
CS416 – Filesystems

Buffer Cache, Page Cache, FFS

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11

(https://sakai.rutgers.edu)

inode structure: UNIX Filesystem

Size = 64 Bytes, (10 direct blocks, 1 single indirect, 1 double indirect

and 1 triple indirect

Recall Filesystem Layout…

 Superblock:

Filesystem Type

Number of Free inodes

Number of Free blocks

Mount Status of the filesystem

Block Size

Location of first inode (“/”)

Pointer to the first free block.

Array to represent free inodes

Free-Space Management

 Bit vector (n blocks) - Held in memory

…

0 1 2 n-1

bit[i] =





0  block[i] free

1  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

Linked Free Space List on Disk

This pointer is held in memory

Page Cache

 A page cache caches pages rather than disk blocks using

virtual memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk)

cache

 This leads to the following figure

I/O Without a Unified Buffer Cache

What is

Memory-mapped

I/O ?

File System Caching

Caching Issue

I/O Using a Unified Buffer Cache

page

Berkley Fast File system (FFS)

 Motivated by performance problems with older UNIX filesystems:

Older UNIX FS had small blocks (512 bytes)

Free list was unordered; no notion of allocating chunks of space at a time

inodes and data blocks may be located far from each other (long seek time)

Related files (in same directory) might be very far apart

No symbolic links, limited filenames (12 chars), no quotas

 Main goal of FFS was to improve performance:

Use a larger block size – why does this help??

Allocate blocks of a file (and files in same directory) near each other on the

disk

 Entire filesystem described by a superblock

Contains free block bitmap, location of root directory inode, etc.

Copies of superblock stored at multiple locations on disk (for safety)

Disk Layout

FFS Cylinder Groups

Colocating inodes and directories

Colocating inodes and datablocks

 Each Cylinder Group has

A bitmap of free inodes

A bitmap of free datablocks

Inodes and data blocks are allocated from the same cylinder group to reduce

disk seek time

FFS Block Size

Longer File Names

 Directory Structure changed to accommodate long names

Directory Entry 0

0 4 inode number: 783362

4 2 record length: 12

6 1 name length: 1

7 1 file type: EXT2_FT_DIR=2

8 1 name: .

9 3 padding

Directory Entry 1

12 4 inode number: 1109761

16 2 record length: 12

18 1 name length: 2

19 1 file type: EXT2_FT_DIR=2

20 2 name: ..

22 2 padding

Directory Entry 2

24 4 inode number: 783364

28 2 record length: 24

30 1 name length: 13

31 1 file type: EXT2_FT_REG_FILE

32 13 name: .bash_profile

45 3 padding

Unix Directory Entry

<12 bytes Filename> <inode>

Symbolic Link

 Unix System only supported Hard Links

ln /tmp/foo /usr/foo (The directory for foo in /tmp and /usr point to same inode

Therefore cannot span across filesystems

Hard links just point to the “inode”

 FFS introduced Symbolic Links

Symbolic Links are “files” that store Unix path name to the file (instead of

inode number)

This path is just added to the current program's search path

Therefore, could span across filesystems

Quotas

 No Concept of Quotas Existed in the Original Unix

 FFS

Soft limit

Hard Limit

These are limits on the number of inodes that a given user can use up.

Further Enhancements - Extent Based Transfer

