
Filesystem

CS 416: Operating Systems Design, Spring 2011

Department of Computer Science

Rutgers University

Rutgers Sakai: 01:198:416 Sp11

(https://sakai.rutgers.edu)

Topics for today

 File System design overview

Virtual File System (VFS)

Basic Structures: superblocks, inodes, directory entries, files

Buffer Cache: How do we avoid going to disk every time we need to read or

write a file?

What is a Filesystem ?

 A filesystem provides a high level application access to disk

Masks the details of low-level sector-based I/O

Provides structured access to data (files and directories)

Caches recently accessed data in memory

Design Choices

 Important design decisions when writing a filesystem

Namespace structure – Flat or hierarchical ?

Multiple Volumes – Explicit drives (C:, D:, etc) or integrate into namespace ?

Filesystem Type: Which filesystem format to support ?

oHow to support multiple filesystems at the same time ?

File Types: Byte Oriented or Record Oriented ?

oUnix/Windows -> Byte oriented

oMany older computers used Record Oriented Files

•Can Read/Write a record at a time

•Record -> predefined by the user

Metadata: What attributes should the filesystem have ?

oVersion, creator, access-rights, last modified, num-bytes, etc.

Implementation: How is the data laid out on disk ?

Filesystem Operations

 Filesystems provide a standard interface to files and directories:

Create a file or directory

Delete a file or directory

Open a file or directory – allows subsequent access

Read, write, append to file contents

Add or remove directory entries

Close a file or directory – terminates access

 What other features do filesystems provide?

Accounting and quotas – prevent your classmates from hogging the disks

Backup – some filesystems have a “$HOME/.backup” containing automatic

snapshots

Indexing and search capabilities

File versioning

Encryption

Automatic compression of infrequently-used files

 Should these functionality be built on top of FS or be a part of it ?

Virtual Filesystem (VFS)

 VFS: Manages the namespace,

keeps track of open files,

filesystem type, mount point, etc

Exposes the API for common

filesystem tasks

 Filesystem: Understands how the

filesystem is implemented on the

disk, create, delete files and

directories

 Buffer Cache: No understanding

of the file system. Just caches

frequently used blocks

 Device drivers: The components

that understand how to read/write

a block

A word on blocks vs. sectors

 Filesystems generally access data on disk in terms of blocks

 Disk accesses are usually one sector at a time

a disk address is some kind of tuple

otrack/sector

ocylinder/platter/sector

The Unix disk-drivers translate disk addresses to logical block numbers (1..n)

oThrough the block driver interface you can request block "k" and the driver will

convert that to a track/sector tuple.

 Say a sector is of size 512 bytes, but filesystems block size is 4KB

This means the block consists of 8 contiguous sectors on disk

Translating from block ID to set of sector IDs is pretty trivial:

•Sectors(block_id) = { block_id*8, (block_id*8)+1, ….(block_id*8)+7 }

Logical flow of a filesystem

 User issues a system call

 Kernel intercepts the system call

 Translates the user-process system call (which refer to a file as a

sequence of bytes) to logical block numbers

 This is further translated to disk addresses by the disk driver

Basic Filesystem Structure

 Every file and directory is represented by an inode

Stands for “index node”

 Contains two kinds of information:

Metadata describing file’s owner, access rights, etc

Location of the file’s blocks on disk

 What is the obvious thing missing from the inode Metadata ?

Directories

 A directory is a special kind of a file that contains a list of

(filename, inode number) pairs

These are the contents of the directory “file data” – NOT the directory inode

Filenames (in UNIX) are not stored in the inode at all !

•Implication: Files can have multiple names.

 How do we get the root directory ? (/ on Unix Systems)

 How do we get from inode number to the location of the inode in disk

Pathname Resolution

 The root is a special inode (usually numbered 0 or 1)

Pathname Resolution

 To lookup a pathname, “/etc/passwd”, start at root directory and

walk down the chain of inodes

Locating inodes on disk

All right, so directories tell us the inode number of a file.

 How do we find the inode itself on disk?

Basic idea: Top part of filesystem contains all of the inodes!

inode number is just the “index” of the inode

Easy to compute the block address of a given inode:

•block_addr(inode_num) = block_offset_of_first_inode + (inode_num *
inode_size)

This implies that a filesystem has a fixed number of potential inodes

•This number is generally set when the filesystem is created

Directory Tricks

How should we organize blocks on disk?

Multilevel Indexed Files

Example - 1

Block Size = 512 bytes

Where can you find

the 1033rd byte in

this file on disk?

1033/512 = 2; 1033%512 = 9

Example - 2

 Assume that my home directory(/home/gayathri/) consists of the

following entries

 If I issue the command cat, how will it resolve ?

 “cat” is in block “133”. However, I do not know the address of this

directory entry. So, I should start from the root.

Resolve “/”

Find the entry for “home” directory

From there find the directory entry for “gayathri” directory

Open the directory entry to find the inode number which is 133.

“.” : 147

“..” : 91

“cat” : 133

“dog” : 150

