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ABSTRACT
This paper reports on our methodology and experience from
a multi-year effort to cross-validate a vehicular network ex-
periment with four hundred Dedicated Short Range Com-
munications IEEE 802.11p transmitters through ns-3 simu-
lations. With most of these transmitters in communication
range, this represents an extremely dense wireless configu-
ration that challenges radio and interference models. Field
test and simulations were conducted in tandem and itera-
tively to facilitate model selection and configuration as well
as to allow a detailed evaluation of simulation accuracy. We
have learned that 1) results were most sensitive to parameter
choices in the propagation and receiver models, with simu-
lator default parameters not providing a good match; 2) re-
sults could, however, be significantly improved by adapting,
implementing, and calibrating the propagation models and
receiver models from the literature, yielding 88% accuracy
(in terms of packet error rate compared to the field test)
in such a complex large-scale setting; 3) the process was
helpful in identifying errors both in the simulation models
and in the experimental code and points to opportunities for
further research.

CCS Concepts
•Networks → Network simulations; Network perfor-
mance analysis;

Keywords
Large-scale Network Simulation, Vehicle-to-Vehicle Commu-
nication, Simulation Accuracy Analysis

1. INTRODUCTION
Given the increase of programmable wireless hardware,

mobile networking research has shifted over the past decades
from a heavy reliance on simulation towards a more experim-
ent-driven methodology. Yet, network simulators remain an
important tool, for example, for complementing studies of
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large-scale networks with hundreds or thousands of wire-
less nodes that require significant resources to fully evalu-
ate experimentally. The validity of such simulation results
is frequently questioned, and, however, little data exists for
verifying the accuracy of modern network simulators in such
settings.

To fill this void, this paper reports on our methodology
and experience from a multi-year effort to cross-validate a
vehicular network experiment with four hundred Dedicated
Short Range Communications (DSRC) IEEE 802.11p trans-
mitters through ns-3 simulations. The primary use case for
DSRC technology is for vehicles to periodically exchange
their status information (including position, speed, head-
ing, etc.) with other nearby traffic participants, thereby
improving situational awareness among all traffic partici-
pants, whether human-driven or self-driving. This technol-
ogy should also support safety applications with coverage
and latency requirements that would be challenging to ac-
commodate on cellular networks. Given the likely govern-
ment mandate1 and current deployment plans, it is possible
that hundreds, even thousands, of periodically transmitting
vehicles will congregate within communication range in fu-
ture traffic situations. Such vehicle-to-vehicle communica-
tion (V2V) experiments can, therefore, serve as a particu-
larly dense case study of wireless network simulations. In
addition, the safety-related character of the system leads to
heightened need for validation of results, which has made it
possible to conduct field test with two hundred vehicles and
up to four hundred prototype transmitters.

To date, simulation accuracy has only been studied with a
relatively small number of nodes [4, 10–12]. Over the years,
many model improvements have been proposed for network
simulators. As to the receiver modeling, Chen et al. [8] pro-
posed a novel receiver model for the ns-2 simulator. This
model first introduced the frame capture effect into the net-
work simulator. Based on [8], Bingmann et al. [6] devel-
oped a similar receiver model for the ns-3 simulator. Going
beyond a packet-level simulator, Papanastasiou et al. [17]
proposed models to mimic the device’s behavior at a sig-
nal level, which promises more accuracy but significantly
increases the computational load particularly in large-scale
simulations. As to the propagation modeling, many chan-

1The United States National Highway Traffic Safety Ad-
ministration (NHTSA) has issued an advance notice of pro-
posed rulemaking with an intention to require V2V capabil-
ity in new cars since 2020 [16]. The secretary of the United
States Department of Transportation (USDOT) has also an-
nounced an aggressive regulatory plan for V2V deployment
in the near future [2].
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Figure 1: (a) The phase 1 testing environment illustration: the bird’s eye view of the phase 1 testing facility
(top) and an illustration of the vehicle distribution in one test (bottom); (b) the carts and moving vehicles
layout in the phase 2 test

nel models have been proposed for characterizing the signal
propagation in a V2V environment. Some of them were de-
rived based on the gained experience in mobile cellular net-
works [22]. Many of them were derived based on the data
from field measurements, e.g., [7, 13, 20, 21, 23]. However,
the scale of these measurements was normally small, i.e.,
none of them involved hundreds of vehicles. Other large-
scale testbeds, such as the Michigan Safety Pilot [1] also use
large numbers of vehicles but they are distributed over a
large geographic region, so that network load and interfer-
ence effects usually remain negligible. We are not aware of
any large-scale evaluation of simulation accuracy for any of
these models or datasets.

