
CS416 – Filesystems

Buffer Cache, Page Cache, FFS

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11

(https://sakai.rutgers.edu)

inode structure: UNIX Filesystem

Size = 64 Bytes, (10 direct blocks, 1 single indirect, 1 double indirect

and 1 triple indirect

Recall Filesystem Layout…

 Superblock:

Filesystem Type

Number of Free inodes

Number of Free blocks

Mount Status of the filesystem

Block Size

Location of first inode (“/”)

Pointer to the first free block.

Array to represent free inodes

Free-Space Management

 Bit vector (n blocks) - Held in memory

…

0 1 2 n-1

bit[i] =

0 block[i] free

1 block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

Linked Free Space List on Disk

This pointer is held in memory

Page Cache

 A page cache caches pages rather than disk blocks using

virtual memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk)

cache

 This leads to the following figure

I/O Without a Unified Buffer Cache

What is

Memory-mapped

I/O ?

File System Caching

Caching Issue

I/O Using a Unified Buffer Cache

page

Berkley Fast File system (FFS)

 Motivated by performance problems with older UNIX filesystems:

Older UNIX FS had small blocks (512 bytes)

Free list was unordered; no notion of allocating chunks of space at a time

inodes and data blocks may be located far from each other (long seek time)

Related files (in same directory) might be very far apart

No symbolic links, limited filenames (12 chars), no quotas

 Main goal of FFS was to improve performance:

Use a larger block size – why does this help??

Allocate blocks of a file (and files in same directory) near each other on the

disk

 Entire filesystem described by a superblock

Contains free block bitmap, location of root directory inode, etc.

Copies of superblock stored at multiple locations on disk (for safety)

Disk Layout

FFS Cylinder Groups

Colocating inodes and directories

Colocating inodes and datablocks

 Each Cylinder Group has

A bitmap of free inodes

A bitmap of free datablocks

Inodes and data blocks are allocated from the same cylinder group to reduce

disk seek time

FFS Block Size

Longer File Names

 Directory Structure changed to accommodate long names

Directory Entry 0

0 4 inode number: 783362

4 2 record length: 12

6 1 name length: 1

7 1 file type: EXT2_FT_DIR=2

8 1 name: .

9 3 padding

Directory Entry 1

12 4 inode number: 1109761

16 2 record length: 12

18 1 name length: 2

19 1 file type: EXT2_FT_DIR=2

20 2 name: ..

22 2 padding

Directory Entry 2

24 4 inode number: 783364

28 2 record length: 24

30 1 name length: 13

31 1 file type: EXT2_FT_REG_FILE

32 13 name: .bash_profile

45 3 padding

Unix Directory Entry

<12 bytes Filename> <inode>

Symbolic Link

 Unix System only supported Hard Links

ln /tmp/foo /usr/foo (The directory for foo in /tmp and /usr point to same inode

Therefore cannot span across filesystems

Hard links just point to the “inode”

 FFS introduced Symbolic Links

Symbolic Links are “files” that store Unix path name to the file (instead of

inode number)

This path is just added to the current program's search path

Therefore, could span across filesystems

Quotas

 No Concept of Quotas Existed in the Original Unix

 FFS

Soft limit

Hard Limit

These are limits on the number of inodes that a given user can use up.

Further Enhancements - Extent Based Transfer

