Project 2

ECE544 Communication Networks Il
Francesco Bronzino

Includes teaching material from Bart Braem and Michael
Voorhaen

RUTGERS



Project Goals

* Write custom e
* Design and imp

e Get familiar wit
project

RUTGERS

ements
ement basic network protocols

N the framework used in the final



Writing Custom Elements: Element
Header

* Necessary in the header:
* Include-guard macros
* Click element macros
* Include click/element.hh
* The class declaration containing 3 special methods:

RUTGERS



Writing Custom Elements
Header

 Element

* Necessary in the source file:

* Include click/config.hh first!
CLICK_DECLS macro
CLICK_ENDDECLS macro
EXPORT_ELEMENT macro
Implementations of the methods

RUTGERS



Writing Custom Elements:
SimplePushElement.hh

#ifndef CLICK_SIMPLEPUSHELEMENT_HH
#define CLICK_SIMPLEPUSHELEMENT_HH
#include <click/element.hh>
CLICK_DECLS
class SimplePushElement : public Element {
public:
SimplePushElement () ;
~“SimplePushElement () ;
const char *class_name() const { return "SimplePushElement";}
const char *port_count() const { return "1/1"; }
const char *processing() const { return PUSH; }
int configure(Vector<String>&, ErrorHandlerx);
void push(int, Packet *);
private: uint32_t maxSize;
s
CLICK ENDDECLS
#endif

RUTGERS



Writing Custom Elements:
SimplePushElement.cc

#include <click/config.h>

#include <click/confparse.hh>

#include <click/error.nh>

#include "simplepushelement.hh"

CLICK DECLS
SimplePushElement::SimplePushElement(){}
SimplePushElement::~SimplePushElement(){}

int SimplePushElement::configure(Vector<String> &conf, ErrorHandler

xerrh) {
if (cp_va kparse(conf, this, errh, "MAXPACKETSIZE", cpkM, cplnteger,
&maxSize, cpEnd) < 0) return —1;
if (maxSize <= 0) return errh—>error("maxsize should be larger than 0");
return 0;

}

RUTGERS



Writing Custom Elements:
SimplePushElement.cc

void SimplePushElement::push(int, Packet xp){
click chatter("Got a packet of size %d",p—>length());
if (p—>length() > maxSize) p—>kill();
else output(0).push(p);

}

CLICK ENDDECLS

EXPORT ELEMENT(SimplePushElement)

RUTGERS



Writing Custom Elements

 Similarly you can define pull (needs to implement
pull operation) and agnostic elements (needs to
implement both push and pull operations)

e const char *port_count() const has to return the
number of ports your element will have (it can be a
flexible number, see examples)

RUTGERS



Writing Custom Elements

 We are just scratching the surface...

* For more information:

e Go through the following coding tutorial:

http://www.pats.ua.ac.be/software/click/click-2.0/
coding.pdf

* Dr Kohler thesis: http://www.read.cs.ucla.edu/click/

RUTGERS



Packet Formats

* Packet formats == structs
e structs are a typical C concept, very low level

* tempting to improve this by wrapping the packets in objects
 attractive to create packet factories

* Do not do this, very large overhead:

* In terms of memory and computation (allocate objects,
create and delete objects)

* |n terms of code base

e Use the plain structs
* Requires getting used to

* Straightforward: most packet manipulation is low-level
anyway

RUTGERS



Packet Formats Example

* Define the packet header

struct MyPacketFormat{

uint8 t type; // 8 bit = 1 byte
uint32 t lifetime; // 32 bit = 4 bytes
in__addr destination; // IP address

I

* Cast a packet to access the header

MyPacketFormatx format=(MyPacketFormatx)packet—>data();
format—>type = 0;
format—>lifetime = htonl(counter);
format—>destination = ip.in _addr();

RUTGERS



Compile the New Elements

 All elements are stored in /elements/ directory
* Yours should be put in elements/local
e Put the .hh and .cc files there

 Go to the base click folder

* To make those elements available:
* make elemlist
* make

* Notice new elements being compiled, solve any
compilation problems and use your elements

RUTGERS



Compound Elements

* Group elements in larger elements
* Configuration with variables

e Pass configuration to the internal elements, can be
anything (constant, integer, elements, IP
address, ...)

e Motivates reuse

* No need to use in these projects, but you will be
using one indirectly (more on this later)

RUTGERS



Hands On With Our Framework

* To simplify your life, we will provide you with an
abstracted concept of router port.