In this effort, we, therefore, co-developed an experiment
design and simulator model that would allow accuracy com-
parisons in V2V scenarios with hundreds of nodes. The key
components that a V2V network simulator primarily relies
on are: a network traffic generator, a node mobility man-
ager, a packet reception controller (via receiver models) and
a channel and signal propagation emulator (via propagation
models). In a V2V network, the primary network workload
is simply periodic broadcast messages, the basic safety mes-
sages, which simplifies the implementation of the network
traffic generator. For node mobility, we use a trace-driven
approach that relies on Global Position System (GPS) read-
ings from the field experiment. The receiver and propaga-
tion models require more attention and therefore we focus
in this paper on these models. In particular, we studied the
accuracy that can be obtained with different model complex-
ities, confirmed exact receiver parameters through hardware
lab testing, and studied the sensitivity to the choice of re-
ceiver and propagation parameters.

In this work, we have learned

• The existing simulation models with default parame-
ters may only achieve 15% simulation accuracy in term
of packet error ratio. However, with calibrated param-
eters, the accuracy of these models can improve by
∼ 20%.

• Adjusting the complexity of propagation models and
receiver models can result in 10-20% improvements in
simulation accuracy with 8% overhead in simulation
runtime and for well-calibrated models, it is possible
to achieve 88% accuracy.

• The calibration process is helpful in identifying imple-
mentation errors of simulators. A calibrated simulator
can assist researchers in validating, planning and pre-
dicting the field experiments results.

2. BACKGROUND

2.1 V2V Safety Communication
The basic concept of V2V safety communication is that

each vehicle periodically broadcasts its most recent driv-
ing status to its nearby vehicles via safety messages; once
a safety message is received, the receiving vehicle assesses
the collision possibility with the sending vehicle; if the two
vehicles are assessed to be in danger, an immediate action is
taken by the vehicle to prevent the collision. The action can
be to warn the driver or to reduce the vehicle speed auto-
matedly. Thereby, an effective V2V safety communication
system requires reliable and low-latency network support.
However, once a large number of vehicles are present nearby,
the shared communication channel can become highly con-
gested. The Carrier Sense Multiple Access/Collision Avoid-
ance Media Access Control (CSMA/CA MAC) protocol used
by the DSRC technology is not sufficient to mitigate all the
packet collisions and thus some such safety messages are
lost. In this case, vehicles can lose the situational awareness
of its nearby vehicles, which potentially results in a delayed
reaction to a dangerous situation. This issue is known as
the scalability issue, and it is one of the main challenges of
the large-scale deployment of V2V systems.

2.2 Field Experiment Setting
To investigate the V2V scalability issue and study the con-

gestion control, the Crash Avoidance Metrics Partnership
(CAMP) Vehicle Safety Communications 3 (VSC3) Consor-
tium, in partnership with USDOT, has conducted a series
of V2V experiments in several testing facilities to evaluate
seven driving conditions.

In these field experiments, each DSRC transceiver broad-
casted safety messages several times per second (the default
rate is 10 Hz) at data rate 6 Mbps on a channel with 10 MHz
bandwidth and 5.9 GHz center frequency, using Atheros
802.11p chips. The packet size of safety messages varied
from 310 to 390 Bytes due to different frame payload size.

Two major field test activities were conducted in this
project. The phase 1 test involved up to 200 On-Board



Equipment devices (OBEs). Each OBE was mounted on
the roof of a vehicle, acting as a DSRC transceiver. Each
OBE acquired its position from an integrated GPS device
at rate 10 Hz. In the phase 1 test, six primary driving con-
figurations were tested: highway, intersection, V2V safety
application, high dynamics winding road, hidden node and
sudden loading effect. In each test trial, the vehicles were
driving along a predefined route at a nearly constant speed
with the intention of maintaining the separation distance
between two adjacent moving vehicles constant. Fig 1a pro-
vides a bird’s eye view of the testing facility and a snapshot
of the vehicle distribution in one field experiment.

