
Delay Estimation and Fast Iterative Scheduling

Policies for LTE Uplink
Akash Baid (WINLAB, Rutgers University), Ritesh Madan (Accelera MB), and Ashwin Sampath (Qualcomm)

Abstract—We design fast iterative policies for resource alloca-
tion in the uplink of LTE. We generalize recent works on iterative
delay and queue based scheduling policies to more general system
settings. We model all constraints due to contiguous bandwidth
allocation, peak transmit power and fractional power control.
We design a novel mechanism for inferring the packet delays
approximately from the buffer status reports (BSR) and construct
a new non-differentiable objective function which enables delay
based scheduling. For frequency flat fading, we construct an
O(N logL) optimal resource allocation algorithm for N users
and L points of non-differentiability in the objective function.
For a frequency diversity scheduler with M sub-bands, the
corresponding complexity is essentially O(N(M2+L

2)). Through
detailed system simulations (based on NGMN and 3GPP evalu-
ation methodology) which model H-ARQ, finite resource grants
per sub-frame, realistic traffic, power limitations, interference,
and channel fading, we demonstrate the effectiveness of our
schemes for LTE.

I. INTRODUCTION

Wideband cellular systems such as LTE allow for resource

allocation with high granularity of a resource block (RB)

of 1 ms by 180 KHz [1]. While control signalling and the

general framework for the physical and medium access control

(MAC) layers is specified to enable efficient use of spectral

resources, the exact resource allocation algorithms for power

and frequency allocation can be designed by an implementor.

Moreover, each cell can serve on the order of a thousand active

connections over a bandwidth of 20 MHz. Hence, in order to

take advantage of the flexibility allowed in resource allocation,

the resource allocation algorithms have to be computationally

simple. Many schedulers in the literature entail maximizing

the weighted sum of rates in each subframe. For example,

the weights could be based on utility functions of average

rate [2], [3], the queue length [4], [5], or head-of-line de-

lay [6], [7]. In the uplink, the resource allocation problem must

consider the maximum transmission power of a mobile and the

constraints on the transmission power imposed by fractional

power control to limit inter-cell interference [1], [8]. When

contiguous bandwidth allocation is considered, the problem of

maximizing the weighted sum rate in each subframe on the UL

can be posed as a constrained convex optimization problem.

For N users and M sub-bands general purpose methods

can solve the problem in O((NM)3). With peak UE power

constraints, a O(NM) per iteration subgradient algorithm was

obtained in [9]. Interior point methods (which have faster

convergence) with an O(NM2) (if N >> M ) Newton

iteration were obtained in [10] for uplink resource allocation

with additional fractional power control constraints. However

non-differentiable objective functions are not considered under

the framework in [10].

Also relevant to our paper are recent results on low com-

plexity iterative scheduling algorithms. Many papers prior to

these results had considered scheduling to maximize the sum

of weighted rates in subframe n, where the weights were

based on the arrivals and departures in the queue of a user

until subframe n − 1. The iterative policies in [11], [12]

take into account how the weights change in subframe n to

determine the resource allocation in that subframe. The results

in these papers shed a remarkable insight that when the rate

grows linearly with bandwidth (no peak power constraints at

the transmitter), as the number of users in the system grow,

these rules lead to much smaller per-user queues and delays,

respectively, compared with previous approaches. However,

the complexity of these algorithms grow with the resource

granularity even if the coherence bandwidth does not grow.

In this paper, we construct a continuous but non-differentiable

concave reward function based on packet delays. It can be

shown that the matching algorithm in [11] is an approximate

algorithm to maximize this reward function in every subframe.

Motivated by the above observation, we consider re-

source allocation to maximize a continuous (possibly non-

differentiable) concave reward function. We first consider a

channel model where the channel gain in the frequency domain

is flat and formulate the resource allocation problem as a

non-differentiable convex optimization problem. Note that in

typical cellular environments, the channel gains can be fairly

correlated even for frequencies 2 to 5 MHz apart [13] –

hence, the assumption of frequency flat fading is a reasonable

one when the total bandwidth is up to 5 MHz (28 RBs) or

lower, or if the UEs are allocated to sub-bands (< 5 MHz)

over a slower time-scale based on interference and channel

statistics. We use subgradient analysis to design algorithms

with O(N logL) cost per iteration (with small number of

iterations) for N users and L points of non-differentiability

in the objective function. We also design a novel mechanism

to estimate head-of-line delays of queues at UEs with low

complexity via only queue length information contained in the

buffer status reports (BSR). We note our techniques are equally

applicable for enabling delay based scheduling in the PCF and

HCF modes in WiFi [14]. We demonstrate the improvement in

performance due to our techniques through numerical results

obtained via comprehensive numerical simulations based on

3GPP evaluation methodology [15]. Finally, when frequency

selective fading is considered, we show how interior point

methods with complexity of O(NM2 + NL2) per Newton

iteration can be obtained; note that in practice N >> L,M . A



longer version of the paper containing more detailed analysis

and additional results is available at [16] for reference.

