
Filesystem

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11

(https://sakai.rutgers.edu)

Topics for today

 File System design overview

Virtual File System (VFS)

Basic Structures: superblocks, inodes, directory entries, files

Buffer Cache: How do we avoid going to disk every time we need to read or

write a file?

What is a Filesystem ?

 A filesystem provides a high level application access to disk

Masks the details of low-level sector-based I/O

Provides structured access to data (files and directories)

Caches recently accessed data in memory

Design Choices

 Important design decisions when writing a filesystem

Namespace structure – Flat or hierarchical ?

Multiple Volumes – Explicit drives (C:, D:, etc) or integrate into namespace ?

Filesystem Type: Which filesystem format to support ?

oHow to support multiple filesystems at the same time ?

File Types: Byte Oriented or Record Oriented ?

oUnix/Windows -> Byte oriented

oMany older computers used Record Oriented Files

•Can Read/Write a record at a time

•Record -> predefined by the user

Metadata: What attributes should the filesystem have ?

oVersion, creator, access-rights, last modified, num-bytes, etc.

Implementation: How is the data laid out on disk ?

Filesystem Operations

 Filesystems provide a standard interface to files and directories:

Create a file or directory

Delete a file or directory

Open a file or directory – allows subsequent access

Read, write, append to file contents

Add or remove directory entries

Close a file or directory – terminates access

 What other features do filesystems provide?

Accounting and quotas – prevent your classmates from hogging the disks

Backup – some filesystems have a “$HOME/.backup” containing automatic

snapshots

Indexing and search capabilities

File versioning

Encryption

Automatic compression of infrequently-used files

 Should these functionality be built on top of FS or be a part of it ?

Virtual Filesystem (VFS)

 VFS: Manages the namespace,

keeps track of open files,

filesystem type, mount point, etc

Exposes the API for common

filesystem tasks

 Filesystem: Understands how the

filesystem is implemented on the

disk, create, delete files and

directories

 Buffer Cache: No understanding

of the file system. Just caches

frequently used blocks

 Device drivers: The components

that understand how to read/write

a block

A word on blocks vs. sectors

 Filesystems generally access data on disk in terms of blocks

 Disk accesses are usually one sector at a time

a disk address is some kind of tuple

otrack/sector

ocylinder/platter/sector

The Unix disk-drivers translate disk addresses to logical block numbers (1..n)

oThrough the block driver interface you can request block "k" and the driver will

convert that to a track/sector tuple.

 Say a sector is of size 512 bytes, but filesystems block size is 4KB

This means the block consists of 8 contiguous sectors on disk

Translating from block ID to set of sector IDs is pretty trivial:

•Sectors(block_id) = { block_id*8, (block_id*8)+1, ….(block_id*8)+7 }

Logical flow of a filesystem

 User issues a system call

 Kernel intercepts the system call

 Translates the user-process system call (which refer to a file as a

sequence of bytes) to logical block numbers

 This is further translated to disk addresses by the disk driver

Basic Filesystem Structure

 Every file and directory is represented by an inode

Stands for “index node”

 Contains two kinds of information:

Metadata describing file’s owner, access rights, etc

Location of the file’s blocks on disk

 What is the obvious thing missing from the inode Metadata ?

Directories

 A directory is a special kind of a file that contains a list of

(filename, inode number) pairs

These are the contents of the directory “file data” – NOT the directory inode

Filenames (in UNIX) are not stored in the inode at all !

•Implication: Files can have multiple names.

 How do we get the root directory ? (/ on Unix Systems)

 How do we get from inode number to the location of the inode in disk

Pathname Resolution

 The root is a special inode (usually numbered 0 or 1)

Pathname Resolution

 To lookup a pathname, “/etc/passwd”, start at root directory and

walk down the chain of inodes

Locating inodes on disk

All right, so directories tell us the inode number of a file.

 How do we find the inode itself on disk?

Basic idea: Top part of filesystem contains all of the inodes!

inode number is just the “index” of the inode

Easy to compute the block address of a given inode:

•block_addr(inode_num) = block_offset_of_first_inode + (inode_num *
inode_size)

This implies that a filesystem has a fixed number of potential inodes

•This number is generally set when the filesystem is created

Directory Tricks

How should we organize blocks on disk?

Multilevel Indexed Files

Example - 1

Block Size = 512 bytes

Where can you find

the 1033rd byte in

this file on disk?

1033/512 = 2; 1033%512 = 9

Example - 2

 Assume that my home directory(/home/gayathri/) consists of the

following entries

 If I issue the command cat, how will it resolve ?

 “cat” is in block “133”. However, I do not know the address of this

directory entry. So, I should start from the root.

Resolve “/”

Find the entry for “home” directory

From there find the directory entry for “gayathri” directory

Open the directory entry to find the inode number which is 133.

“.” : 147

“..” : 91

“cat” : 133

“dog” : 150