As an extension to the phase 1 test, the phase 2 test in-
creased the number of OBEs to 400. The test was conducted
in an open-space environment, and it primarily relied on the
use of OBEs mounted on stationary carts, each of which
held up to six OBEs, leading 400 OBEs to mount on 66
carts. These carts were placed in two rows on each side of
a straight track and evenly spaced within each row. The
length of the track was 1200 m and the spacing between two
neighboring carts was 37.5 m. The test used a combination
of stationary OBE carts and a small number of vehicles. In
the majority of test trials, four moving vehicles were used.
The speed of these moving vehicles was set to 40 km/h and
the separation distance between two adjacent moving ve-
hicles was 75 m. The layout of the carts and the moving
vehicles is illustrated in Fig. 1b.
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Figure 2: Average CBP measured by each OBE

The phase 2 test models a highway traffic jam where most
vehicles are stationary and move forward only rarely. The
moving vehicles mimic vehicles driving on less congested
lanes, e.g., a carpool lane. Such a scenario of high den-
sity of stationary vehicles and a few fast moving vehicles
is a particularly challenging scenario in V2V safety com-
munications since reliable and low-latency communication
needs to be maintained for the fast moving vehicles in this
high-density situation. With such a large number of trans-
mitters in the test, the channel was highly congested. The
channel condition was indicated through channel busy per-
centage (CBP), which is defined as the percentage of the
period during which the channel is measured as busy. As
shown in Fig. 2, more than 88% OBEs observed that their
average CBP was higher than 75%. To produce even higher
channel load, higher transmission rates (up to 50 Hz) were
used by each OBE to emulate up to 2000 transmitters on
the channel. To avoid unnecessary redundancy while an-
alyzing the performance of each OBE, a subset of OBEs,
named loggers, were selected as representatives for data col-
lection and performance evaluation. The selected 33 loggers
were uniformly distributed in the experiment area. Due to
various link distances between loggers, the link quality, in-
dicated by the Received Signal Strength Indicator (RSSI)
measurements, varied in a wide range, from -55 dBm to -95

Figure 3: Link connections between a subset of log-
gers

dBm. Fig. 3 illustrates the connected links between several
loggers and the average RSSI for each link.

It required a significant amount of time (nearly one day
for the CAMP team) to deploy such a large-scale network
over the experiment area. Thereby, for this multi-day test,
the devices had to stay on the testing ground overnight.
Due to the dropped temperature at night, icing occurred
on the surface of the OBE boxes, which could cause tempo-
rary port connection issues (e.g., a port supplying the power
to the OBE) while booting the OBEs in the next morning.
However, note that all the data were collected when no de-
vice malfunctions occurred. Also to control this large-scale
network and monitor the network operation in real time, a
separate control network was built via a WiFi router inte-
grated into each OBE and several access points. With this
control network, the control center was able to notify OBEs
to load configurations, to start/stop tests at approximately
the same time. Meanwhile, the running status of each OBE
was reported to the control center and displayed through
visualization tools. By this way, any device failure or mis-
behavior could be detected and monitored in real time.

In this work, we primarily focused on simulating the phase
2 test because it provided a higher transmitter density and
a more congested channel which challenges the congestion
control study.

2.3 Simulating Signal Propagation
In a network simulator, the propagation model is respon-

sible for reflecting the environmental effects on the channel,
such as signal blockage and reflection, and then determining
the power and delay of a transmitted signal at a receiver.
The main factors of a propagation model are the distance-
dependent path loss and the fading. The distance-dependent
path loss captures how the average received power level
varies with distance to the transmitter. The fading captures
how the instantaneous signal level fluctuates over time, fre-
quency, and space. Typically, a statistical modeling frame-
work of received signal power (RSSI in dB) at a random time
point and for a given distance of a transmitter-receiver pair
is given by

RSSI = Pt + [10 log10 gmed + 10 log10 Fsh] + 10 log10 Fmp

In this equation, the bracketed term is the locally aver-
aged path loss for a particular transmitter-receiver distance
d; gmed(d) is the median value of the path loss over all
transmitter-receiver links of length d. This term is distance-



dependent. One simple model for this term is the log-
distance model, where the path loss in dB changes lin-
early with the distance, Gmed = 10 log10 gmed = A −
10Blog10(d) [19]. If there are no or only small obstacles be-
tween the transmitter and the receiver, the received signal
could consist of a line of sight signal component and mul-
tiple reflected signal components dominated by a ground
reflected signal. This effect can be modeled by the two-
ray model [19]. To model a complex signal propagation
environment, multiple models can be applied jointly, e.g.,
before a distance break point, the two-ray model is applied.
After that point, the log-distance model is applied. For a
particular link, Fsh represents the large-scale fading which
varies slowly with physical location depending on the struc-
tures (e.g. buildings) in the environment. Several previous
works [9,19] have suggested the large-scale fading follows the
Gaussian distribution. Fmp represents the small-scale fading
due to multipath and it can be modeled by the Nakagami
or the Gaussian distributed random variable.