II. SYSTEM MODEL

A. Channel Model, Power, Rate

We focus on the uplink of a single cell in LTE with N
UEs and the total bandwidth divided into M sub-bands of

equal bandwidth B, with B less than the coherence bandwidth

of each user. The maximum transmit power of each UE is

P . The channel gain for UE i on sub-band j is Gij ; we

focus on the scheduler computation in a subframe, and don’t

explicitly show the dependence of quantities on time t. The

base-station can measure the Gijs via decoding the sounding

reference signal (SRS) [1]. Fractional power control in LTE

limits the amount of interference a UE causes at base-stations

in neighboring cells. A UE which is closer to the cell edge

inverts a smaller fraction of the path loss to the serving

base-station than a UE which is closer to the serving base-

station [8]. Thus the transmit powers of a UE on different

sub-bands satisfy [10]:

pij ≤ γijbij , ∀i, j,
M
∑

j=1

pij ≤ P,

where bij is the bandwidth allocated to UE i on sub-band j
and γij is a sub-band specific constant.

The interference PSD at the serving base-station on sub-

band j (denoted as Ij ) can be measured by the base-station

periodically over unassigned frequency resources. The value

depends on the interference coordination algorithm used [17].

When a UE transmits with power pij over bandwidth bij on

sub-band j, it achieves a rate given by (treating interference

as noise) bijψ (Gijpij/bijIj) where ψ : R+ 7→ R+ is an

increasing concave and differentiable function which maps the

SINR to spectral efficiency.

B. Control Signaling

Single carrier frequency division multiple access (SC-

FDMA) is used in the LTE uplink [1] and so a UE can be

granted a number of 180 kHz resource blocks in a contiguous

manner in frequency. The resource allocation to the UEs is

computed by the base-station every subframe (1 ms) and

signalled to the UEs via resource grants which include the

contiguous set of RBs allocated to the UE and the modulation

and coding scheme (MCS). We assume a constant number

of maximum allowable re-transmissions for all UEs and do

not adapt the re-transmission power and resource assignment

through additional control signalling available in LTE.

Buffer status report (BSR) and scheduling request (SR) are

transmitted by the UEs to inform the base-station about new

packet arrivals at the UE. SR is one bit of information used

to indicate the arrival of packets in an empty buffer at the

UE and is used by the scheduler to start allocating resources

to the UE. BSRs contain a quantized value of the number

of bytes pending transmission at the UE1, and are generated

either periodically or when the queue goes from an empty

1We ignore the effect of quantization in BSR, but the methods in this paper
extend easily to quantized BSR.

to non-empty state. BSR reports are transmitted only when

resources are allocated to the UE and thus provides only a

coarse grain information about the queue length at the UE.

III. REWARD FUNCTIONS

In this section, we define the reward functions that we use

for the optimization problem and relate it to the schemes used

in earlier works. We assume each UE to have one active LC

which supports either best effort or delay QoS traffic.

A. Best Effort

A flow, i, which is best-effort is associated with an average

rate xi(t) ∈ R+ in subframe t which is updated as follows:

xi(t+ 1) = (1− αi)xi(t) + αiri, ∀t ≥ 0, (1)

where ri is the rate at which UE i is served in the current

subframe, and 0 < αi < 1 is a user specific constant. The

user experience in subframe t is modeled as a strictly concave

increasing function Ui : R+ 7→ R of the average rate xi(t).
We greedily maximize the total utility at each time-step, i.e.,

the reward function for UE i with best effort traffic, at time t
is [18]

fi(ri) =
1

αi

Ui((1 − αi)xi(t) + αiri). (2)

If we set fi(ri) = U ′(xi(t))ri, and let αi → 0 in equation (1),

the resulting scheduler is identical to that in [3]. Thus, our

analysis offers a computationally efficient method to imple-

ment the scheduling policy in [3] for the LTE uplink with

fractional power control.

