding

inode number: 1109761
record length: 12

name length: 2

file type: EXT2_FT_DIR=2
name: ..

padding

inode number: 783364

record length: 24

name length: 13

file type: EXT2_FT_REG_FILE
name: .bash_profile

padding

Symbolic Link

Unix System only supported Hard Links
In /tmp/foo /usr/foo (The directory for foo in /tmp and /usr point to same inode
Therefore cannot span across filesystems

Hard links just point to the “inode”
FFS introduced Symbolic Links

Symbolic Links are “files” that store Unix path name to the file (instead of
inode number)

This path is just added to the current program's search path
Therefore, could span across filesystems

Quotas

No Concept of Quotas Existed in the Original Unix

FFS

Soft limit
Hard Limit

These are limits on the number of inodes that a given user can use up.

Further Enhancements - Extent Based Transfer

Recall: FFS adds a gap between sectors on a track

* Try to take advantage of rotational latency for performing next
read or write operation

* Problem: Hurts performance for multi-sector 1/0!

 FFS cannot achieve the full transfer rate of the disk
for large, contiguous reads or writes.

Possible fix: Just get rid of the gap between sectors

* Problem: “Dropped rotation” between consecutive reads or writes:
have to wait for next sector to come around under the heads.

Hybrid approach - “extents” [McVoy, USENIX'91]

» Group blocks into “extents” or clusters of contiguous blocks

* Try to do all I/O on extents rather than individual blocks

* To avoid wasting I/O bandwidth, only do this when FS detects sequential access
» Kind of like just increasing the block size...