2.4 Simulating Receiving Behaviors
A wireless receiver starts the reception of a packet with

looking for a known pattern of the preamble. If such pattern
is found, the receiver then attempts to decode the Physical
Layer Convergence Procedure (PLCP) header, which con-
tains details of this transmission including data rate, frame
length, etc. If the receiver decodes PLCP header success-
fully, it can next demodulate the frame body. Until the end
of the frame body duration, all the incoming signals fluctu-
ate the receiving packet’s Signal-to-Interference-and-Noise-
Ratio (SINR) and thus affect the current reception. At the
end of the reception of a packet, a CRC code check is per-
formed to determine if this packet can be received correctly.

In a network simulator, the receiver model typically de-
termines whether a packet is received successfully based on
the packet’s SINR. As in [6, 8], the receiver’s behaviors are
normally modeled by identifying different states, e.g. TX,
IDLE, CCA BUSY, and RX.

A node is in TX state if it is transmitting a packet. If
the receiver is in this state while a new packet arrives, the
receiver will drop the newly arrived packet.

If a node is neither in transmission nor reception of a
packet, it is in IDLE or CCA BUSY state. If the receiver is
in one of these states when a packet with high enough power
arrives (e.g., higher than -94 dBm), an SINR check for PLCP
header decoding is scheduled. If the SINR of the receiving
packet passes the check, the reception continues. Otherwise,
it aborts. At the end of the reception of this packet, another
SINR check for frame body decoding is performed to deter-
mine whether the packet is received successfully.

If a node is receiving a packet, it is in RX state. If the
receiver is in this state when a new packet arrives, the deci-
sion whether to switch to the new signal is made by the
frame capture policy. Instead of directly ignoring newly
arrived packet, the frame capture effect enables a re-
ceiver to switch to a stronger signal during the reception
of a weaker one. If a newly arrived packet has high enough
signal strength (e.g. 4 dB greater while receiving the pream-
ble portion of the current packet and 10 dB greater while
receiving the frame body portion), a receiver can then pick
and lock to the new signal. The switch is allowed in both
preamble duration and frame body duration. If the capture
occurs, the earlier reception is terminated immediately.
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Figure 4: Cumulative position error of a moving ve-
hicle between its position in the field experiment
and in the simulation at a given time

3. SIMULATION APPROACHES
The main components of a V2V network simulator are the

node mobility manager, the network traffic generator, the
propagation model and the receiver model. Our calibration
process involved all these four components but focused on
the propagation and the receiver models. In this section,
we describe our methods for calibrating these components
in detail.

3.1 Mobility Manager Calibration
In the field experiments, each OBE relied on the frequent

GPS readings to obtain its location and speed information.
The information was further piggybacked in safety messages
and shared with nearby OBEs. To accurately recreate the
same mobility pattern in simulations, these GPS readings
were collected and organized into a GPS trace file. This
trace file was then converted to a format which can be di-
rectly processed by the ns-3 simulator. By using this ap-
proach, the movement of each node in the simulation is
scheduled according to the input trace file. Thereby, the
logged node position from simulations is expected to be same
as that logged in the experiment. However, the default ns-
3 mobility scheduler extrapolates nodes to their new posi-
tions by primarily using current speed vectors and previously
extrapolated positions with an assumption that the speed
and heading are constant. As shown in Fig. 4, this speed-
dependent scheduling approach can introduce an accumula-
tive error between a node’s position in the simulation and its
position in the input trace file. It is because the speeds in the
trace file were instantaneous reading by the GPS and with
instantaneous speeds as well as constant speed/heading ex-
trapolation in the simulation, there is no guarantee that the
node reaches the trace-reported position at each position up-
date time. Such undesired error can further have a negative
impact on calibrating the signal propagation. To eliminate
such position error, we introduced the position-dependent
scheduling along with the default speed-dependent schedul-
ing, such that the nodes are relocated to the trace-reported
position at each position update time. A slight discontinu-
ity in the nodes trajectory can occur. However, we did not
observe any adverse effect of these discontinuities on the sim-
ulation results. This two-level scheduling method improves
the accuracy of the trace-driven approach and guarantees
that the trace-reported positions are replayed in the simu-
lations.