B. Delay QoS Traffic

Here the user experience is a function of the packet delays.

User experience is acceptable when the packet delays are lower

than a certain tolerable value. The packet arrival process is

assumed to be independent of the times at which the packets

are served. Traffic for applications such as voice calls and live

video chatting fall in this category.

At time t, let πi(t) be the number of packets in the queue

of UE i. Denote the sizes and the delays of these πi(t) packets

by {si(1), . . . , si(πi(t))} and {di(1), . . . , di(πi(t))}. Then for

a UE i with delay QoS traffic, we define the reward function

as:

fi(ri) =

nserv
i

(ri)
∑

j=1

si(j)di(j)

+



ri∆−

nserv
i

(ri)
∑

j=1

si(j)



 di(n
serv
i (ri) + 1)

(3)

where ∆ is the length of a subframe (1 ms) and nserv
i (ri) is the

number of packets from UE i served fully if UE i is scheduled

at rate ri, i.e.,

nserv
i (ri) = max

{

k :
∑k

j=1 si(j) ≤ ri∆
}

.

Lemma 3.1: fi(ri) is a continuous concave function.

Proof: Concavity follows from the observation that

di(1) > . . . > di(πi(t)) and continuity is immediate from

definition.
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Fig. 1. Example reward function for delay QoS flow.

Example: Consider a UE with delay QoS traffic and four

packets in the queue with delays (in ms) at time t given by

d1 = 120, d2 = 76, d3 = 27, d4 = 3, and packet sizes (in

KB) are s1 = 1.5, s2 = 0.7, s3 = 2.1, s4 = 3. Then the

corresponding reward function fi is shown in Fig. 1.

C. Iterative Queue and Delay Based Policies

If we restrict the model in [11] to frequency flat fading,

i.e., a user is either connected to no server or all servers at

any time, the algorithm in that paper can be interpreted as

one which approximately maximizes the reward function in

equation (3). In this work, we consider the maximization of

the reward function in (3) for a much more general model with

multiple rate options, peak power constraints, and different

transmit PSD constraints on different sub-bands. We also note

that the complexity of the algorithm in [11] is O(NR2) for

N users and R RBs – when there are multiple RBs in each

sub-band of bandwidth B; the complexity of our algorithms is

lower. Finally, similar connections can be drawn between the

scheme in [12] for frequency flat fading and using an objective

function based on sums of squares of queues as in [19]; we

believe similar connections can be drawn for the frequency

selective fading model through further analysis.

IV. ESTIMATION OF PACKET DELAYS

We now describe a method to infer approximate packet

delays at the eNB via the mechanisms available in LTE. The

main intuition is as follows: if the base-station estimates the

queue length at time t to be say, 1000 bytes, but later decodes a

BSR which was created at time t and has value 1300 bytes, the

base-station can deduce that 300 bytes arrived between time

t and the time at which the previous BSR was created. This

information about the time interval during which the 300 bytes

arrived can be used for making resource allocation decisions –

specifically, scheduling policies based on packet delays can be

implemented. The main complexity is due to re-transmissions

which can lead to the BSR report arriving out of order at

the base-station. A similar approach has been independently

proposed in [20] recently, however it ignores the effect of

retransmission failures in the analysis.

Let T retx be the maximum amount of time between the first

transmission of a MAC packet and the latest time when it can

be re-transmitted for H-ARQ (for example, if we configure

6 as the maximum number of re-transmissions, T retx = 48

subframes). We estimate the number of bytes that arrived,

Ai(t) in each subframe t. The buffer status reports are denoted

by a sequence of random three tuples:

{Bi(1), τi(1), δi(1)}, {Bi(2), τi(2), δi(2)}, . . .

where Bi(1) is the buffer size reported in first BSR, τi(1) is

the time at which first BSR was received, and (τi(1)− δi(1))
is the time at which the first BSR was generated, and so on.

