Filesystem

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science
Rutgers University

Rutgers Sakal: 01:198:416 Sp11
(https://sakai.rutgers.edu)

Topics for today

File System design overview
Virtual File System (VFS)
Basic Structures: superblocks, inodes, directory entries, files

Buffer Cache: How do we avoid going to disk every time we need to read or
write a file?

What is a Filesystem ?

A filesystem provides a high level application access to disk
Masks the details of low-level sector-based 1/0
Provides structured access to data (files and directories)
Caches recently accessed data in memory

Design Choices

Important design decisions when writing a filesystem
Namespace structure — Flat or hierarchical ?
Multiple Volumes — Explicit drives (C:, D:, etc) or integrate into namespace ?

Filesystem Type: Which filesystem format to support ?
How to support multiple filesystems at the same time ?

File Types: Byte Oriented or Record Oriented ?
Unix/Windows -> Byte oriented

Many older computers used Record Oriented Files
Can Read/Write a record at a time
Record -> predefined by the user

Metadata: What attributes should the filesystem have ?
Version, creator, access-rights, last modified, num-bytes, etc.

Implementation: How is the data laid out on disk ?

Filesystem Operations

Filesystems provide a standard interface to files and directories:
Create a file or directory
Delete a file or directory
Open a file or directory — allows subsequent access
Read, write, append to file contents
Add or remove directory entries
Close a file or directory — terminates access

What other features do filesystems provide?
Accounting and quotas — prevent your classmates from hogging the disks

Backup — some filesystems have a “SHOME/.backup” containing automatic
snapshots

Indexing and search capabilities

File versioning

Encryption

Automatic compression of infrequently-used files

Should these functionality be built on top of FS or be a part of it ?

Virtual Filesystem (VFS)

[Applications]

User space

A{Vmual File System

extd]

reise rfs]

Kernel space

i ‘
Directory

Cache
—

()
Inode

Buffer Cache

Device Drivers

Cache
N ——

VFS: Manages the namespace,
keeps track of open files,
filesystem type, mount point, etc

Exposes the APl for common
filesystem tasks

Filesystem: Understands how the
filesystem is implemented on the
disk, create, delete files and
directories

Buffer Cache: No understanding
of the file system. Just caches
frequently used blocks

Device drivers: The components
that understand how to read/write
a block

A word on blocks vs. sectors

Filesystems generally access data on disk in terms of blocks

Disk accesses are usually one sector at a time

a disk address is some kind of tuple
track/sector

cylinder/platter/sector

The Unix disk-drivers translate disk addresses to logical block numbers (1..n)

Through the block driver interface you can request block "k and the driver will
convert that to a track/sector tuple.

Say a sector is of size 512 bytes, but filesystems block size is 4KB
This means the block consists of 8 contiguous sectors on disk
Translating from block ID to set of sector IDs is pretty trivial:

Sectors(block_id) = { block_id*8, (block_id*8)+1,(block_id*8)+7 }

Logical flow of a filesystem

User issues a system call
Kernel intercepts the system call

Translates the user-process system call (which refer to a file as a
sequence of bytes) to logical block numbers

This is further translated to disk addresses by the disk driver

Basic Filesystem Structure

Every file and directory is represented by an inode

Stands for “index node”

Contains two kinds of information:

Metadata describing file’s owner, access rights, etc

Location of the file’s blocks on disk

disk blocks with file data

size in bytes
owner of file /...r
group ID of file metadata /
permission bits J/ P
creation time - /
modified time __'_F
access time _"

_ \

\\h--—

What is the obvious thing missing from the inode Metadata ?

Directories

A directory is a special kind of a file that contains a list of
(filename, inode number) pairs

>
/ Filename Inode number
metadata aliases 45686
_f/f appletalk.cfqg 3206854
authorization 631239
bashrc 41131
crontab 27961
passwd 2859
é;?‘

These are the contents of the directory “file data” — NOT the directory inode
Filenames (in UNIX) are not stored in the inode at all !

Implication: Files can have multiple names.

How do we get the root directory ? (/ on Unix Systems)

How do we get from inode number to the location of the inode in disk

Pathname Resolution

The root is a special inode (usually numbered 0 or 1)

/v Filename inode number
inode / bin 2755
E / dev 3
- etc 2801
home 2126948
usr 10699 [

Pathname Resolution

To lookup a pathname, ““/etc/passwd”, start at root directory and
walk down the chain of inodes

inode

>
Filename inode number
/ bin 2755
// dev 3
— etc 2801 -~ - _
home 2126948 -
usxr 10699 [_/;;-7
- /= Filéname inode number
s aliases 45686
appletalk.cfg 3206854
authorization 631239
bashrc 41131
crontab 27961
passwd 2859 - - =
node [- - - - - - - - T - T T T T
2859

lp:*:26:26:Printing Services:/var/spool fcups:/usr/bin/false

_

Locating inodes on disk

All right, so directories tell us the inode number of a file.
How do we find the inode itself on disk?

Basic idea: Top part of filesystem contains all of the inodes!

superblock inodes File and directory data blocks

Inode number is just the “index” of the inode

Easy to compute the block address of a given inode:

block_addr(inode_num) = block_offset_of_First_inode + (inode_num *
/node_size)

This implies that a filesystem has a fixed number of potential inodes
This number is generally set when the filesystem is created

Directory Tricks

Directories map filenames to inode numbers. What does this imply?

We can create multiple pointers to the same inode in
different directories

» Or even the same directory with different filenames

In UNIX this is called a “hard link” and can be done using “In”

bash$ 1ls -i /home/foo
287663 /home/foo (This is the inode number of “foo”)

bash$ 1n /home/foo /tmp/foo

bash$ 1ls -i /home/foo /tmp/foo
287663 /home/foo
287663 /tmp/foo

* “/home/foo” and “/tmp/foo” now refer to the same file on disk

* Not a copy! You will always see identical data no matter which filename
you use to read or write the file.

» Note: This is not the same as a “symbolic link”, which only links one filename to another.

How should we organize blocks on disk?

Very simple policy: A file consists of linked blocks

* inode points to the first block of the file
» Each block points to the next block in the file (just a linked list on disk)
« What are the advantages and disadvantages??

inode ., /' —\l _ /' __\h

Indexed files

* inode contains a list of block numbers containing the file
» Array is allocated when the file is created
« What are the advantages and disadvantages??

inode /""’

Multilevel Indexed Files

Inode contains a list of 10-15 direct block pointers
» First few blocks of file can be referred to by the inode itself

Inode also contains a pointer to a single indirect, double indirect, and
triple indirect blocks
» Allows file to grow to be incredibly large!ll

|
inode / »

single-indirect blocks

direct blocks

double-indirect blocks ——

Example - 1

block offset in file

| block 34 | e}

| block 722 | 1

| block 1072 | 2 _

| bleck 6 . Block Size =512 bytes
| block 377 | 4

| block 72 | 5 Where can you find
| oblock7 6 the 1033 byte in
b bocks] 7 this file on disk?

| block 212 | B

| block 433 | 9

| block m2z | single

| blockos | double

| blocksa | triple

1033/512 = 2; 1033%512 = 9

Example - 2

Assume that my home directory(/home/gayathri/) consists of the

following entries - 147
: I - 91

If | 1Issue the command cat, how will it resolve ? Cont” 133

“dog” :150

“cat” 1s 1n block “133”. However, I do not know the address of this
directory entry. So, I should start from the root.

Resolve “/”

Find the entry for “home” directory

From there find the directory entry for “gayathri directory
Open the directory entry to find the inode number which is 133.