3.2 Traffic Generator Calibration
In the field experiment, the network traffic was simply pe-

riodic transmissions. However, to reproduce a similar net-
work traffic in simulations, several simulation parameters
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Figure 5: Different fitting models: (a) One-segment log-distance; (b) Two-segment log-distance; (c) Two-
segment, two-ray for the first segment, log-distance for the second segment

including the transmission power, the transmission rate and
jitter, the channel bandwidth and its center frequency, the
packet length, the noise floor, the threshold for clear channel
assessment (CCA) detection, the threshold for energy detec-
tion require correct configurations. A hardware lab test was
conducted by the CAMP VSC3 team to clarify some of the
radio characteristics of the DSRC transceivers and help to
determine the correct values for these parameters. As to the
packet size, it varied in the field experiment. We believe it
would be highly inefficient to reproduce the exact packet size
for every packet in the simulations, since the packet size is
relatively small and it has a marginal impact on the system
performance. Instead, we unified packet size to 316 Bytes
which was the mode value of all the packet sizes.

3.3 Propagation Model Calibration
Since a propagation model consists of two main compo-

nents, i.e. the distance-dependent path loss model and the
fading (large-scale and small-scale), our calibration efforts
primarily targeted these components. Given that the cali-
brated model was expected to be used in large-scale simu-
lations, model complexity should be taken into account as
well as model accuracy. Therefore, our model calibration
started with commonly used low complexity models.

3.3.1 Choices for Distance-dependent Path Loss
One-segment log-distance model: Recall that the one-

segment log-distance model is simple with only two fitting
parameters in it, i.e. the parameter A and B, which can be
obtained by minimizing the mean-square deviation of the
calculated path loss to the field test data. This one-segment
model was a conscious decision to avoid overfitting the RSSI
measurement noise which was mostly present for longer dis-
tances since the signal strength was approaching to the noise
floor. However, as the field test data included RSSI measure-
ments for longer distances (up to 1200 m), the fitted path
loss exponent (the parameter B) tended to be smaller for
longer distances. It is because the RSSI samples were nor-
mally biased towards higher values at the longer distances,
resulting in a gradual decrease in the path loss. Therefore,
applying a single value for the path loss exponent can be
problematic since it is difficult to accurately represent the
path loss for the large distances.

Two-segment log-distance model: As an enhance-
ment to the one-segment log-distance fit, a two-segment log-
distance regression was considered, where a distance break
point dbr was defined. This two-segment model allowed us

to provide separate fits for shorter distances and longer dis-
tances. The shorter distances and the longer distances were
identified via a distance threshold dbr. However, it is im-
portant to emphasize that this model does not capture local
effects such as the null effect at ∼100m from the transmitter
(see Fig. 5) while the two-ray model does so.

Two-ray two-segment model: From the field test data,
we have observed that in some testing scenarios (e.g., high-
way scenario), the spacing distance between vehicles was
comparatively small and thus the ray reflected by the ground
was blocked by multiple metallic obstacles (i.e., car bodies)
along its signal path. In these scenarios, the null effect was
weak as the signal strength of the reflected ray was weak.
The two-segment log-distance model would be a good fit to
the data from these testing scenarios. However, in the phase
2 test, very few metal structures were present on the signal
propagation path. As a result, the direct and the reflected
ray can interact with opposite phase and thus the null ef-
fect was prominent. Therefore, we assumed that the two-ray
model would be a good fit for the shorter distances range.
For longer distances, the effect of two-ray superposition di-
minished and thus we kept using the log-distance model. In
our calibrated model, the distance break point is 250 m.

Fig. 5 illustrates the fitting performance of the three mod-
els. The blue dots represent RSSI samples collected in the
field experiments while the solid lines indicate fitted mod-
els. In general, the one-segment linear model performs worse
than the two-segment model. It is mainly because that the
path loss exponents are normally different for shorter and
longer distances. The one-segment model is not able to cap-
ture this characteristic. Due to the null effect, the RSSI
scatter points show a winding shape in the first 250 m. As
mentioned above, the linear model is not sufficient to model
the null effect, while the two-ray model is a better choice to
follow the winding trend. After the break point, the RSSI
scatter points form a dense, fairly uniform cloud whose trend
is downward with increased distances. This indicates that
the log-distance model is competent to model the median
value of RSSI samples after the break point.