Ci(t) denotes the number of bytes scheduled for transmission

from UE i, Ĉi(t) the number of bytes which were successfully

received from UE i, and Fi(t) the number of bytes that failed

the final re-transmission for UE i, at time t.
We maintain the history of estimated queue length for each

UE i for duration T retx, denoted by Qi(t − T retx : t). Then,

we update the Q matrix and the arrival vector A, at each t as

follows:

For every t, i

1) Scheduled Bytes: Qi(t) = Qi(t− 1)− Ci(t).
2) Failed Bytes: Qi(t) = Qi(t) + Fi(t).
3) BSR report: If a BSR report is received at time t, i.e.,

there is n such that τi(n) = t, then update queue state

as follows: If the base-station has not received any BSR

report created after time t− δi(n), then

Qi(t− δi(n) : t) = Qi(t− δi(n) : t) +Ai(t− δi(n))

where arrival Ai(t − δi(n)) = Bi(t) − Qi(t − δi(n))
otherwise for

argmin
{m: τi(m)<t}

[τi(m)− δi(m)− (τi(n)− δi(n))]

update

Ai(t− δi(n)) = Bi(t)−Qi(t− δi(n))

Ai(τi(m)− δi(m)) = Ai(t− δi(m))−Ai(t− δi(n))

Qi(t− δi(n) : τi(m)− δi(m)− 1)

= Qi(t− δi(n) : τi(m)− δi(m)− 1) +Ai(t− δi(n))

Note that Qi can have negative entries.

V. FREQUENCY FLAT FADING

Here, we consider the resource allocation to N UEs over a

single sub-band with bandwidth B and frequency flat fading.

We drop the dependence of quantities in the general model on

the sub-band j – for example, we denote channel gain from

UE i to the eNB as Gi. We allow for contiguous allocation

– this is a reasonable approximation when B is larger than

a few RBs. Rounding techniques in, for example, [9] can be

used to obtain integral solutions. The optimization problem to

maximize the sum of rewards for all UEs over the bandwidth

allocation vector b ∈ R
N
+ in a subframe is:

max.

N
∑

i=1

fi

(

biψ

(

Gi min(γibi, P )

Ibi

))

s.t. 0 ≤ bi ≤ bmax
i , ∀i,

N
∑

i=1

bi ≤ B

(4)



where bmax
i is the maximum bandwidth that UE i can use based

on the estimated queue length, Qi(t), for UE i, and satisfies:

bmax
i ψ

(

Gi min(γib
max
i , P )

Ibmax
i

)

= Qi(t)/∆

where we recall that ∆ is the length of a subframe (1 ms).

Since, the function on the left is an increasing function of

bmax
i , we can compute bmax

i efficiently via a bisection search.

Problem (4) is a convex optimization problem (with non-

differentiable objective function) due to the lemma which

follows.

Lemma 5.1: The objective function in optimization prob-

lem (4) is concave in the bis for bi ≥ 0, for all i.
Proof: Consider the function g : R+ 7→ R+ defined by

g(x) = xψ(c/x), ∀x > 0, c ∈ R+ is constant. Since, ψ is

assumed to be concave, it is easy to verify (via showing that

the second derivative is always negative) that g is concave as

well. Since, (i) the sum of concave functions is concave, and

(ii) the composition of one concave function with another is

concave, to show that the objective function is concave, it is

sufficient to show that the following function is concave

h(x) = xψ

(

min(c1x, c2)

x

)

, ∀x ≥ 0, c1, c2 ∈ R+ are constant

Note that the above function is well defined for x ≥ 0.

Since, ψ is an increasing function, we can write h(x) =
min {xψ(c1), xψ(c2/x)} , which is the minimum of two con-

cave functions, and hence, concave.

A. Characterization of Optimal Solution

We define a function which maps the bandwidth allocation

bi to achievable rate for user i:

hi(bi) = biψ

(

Gimin(γibi, P )

Ibi

)

We denote the sub-differential of a function g : R 7→ R at x by

∂g(x). For continuous concave functions over the set of reals,

the subdifferential at x is the set of slopes of lines tangent to

f at x.

Let b⋆ ∈ R+ denote the solution to the resource allocation

problem (4). The following lemma shows that an optimal

allocation in a given subframe is one for which the following

quantities are equal for all users with non-zero bandwidth

allocation: for best effort user, the marginal utility times the

incremental rate when more bandwidth is allocated to it, and

for delay QoS user, the delay of the oldest packet which is

not served completely times the incremental rate when more

bandwidth is allocated to it.