* This will allow you to implement your own
protocols on top of the click framework.

* You already got briefly introduced to some of these
tools:
* Remember the createNetl script?

* This creates a pair of linked interfaces (veth1 and

veth?2).
‘ R1 Iveth1 vech{ R \

RUTGERS



Hands On With Our Framework

e Port abstraction: defines one end of a link

e Everything that gets into veth1 arrives unchanged
to veth2

* Abstraction obtained through the provided
element:

* elements/routerport.click

* At the beginning of your configuration file:

* require(library /home/comnetsii/elements/
routerport.click);

* RouterPort is a push element with one input and
one output port

RUTGERS



Hands On With Our Framework

* RouterPort takes 5 parameters: device name, local
ip, remote ip, local mac, remote mac

* Example:

* Element that sends every one second a hello message
into the port

* Prints all packets received and discard them

RatedSource(DATA "hello", RATE 1) -> rp;

rp -> Print(Received, MAXLENGTH -1) -> Discard;

RUTGERS



Hands On With Our Framework

* Important note: all our scripts, generate pair of
interfaces belonging to the same subnet

* Connect only interfaces on the same subnet

* Feel free to look at what is used in the compound
element

RUTGERS



Hands On With Our Framework

e Generate a small network of two routers
e S createNetl

R1 vethl veth2 R
* Exchange pa; between route

e Start two click instances using the example found in:
* examples/router/printer.click

* Make sure to set the 5 parameters appropriately given the
generated interfaces

* E.g.

* S sudo ~/click/userlevel/click printer.click dev=veth1
in_addr=192.168.1.1 out_addr=192.168.1.2 in_port=10000
SgtTfortﬂOOOl in_mac=08:00:27:9a:04:e5 out_mac=08:00:27:3e:

RUTGERS



Hands On With Our Framework

* Writing end-host applications.

 Download package:
http://www.winlab.rutgers.edu/comnet2/Projects/
project2.tar

* The package provides a similar port concept for
developing at the application layer

* Examples on how to use it:

e http://www.winlab.rutgers.edu/comnet2/Projects/
project index.html

RUTGERS



Exercise 1

* Write an element that change the content of every
packet into another

* The new content should be configurable from the
configuration script

e Use the RouterPort elements to build your network

RUTGERS



Exercise 1

* Use provided script to create 4 virtual interfaces
* Run: S createNet2

* Obtained topology:

‘ th2 \ th3 veth4 \
R1 vethl ve RD ve R3

* Tips:
* You can reuse previous exercises to implement R1 and
R3

* You have to implement your own element to change the
content in R2

RUTGERS



Exercise 2

* Design a protocol to transport a file from one end
of a communication link to the other over an
unreliable link.

e Requires fragmentation and reassembly.

* Choose the ARQ protocol you prefer (stop&wait,
go-back N, selective ACK, etc.) or design your own.
The design with better performance will receive
extra credits.

e Use the program diff to check

RUTGERS



Exercise 2

* Use the application layer package to implement the
end host applications.

* Implement one sender and one receiver

RUTGERS



Exercise 2

* Use provided script to create 4 virtual interfaces
* Run: S createNet2

* Obtained topology:

‘ th2 \ th3 veth4 \
H1 vethl ve R ve H2

* Tips:
* R only needs to forward packets. (i.e. you only need 2
elements, the 2 RouterPorts)

RUTGERS



Exercise 3

* Replace router R from the previous exercise with a
new implementation that uses the LossyRouterPort

element
‘ 1 Ivethl vethzi . \veth3 V€th4{ o \
* Tips:

* You can find the new element in the same folder as the
previous one.

RUTGERS



Exercise 3

* Write a small README file that describes the your
implemented protocol and its performance.

* |t should include (but not limited to):
Your designed protocol
Packet and signaling formats

Purpose and functions of each new class/element you
implemented

Performance results (no need for complex graphs, just
an analysis on the performance based on protocol
characterization and experiments)

RUTGERS



General Info

e Due: March 27th

e Submission instructions:

e Submit a single archive (zip or tar.gz) to
bronzino@winlab.rutgers.edu with subject “ECE544
Project 2”

* Include in the archive 3 folders named “exercisel”,
“exercise?”, “exercise3”. They should contain only files
that you implemented (i.e. click configuration files, new
elements and applications).

* Do not include the whole click resources or binary files!

RUTGERS