3.3.2 Large-scale Fading and Small-scale Fading
With respect to the fitted model of the distance depen-

dent path loss, the variation of the field RSSI scatter points
was captured by the fading model. In our models, it was
represented as σu, where u was a zero-mean, unit variance
Gaussian random variable, and σ was the standard deviation
of the variation. Note that the fluctuating due to multipath
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Figure 6: Fitted probability model v.s. the threshold-based model in [6, 8]: (a) preamble decoding; (b)
preamble capture; (c) frame body decoding; (d) frame body capture - blue solid line for the fitted probability-
based model, red dash line for the threshold-based model

was also included in each RSSI sample, and thus the variance
computed from the field test data is actually σ2 = σ2

sh+σ2
mp,

that is, the variances of the two kinds of fading were highly
coupled. To decouple them, we first ascertained the dis-
tribution of the small-scale fading. The details of exacting
the distribution have been presented in [15]. Based on the
estimated σmp, the large-scale fading σsh can then be com-
puted.

3.4 Receiver Model Calibration
CAMP VSC3 hardware lab test results have indicated

that the transmitters used in the field test supported the
frame capture effect. Unfortunately, This feature is not
modeled in the default ns-3 simulator yet. Some previous
work [6, 8] proposed a receiver modeling framework which
considered the implementation of the frame capture effect.
In that receiver model, a binary decision of whether a packet
can be received successfully or whether the receiver can
switch to a stronger signal is made by comparing the packet’s
SINR with specific thresholds. However, many existing works
[5, 18] have identified the probabilistic nature of the packet
reception. The CAMP lab test results also showed a simi-
lar probabilistic characteristic of the device’s packet recep-
tion and capture. That is, between 0% and 100% success-
ful reception, a comparatively large transition region exists.
Within this region, packets are successfully received/captured
with a certain probability for a given SINR value. There-
fore, it is desired to model the packet reception and capture
with a probability function of SINR and then create such a
transition region between unsuccessful and successful recep-
tions. We defined two probability models for the preamble
reception and the frame body reception, respectively. The
model for the preamble reception and capture was obtained
by empirically adjusting the default ns-3 probability model
for decoding the Orthogonal Frequency Division Multiplex-
ing (OFDM) 6 Mbps signal for improving agreement of the
simulation results with the field test results. The model for
frame body reception and capture was derived by fitting the
following equation to the CAMP hardware test results.

p =
2a√
π

∫ (SINR−b)/c

0

e−z2dz + d

where a, b, c and d are the parameters to be fitted. A com-
parison between the threshold-based model and the fitted
probability-based model is depicted in Fig. 6.

4. ACCURACY & LESSONS LEARNED
Next, we quantitatively analyze the simulation accuracy

improvement introduced by the calibrated models and the

increased model complexity. The Packet Error Ratio (PER)
is selected as the primary evaluation metric because the ef-
fectiveness of V2V safety communication relies heavily on
successful message exchanges. The Inter-Packet Gap (IPG)
latency, which is defined as the elapsed time between two
consecutive successful receptions from one particular trans-
mitter, is introduced as the secondary metric supporting the
observations from the PER evaluation. The simulation ac-
curacy of a particular link is defined the match to the field
experiment results in terms of these evaluation metrics, e.g.,

for PER, it is (1−|PERsim−PERexp

PERexp
|)×100%, where PERsim

and PERexp are the PER of a specific link in the simulation
and in the field experiment, respectively.

4.1 Accuracy Gain of Model Calibration
To investigate the accuracy improvements introduced by

the model calibration, three propagation models, i.e., one-
segment log-distance, two-segment log-distance, and two-
segment two-ray, were selected and tested with the default
ns-3 receiver model. The default ns-3 simulator has pro-
vided the uncalibrated versions of the log-distance models.
Although our calibrated two-segment two-ray model and the
Nakagami model described in [8] differ somewhat in the way
the median path loss is modeled, two approaches are essen-
tially the same since they share the same distribution of the
ratio of instantaneous receiver power to transmission power.
Thereby, the Nakagami model in [8] was selected as the un-
calibrated version of the two-segment two-ray model. Fig. 7
depicts the average simulation accuracy of all logged links
in term of PER and average IPG. With the default model
parameters, the three propagation models can only achieve
15%, 27%, 31% PER accuracy and 22%, 35%, 42% IPG ac-
curacy. However, with the calibrated model parameters, the
simulation accuracy improves by 25%, 21%, 28% regarding
PER and 24%, 18%, 20% regarding average IPG, respec-
tively.