Lemma 5.2: There exists a λ⋆ > 0 such that if i is best

effort, then

λ⋆ ∈ U ′((1− α)xi(t) + αir
⋆
i )∂hi(b

⋆
i ), if b⋆i > 0

λ⋆ < U ′((1 − α)xi(t))min ∂hi(0), if b⋆i = 0

else, if i is delay QoS and b⋆i > 0,

• if
∑nserv

i
(r⋆

i
)

j=1 si(j) < r⋆i∆, λ⋆ ∈ di(n
serv
i (r⋆i ) + 1)∂hi(b

⋆
i )

• else if
∑nserv(r⋆

i
)

j=1 si(j) = r⋆i∆

λ⋆ ∈ [di(n
serv
i )min ∂hi(b

⋆
i ), di(n

serv
i + 1)max ∂hi(b

⋆
i )]

else, if i is delay QoS and b⋆i = 0,

λ⋆ < di(1)min ∂hi(0)

where r⋆i = hi(b
⋆
i ).

Proof: The lemma follows from standard arguments in,

for example [21], the definitions of fi’s, and that the subdif-

ferential of fi for delay QoS user i is given by

∂fi(ri) =

{

di(n
serv
i + 1),

∑nserv
i

(r⋆
i
)

j=1 si(j) < r⋆i∆

[di(n
serv
i ), di(n

serv
i + 1)] ,

∑nserv(r⋆
i
)

j=1 si(j) = r⋆i∆

We now evaluate the sub-differential of hi for x ≥ 0, which

is bounded because γi is assumed to be bounded.

∂hi(x) =















































{

ψ
(

Gi(t)γi

I

)}

, if x < P/γi

{

ψ
(

Gi(t)P
Ix

)

− Gi(t)P
x

ψ′
(

Gi(t)P
Ix

)}

, if x > P/γi

[

ψ
(

Gi(t)γi

I

)

− Gi(t)P
x

ψ′
(

Gi(t)γi

I

)

,

ψ
(

Gi(t)γi

I

)]

, if x = P/γi
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Fig. 2. Optimality condition

We illustrate the optimality condition via a two user exam-

ple. The total bandwidth to be shared is 10 RBs, or 1800 KHz.

All packets are of size 500 bits. The packet delays of the two

users in the given subframe are

User 1: [450, 330, 135, 80, 20]

User 2: [170, 150, 140, 110, 80, 20]

The rate at which the users can be served as a function of the

RBs are given by:

h1(b1) =

{

b1 log2
(

1 + 100.05
)

b1 ≤ 5 ∗ 180khz

b1 log2

(

1 + 100.05 5∗180
b1

)

b1 > 5 ∗ 180khz

h2(b2) =

{

b2 log2
(

1 + 100.4
)

b2 ≤ 8 ∗ 180khz

b2 log2

(

1 + 100.4 8∗180
b2

)

b2 > 8 ∗ 180khz

where the 5 and 8 RB thresholds (and corresponding SINRs

of 0.5 dB and 4 dB) are derived from fractional power control

constraints in Section II-A. The subgradient of the rewards

for both the users as a function of bandwidth allocation, and



the optimal bandwidth allocation are shown in Fig 2 – the

optimal resource allocation is 5 RBs to each user, and the

optimal dual variable λ⋆ is shown in the figure. For each user,

the figure also shows the number of RBs required to fully

serve a given number of packets and the number of RBs at

which the user becomes power limited, i.e., the maximum peak

power constraint limits the transmission power rather than the

fractional power control which limits the transmit PSD.

B. Computation of Optimal Solution

The optimization problem (4) entails the maximization of

the sum of concave functions subject to a linear inequality

constraint. While, in principle, the optimal resource allocation

scheme can be computed via a bisection search on the dual

variable λ, two difficulties arise: (i) There may be multiple

values of bi for which the subgradient of fi ◦ hi is equal to

λ. See, for example, the first packet for user 1 in Fig. 2. As a

result the dual function is non-differentiable and the bisection

search may not converge [22]. (ii) If λ belongs to the sub-

differential at a point bi of non-differentiability of either fi
or hi, the values of the gradient of fi ◦ hi may be arbitrarily

different at (bi+ ǫ) and (bi− ǫ) for an arbitrarily small ǫ. This

can also be seen in Fig 2. We use Algorithm 1 to compute the

optimal solution of problem (4). The convergence analysis is

almost identical to that in Sec. 6 in [22]. An accurate solution

can typically be computed in about 10 iterations.

Algorithm 1: Bisection search for optimal λ

Given starting value of λ, λ, b, b and tolerance ǫ.
repeat

Bisect: λ = (λ+ λ)/2.

Allocate bandwidth for all i:
if λ > max ∂fi(0)max ∂hi(0) then

set bi = 0.

else

bi is such that

λ ∈[min ∂fi(ri)×min ∂hi(bi),

max ∂fi(ri)×max ∂hi(bi)]
(5)

where

ri =

(

biψ

(

Gi(t)min(γibi, P )

Ibi

))

end

Update: if
∑N

i=1 bi −B > 0, λ = λ, b = b, else

λ = λ, b = b.

until |λ− λ| < ǫ

Feasible Solution: if
∑

i bi −
∑

i bi > 0 then

set α =
B−

∑
i
bi

∑
i
bi−

∑
i
bi

.

else
set α = 0.

end

b = αb + (1− α)b

The starting values of λ and λ can be generated using

the following simple lemma (proof is straightforward and

omitted); the values of b and b are obtained by repeating the

Allocate Bandwidth step in Algorithm 1 for dual variables λ
and λ, respectively.

Lemma 5.3: The optimal dual variable λ⋆ satisfies

λ ≤ λ⋆ ≤ λ where

λ = max
i=1,...,N

[

ψ

(

Gi(t)γi
I

)

max ∂fi(0)

]

λ =

[

ψ

(

Gi(t)P

IB

)

−
Gi(t)P

B
ψ′

(

Gi(t)P

IB

)]

×max ∂fi

(

Bψ

(

Gi(t)P

IB

))

, for some i

The main computational step in each iteration of Algo-

rithm 1 entails solving (5) N times – we now show this can be

done in O(logL) time when the reward function fi for user

i is non-differentiable at at most L points. The composition

of function fi with hi is a concave function as shown in

Lemma (5.1). Hence, to compute the bandwidth allocation for

UE i as given in equation (5), we can use a bisection on

bi. First we obtain how many packets should be served fully

such that the corresponding bandwidth required, bi, satisfies

equation (5) in O(logL) time. Then, we compute bi.
We compute the range of subgradients for packet η as

b = h−1
i

(

∑η−1
k=1 si
∆

)

, b = h−1
i

(∑η

k=1 si
∆

)

SG(η) = di(η)[min ∂hi(b),min ∂hi(b)]

(6)

where we recall di(η) and si(η) are the delay and size for ηth

packet queued at UE i. Note that the inverse of hi is simple

when bi < P/γi; otherwise it can be computed via bisection.

The number of packets to be served completely is η = η−1.

Note that hi has at most one point of discontinuity, say b̂i. If

b ≤ b̂i ≤ b for η = η − 1 in (6), then bi = b̂ if λ/di(η) ∈

∂hi(b̂i); else update b or b appropriately. A similar method

can be used for best effort traffic and the analysis is omitted

here due to lack of space.

VI. SIMULATION RESULTS

A. Simulation Framework

The algorithms in the previous section were simulated using

a detailed system simulator where the MAC layer signalling

was modeled faithfully, and the PHY layer performance

was abstracted via modeling of fading channels, transmission

power, and capacity computations as in [15]. A hexagonal

regular cell layout with three sectors per site was simulated

with the parameters as noted in Table I. For fractional power

control parameter values (P0 = −60 dBm, α = 0.6) similar to

those in [8], a 19 cell (57 sector) simulation with wrap around

was first performed to determine the interference over thermal

(IoT) at the base-station of a cell to be 6 dB on an average.

In subsequent simulations, only one cell was simulated with

the IoT assumed to be constant in time and frequency. This

drastically reduces the simulation time while still accounting

for the inter-cell interference.



Parameter Value

Channel Profile ITU-T PedA

Mobile Speed 3 km/hr

Log-Normal Shadowing σ =8.9 dBm

Intra-site Shadowing Correlation 1.0

Inter-site Shadowing Correlation 0.5

Cell Radius 1 km

No. of UEs/cell 20

No. of RBs 110

Max UE Tx Power 23 dBm

No. of Tx & Rx Antenna 1

eNB & UE Antenna Gains 0 dBi

Thermal Noise Density -174 dBm/Hz

BSR periodicity 5 ms

max. number of retransmission 6

TABLE I
SIMULATION PARAMETERS

The time varying channel gains, Gi’s, were assumed to

be measured perfectly at the base-station in each subframe.

The MCS was picked on the basis of the channel gain from

the UE and a rate adaptation algorithm to target an average

of two H-ARQ transmissions for successful decoding was

used. We use the mutual information effective SINR metric

(MIESM) [23]; we first obtain the effective SINR according

to the modulation alphabet size and then use that value to

simulate an event of packet loss according to the packet

error rate for the effective SINR. We model the timelines

for Scheduling Request (SR), resource grants, Hybrid-ARQ,

ACK/NACKs, and BSR as described in Sec. II. We assume

error free transmission of control messages in our simulations.