The receiver model calibration follows a similar trend.
The model described in [6] and the default ns-3 receiver
model were selected as the uncalibrated version of the thres-
hold-based and the probability-based approach, respectively.
Note that the frame capture effect was not implemented
in the default ns-3 model and to the best of our knowl-
edge, we are not aware of any existing work describing a
probability-based frame capture model which can be imple-
mented jointly with the default ns-3 receiver model to serve
as the uncalibrated version of the probability-based model.
The selected receiver models were tested with our calibrated
propagation model. As shown in the bottom plot of Fig. 7,
with the calibrated thresholds, the threshold-based approach
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Figure 7: The improvement of simulation accuracy
with different : (a) propagation models (top); (b)
receiver models (bottom)

gains 5% - 6% more accuracy in both terms of PER and IPG.
As to the probability-based approach, the PER and the IPG
accuracy improve by 29% and 21%, respectively, comparing
to the default ns-3 receiver model.

These results show that the accuracy gain of switching to
a more sophisticated model without parameter calibration
is lower than the gain of calibrating the parameters of a
simpler model. This underscores the need for careful model
parameter choices in simulations.

4.2 Accuracy of Well-calibrated Models
Generally speaking, our calibrated propagation and re-

ceiver model were developed based on the models in existing
literature. Then, according to the extracted features from
the field test data, we selected the models which can largely
capture these features and carefully adjust their model pa-
rameters. The results in Fig. 7 indicate that with well-
calibrated models, it is possible to achieve 88% simulation
accuracy regarding PER and 84% accuracy regarding IPG.

The calibration process was complicated by us having to
rely primarily on the collected RSSI samples for the model
calibration. Using RSSI samples in such a dense setting
creates two challenges. First, the RSSI measures the total
power in the full system bandwidth. Thereby, it is possible
that the interference power is also included in the RSSI sam-
ples. This issue becomes much more severe when the inter-
ference power is strong. Second, the RSSI was reported only
for packets sufficiently clean to be accurately received. Thus,
many RSSI samples may have been lost due to weak received
power or strong interference. To extract useful models from
experiment RSSI data, we have developed methods for de-
coupling the interference from fading effects and for coun-
teracting the effects of biased RSSI values [14].

Link-level accuracy. Fig. 8 depicts the per-link CDF
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Figure 8: CDF of absolute PER errors of simulations
applying different propagation models

of the absolute simulation errors in terms of PER obtained
from the simulations where the three calibrated propagation
models were tested with the calibrated probability-based re-
ceiver model. We observe that while the median errors are
less than 10%, the largest error for the two-ray model is
∼ 43%, but over 98% for the log-distance models. This re-
flects the stochastic nature of the propagation model: links
are assigned random fading values that match the distribu-
tion observed in the field-test but not necessarily the exact
fading characteristics of a link. This primarily affects links
with weak signals near the reception threshold. For exam-
ple, for links with only a small subset of packets received
successfully in the field experiment, the log-distance models
fail to reproduce these successful receptions in the simula-
tion and wrongly treat these weak links as broken links, then
resulting in larger errors. We also notice that for the two-
ray model, the simulation error of about 78% links is less
than 10%, but only 54% and 60% links in the one-segment
and the two-segment log-distance simulations can achieve
the same level of accuracy.

Two aspects of complexity were discussed in the receiver
modeling: 1) with v.s. without the frame capture implemen-
tation; 2) the threshold-based v.s. the probability-based ap-
proach. Since the frame capture effect is expected to primar-
ily benefit these links with higher signal strength, the perfor-
mance of links with length less than 100 m were investigated
in three types of simulations: the calibrated threshold-based
model without and with the frame capture effect, and the
calibrated probability-based model. As shown in Fig. 9, the
simulation accuracy are 2%, 76%, and 87%, respectively.
These results indicate that the implementation of the frame
capture significantly affects the accuracy given that this fea-
ture has already been supported by the field test devices.
Completely without modeling this feature in the simulations
can potentially lead to a low accuracy. Further, if the prob-
abilistic nature of packet reception and capture is modeled,
the simulation accuracy can be improved by 11%.