Two types of traffic, live video and streaming video were

modelled as per the description in [19].

B. Results

We consider two topologies for simulation: a macro-cell

with the path loss between the base station and UEs randomly

selected between 100 dB and 135 dB [24], micro-cell with

path loss in the range 107 dB to 115 dB. We simulate three

scheduling algorithms: (i) Iterative Delay which maximizes

the reward function in Sec. III-B, (ii) Iterative Queue which

minimizes sum-of-squares of queue lengths as in [19] and

similar to [12], (iii) non-iterative maximum weight where a

UE with the highest queue length times spectral efficiency for

first RB is allocated bandwidth until the queue is drained or

the UE becomes power limited before allocation to the next

UE. We note that the computational algorithms in this paper

are applicable to computing resource allocation for scheduling

policies (i) and (ii), and that policies similar to (iii) do not

consider the change in reward function of the UE in a given

subframe.

1) Macro cell Topology: We consider 20 UEs with a mix

of live video and streaming video traffic. Since live video has

a tighter requirement for packet delays, we bias the scheduler

to assign live video users 5x priority compared to streaming

video users for same packet delay. Simulations were performed

for low load and high load cases:

(1) High Load: 5 UEs have live video traffic, each with a mean

rate of 300 kbps. For the other 15 UEs with streaming video

traffic, we mimic an adaptive-rate streaming mechanism in

which the data rate for each user depends on the quality of its
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Fig. 3. HoL delay estimation performance

channel to the base-station, i.e. a user close to the base-station

transmits a better quality video compared to a cell-edge user.

For simulating high-load, the traffic parameters are varied for

each UE such that they generate traffic at 80% of the average

data rate they received with full buffer traffic.

(2) Low Load: 5 UEs have live video traffic with a mean rate

of 200 kbps. The UEs with streaming video traffic are now

set to operate at 40% of their full buffer average data rate.

We first study the performance of the delay estimation

mechanism described in Section IV. Figure 3 shows the

estimated head of line (HoL) delay and the actual HoL delay

at a UE over a period of 1 second. The estimated values can

be seen to follow the actual delays but the accuracy is limited

by the granularity of BSR messages, i.e., if there are multiple

arriving packets between two successive BSR messages, the

packets are bundled as one in our mechanism resulting in

relatively small errors in HoL estimation.

Next we show the performance of the head of line delay

based scheduling scheme computed as the solution to the

optimization problem in (4) with the reward function in (3).

Figure 4 shows the median and 95th percentile delays of the

live video UEs for the two baseline and the head of line

delay based schedulers for low and high loads. The delays

experienced by the live video users are consistently less in the

case of HoL delay based scheduling with the non-iterative

scheme resulting in an average 95th percentile delay 1.6x

higher than with the HoL delay scheduling. The queue based

scheme also results in slightly higher delays, on an average

1.1x compared to 95th percentile delays for HoL scheduling. A

more pronounced improvement is observed for the streaming

video users, as shown in the delay plots in Figure 5. In this

case, the non-iterative and queue based schemes result in 6.2x

and 5x more delays compared to HoL delay scheduling in

terms of 95th percentile latencies. Finally, Figure 6 shows the

combined delay numbers for uplink packets from all the UEs

in the high load simulation. As can be seen from the figure, the

iterative queue based and delay based schemes result in similar

delays for live video users due to preferential assignment.

However this results in large delays for the streaming video

users for both non-iterative and queue based schemes: close

to 11x and 8x respectively compared to HoL delay based

scheduling in terms of 95th percentile delays. Thus, leveraging

the approximate packet delays obtained via our method leads

to significant performance improvement over queue based
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scheduling. Moreover, even for the queue based scheduler, the

computational methods in this paper are very useful.

2) Micro cell Topology: In order to compare these

scheduling schemes in a smaller cell topology, we ran a

second simulation with 20 UEs located within a region with

path loss 107-115 dB from the base station. Each UE, in

this simulation, carries streaming video traffic with the mean

data rate randomly selected between 300-2000 Kbits/sec.

Decoupling the mean traffic rate with the path loss highlights

the relative performance of the scheduling algorithms in real

deployments where prior knowledge of user demand is rarely

known. Individual and cell wide delay numbers are shown in

Figure 7, which shows that 95th percentile delays for non-

iterative and queue based schemes are 1.8x and 1.4x more

than those for the HoL delay based scheduling.
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VII. FREQUENCY SELECTIVE RESOURCE ALLOCATION

We extend the analysis in [10] for frequency selective

fading to concave functions fi (such as the delay based

reward function) which are thrice continuously differentiable

everywhere except at L points where they are only continuous.

We can re-write such a function as

fi(ri) =

L
∑

l=1

fil
(

min
(

ρl − ρl−1, [ri − ρl−1]+
))

where 0 ≤ ρ1 < . . . < ρL are the points of non-

differentiability and fil : R+ 7→ R are thrice continuously

differentiable concave functions defined as

fil(x) = fi(ρl−1 + x)− fi(ρl−1), x ∈ [0, ρl − ρl−1]

with l ≥ 1, ρ0 = 0, and satisfy

f ′
il(x) < f ′

i,l−1(y), x ∈ [0, ρl − ρl−1], y ∈ [0, ρl−1 − ρl−2].

We also assume xψ−1(y/x) is concave for all (x, y) > 0; this

is true for example, when ψ is the Shannon capacity formula,

and for practical M-QAM schemes.

Consider the following convex optimization problem over

r̃il’s, rij ’s (rate for user i on sub-band j), and bij ’s (bandwidth

for user i on sub-band j):

max.

N
∑

i=1

L
∑

l=1

fil(r̃il),

s.t.

L
∑

l=1

r̃il ≤

M
∑

j=1

rij , ∀i, r̃il ≤ ρl − ρl−1, ∀i, l

N
∑

i=1

bij = B, ∀j,

M
∑

j=1

bij(N0 + Ij)

Gij

ψ−1 (rij/bij − 1) ≤ P, ∀i,

rij ≤ bijψ

(

Gijγij
N0 + Ij

)

, rij , bij ≥ 0, ∀i, j.

(7)

The first constraint implies that the total rate for a user is

the sum of rates over sub-bands, the second constraint is on

total bandwidth allocation in a sub-band, third constraint is on

peak power at the UE in a subframe, and the fourth constraint



models fractional power control. The following lemma follows

easily from the construction of the fils:

Lemma 7.1: If (r⋆ij , b
⋆
ij) is a solution to the optimization

problem (7), then
∑

i fi

(

∑

j r
⋆
ij

)

is the maximum sum re-

ward for any feasible resource allocation.

General purpose interior points methods to solve the above

optimization problem have a complexity of O(NM + NL)3

per iteration – we exploit the structure to reduce it to

O(N(L2 +M2)). Note that in practice L and M are much

smaller than N . In order to construct a solution for which the

bandwidth allocation is contiguous in frequency to satisfy the

SC-FDMA requirements, we can use the heuristic in [10]. The

main computation to solve (7) is to determine the Newton step

at each iteration which entails solving a set of linear equations

of the form (we omit the details due to lack of space, the exact

expressions can be obtained following the steps in [25]):
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where Hi ∈ R
(L+M)×(L+M), A ∈ R

M×N(L+M), xi ∈
R

L+M , a ∈ R
N(L+M), y, b ∈ R

M . We first eliminate the

xi’s as

xi = H−1
i

(

a−AT
(L+M)(i−1)+1:(L+M)(i)y

)

where AT
k:m is the submatrix of AT given by rows k to m.

We invert H−1
i in O(L2 +M2) time, solve for y in O(M3)

time (M linear equations in M variables), and back-substitute

y to obtain x. To invert Hi, we note that it decomposes as

Hi =
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+
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T
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+
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0 cic

T
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where gi ∈ R
L+M , hi ∈ R

L, ci ∈ R
M . Using the matrix

inversion lemma we can invert Hi in O(L2 +M2) time.

VIII. CONCLUSIONS

We designed a general computational framework in this

paper to enable a wide array of online scheduling policies in a

computationally efficient manner. We modeled the constraints

due to fractional power control, and formulated an optimiza-

tion problem with non-differentiable objective function. We

showed how to estimate the packet delays on the uplink via

the BSR reports, and proposed a novel scheduling policy based

on packet delays. Numerical results demonstrated that using

packet delay estimates for the uplink can lead to significant

reduction in packet delays as compared with a queue length

based scheduler. There are many interesting directions for

future work. For example, we can further study the connections

with the work in [11], [12]. In terms of implementation, an

interesting question is whether we can design approximation

algorithms for the uplink bandwidth packing problem which

are optimal according to some metric.
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