Runtime tradeoffs. More detailed models can lead to
higher computational loads and increased simulation run-
time. The runtimes for simulating 400 nodes for 260 seconds
using these aforementioned models on a machine with a 2.4
GHz Intel Xeon E7 CPU is listed in Table 1. When using
the two-ray model, the runtime increases by 8.3% comparing
to the log-distance model, due to the more complex prop-
agation equation. Further, in the two-ray simulation, more
nodes may receive interference by a transmission due the
changed propagation range. These additional nodes then
start the receiving procedure which also increases the com-
putational load. Second, for the calibrated probability-based
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Figure 9: PER accuracy of links with link distance
less than 100 m

model, the runtime increases by 8.7% comparing to the de-
fault ns-3 model. It is because both the threshold-based
and the probability-based model introduce additional pro-
cedures for handling the frame capture and the probability-
based model uses a more complex implementation. We find
these tradeoffs acceptable for simulations with several hun-
dreds even thousands of nodes given the improvements in
simulation accuracy.

Table 1: Runtime comparison of simulation models

Models Runtime
One-segment log-distance, default receiver 48 min
Two-segment log-distance, default receiver 48 min
Two-segment two-ray, default receiver 52 min

Threshold-based, two-ray propagation 54 min
Probability-based, two-ray propagation 57 min

4.3 Cross-validation of Simulation and Field
Experiment

The calibration process is helpful in identifying errors in
simulations. While examining the behaviors of the MAC
layer in the default ns-3 simulator, we have identified that
the implementation of the backoff timer countdown in the
Enhanced Distributed Channel Access (EDCA) function does
not follow the descriptions in the IEEE 802.11 standard [3].
This incorrect implementation can enlarge the queuing time
of each packet in the MAC layer and increase the mismatch
to the field experiments. We have shared these corrections
with the ns-3 maintainers.

The process of joint experiments and simulations also helps
in validating, planning, and predicting the field experiment
results. Once a level of credibility of the calibrated simula-
tor is established, we found the simulator useful in planning
additional experimental tests. As an example, recall that in
some field experiments, the OBEs were configured to trans-
mit at higher rates (up to 50 Hz instead of 10 Hz) in order to
emulate more nodes that were actually available (emulating
2000 transmitters on the channel). There was uncertainty
whether this emulation method is valid, which was greatly
reduced by simulating 2000 vehicles and comparing the re-
sults simulations of the emulation as well as with the field
test. We found that up to 30 Hz the emulation method
was accurate but 40 Hz and higher queuing issues compro-
mised its accuracy. Moreover, with a calibrated simulator,
one can predict field test results before the test is conducted
and study possible issues that may be encountered. Simula-
tions can also be used to explore a large number of mobility

and propagation scenarios to identify candidates for future
experimental study.

5. DISCUSSION
In this work, the simulation models were calibrated for

the particular field experiments. However, we believe these
calibrated models can be to some extent generalized to other
scenarios.

The field experiments were conducted in open-space envi-
ronments with few large obstacles. Such environments are
commonly seen in many rural or highway communication
scenarios. We expect that our calibrated propagation model
for the field experiment is still suitable for other similar
open-space environments. Moreover, as briefly mentioned
in Section 3.3, while calibrating the propagation model, we
have developed a set of techniques to process the collected
RSSI data for model fitting, e.g., decoupling the interference
from the fading effect in the collected RSSI samples, coun-
teracting the effect of biased RSSI samples. We believe these
techniques are also useful for fitting experiment RSSI data
to statistical models in other propagation environments.

The packet recovery and capture parameters are not de-
fined in the IEEE 802.11 standards, instead, they are radio
chipset dependent. In theory, receivers should perform sim-
ilarly if their chipsets are from the same vendor and of the
same model. Our receiver model is calibrated for an Atheros
AR5414 chipset. We believe such chipsets have been used
in many other WiFi devices, which means that our model
should match these devices’ receiver behaviors as well.

6. CONCLUSIONS
In this paper, we share our experience in evaluating a

dense V2V network through joint large-scale field tests with
hundreds of nodes and simulations and then reflect on the
state of network simulation. We have learned that: the
default propagation and receiver models were not able to
produce a good match to the field experiment results de-
spite the relatively straightforward open-space simulation
environment. However, with well-calibrated parameters and
models from the literature, the simulation accuracy improves
by about 20% and the stochastic simulation achieved 88%
accuracy in term of PER in this scenario. Such accuracy
can be achieved with existing models from the literature
and at a relatively small additional runtime overhead 8.7%,
although we did not find implementations of these models
readily available in the ns-3 simulator. We have shared our
models and corrections with the ns-3 maintainers to facili-
tate wider availability2.
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