
A TLV-Structured Data Naming Scheme for Content-

Oriented Networking

Hang Liu

InterDigital Communications, LLC

781 Third Avenue

King of Prussia, PA 19406

Dan Zhang

WINLAB, Rutgers University

671 Route 1 South

North Brunswick, NJ 08902

Abstract—Content-oriented networking (CON) addresses the

inefficiency of IP networks in supporting content distribution, by

decoupling location from identity at the network level, and

retrieving a content object through its name or identifier, instead

of its storage location or host IP address. A naming scheme is

critical in CON designs because a name is used to identify the

object and acts as the key for location resolution and routing.

This paper proposes a new TLV-structured naming scheme with

Bloom filter summarization. The proposed scheme satisfies the

requirements of name uniqueness and persistence, and enables

more secure content-oriented trust model and effective routing

state aggregation for scalability. It also addresses the “suffix-

hole” problem encountered in conventional prefix-based routing

aggregation. We analyzed the performance of the proposed TLV-

structured naming and Bloom filter aggregation scheme and our

early evaluation results shows that the proposed scheme greatly

outperforms the prefix-based aggregation in terms of routing

resolution error probability.

Keywords-content-oriented networking; information-centric

networking; future Internet; naming

I. INTRODUCTION

The Internet is primarily used for content retrieval and
information access. Multimedia content traffic, especially video
traffic is growing at an exponential rate. Another trend is that
more and more users are accessing information over networks
using their smart mobile devices equipped with multiple
network interfaces. However today’s IP networks were built to
interconnect fixed computing nodes (terminals, servers, etc.), in
which communications are based on the node’s IP addresses.
Such discrepancy causes inefficiencies in networks as well as
in application designs. For example, a video clip may be
encoded in multiple formats and resolutions, and can be
replicated at multiple hosting locations. A mobile user is
interested in the content itself, rather than its host. It is
desirable that the content is delivered from the best/closest
host, and the delivery matches the user device’s operating
conditions in the proper format and at the best available
quality. The TCP/IP architecture is not “intelligent” enough to
meet the user’s requirements because it relies on the host-to-
host communication model. This leads to developing complex
application-specific solutions such as content delivery networks
(CDNs) and P2P overlays. But these application-specific
solutions are costly and inefficient because they have limited
information about underlying network status and require extra
management mechanisms.

Content-oriented networking (also referred to as
information-centric or name-oriented networking) has been
considered as an innovative architecture for the future Internet
to address the above mismatch, which decouples content from
hosts at the network level and retrieves a content object by its
name (identifier), instead of its storage location (host IP
address). This new networking paradigm naturally enables
mechanisms such as in-network caching and delivery of
content from the best location(s) to optimize bandwidth and
improve users’ content access performance. It also allows
network operators to interconnect their content service
networks across domains to make more content available and
share resources for cost reduction, as well as frees application
developers from reinventing application-specific delivery
mechanisms. Moreover, it solves or mitigates other Internet
problems such as mobility and multi-homing.

There are many challenges in the content-oriented
networking (CON) design, such as how to name content
objects, locate a particular content object, and deliver the
content in a scalable and efficient way. In this paper we focus
on the naming issue. The naming scheme is critical in CON
designs because a name or an object identifier (OID) is used to
identify the content object and acts as the key for location
resolution and routing mechanisms. Note that the terms,
“name”, “identifier”, and “OID” are used interchangeably in
this paper, unless otherwise stated.

For scalable, efficient, and secure content access, one
would want that a naming scheme supports the following
features.

· Uniqueness: An OID should be globally unique to identify
an object.

· Persistence: Once an OID is assigned to a content object,
users would like that the OID remain valid as long as the
underlying object itself is available and not changed, that is,
users would like to access the object with this name even if
the location and administrative domain of the object is
changed.

· Trustworthiness: CON designs secure the content rather
than the communication path between two communication
points. The content is signed by the original content owner
or creator (e.g. Disney). End users and network elements
such as CON routers can authenticate the content by
verifying the signature. Naming plays a role in this content-
oriented trust model from two aspects: binding between the
user-friendly human-readable name and its corresponding
CON OID, and binding between the OID and the public key

(to authenticate the data). The integrity needs to be ensured
from the user-friendly name to the CON OID and from the
OID to the content.

· Scalability: There are a huge number of content objects on
the Internet and their locations frequently change due to
dynamic caching and replacement. It is desirable that
certain aggregation can be used to reduce the number of
routing states and associated routing update overhead for
scalability.

There are two naming schemes proposed in the literature:
flat self-certifying names [1, 2, 5, 6] and hierarchical identifiers
[3, 4]. However, both of the approaches have their share of
problems. The former defines an object name as a hash of a
public key and a label. It meets uniqueness and persistence
requirements, and allows network elements to verify the
integrity of the data without need of any external mechanism,
preventing denial-of-service attacks. But some external
mechanism is required for binding the user-friendly name to
the flat self-certifying name. This process can be subject to
substitution attacks. In addition, flat names, consisting of a
random looking series of bits with no semantics and structure,
are difficult to aggregate for routing scalability.

 To improve scalability, a hierarchical content naming
scheme with a structure like binary-encoded URLs is
introduced [3]. This scheme partially addresses the first aspect
of the trustworthiness requirements: binding between the user-
friendly name and its corresponding CON OID. However it
requires that a user knows the encoding rules employed by the
content owner or naming authority to map the human-readable
name to the OID. Moreover an external mechanism is needed
to bind the CON OID to the key in order to authenticate the
content matching the requested OID. Not only the end users but
also CON infrastructure such as content routers should know
the public key for a requested content OID. Otherwise the
network may keep delivering false data even if the end user can
authenticate the content, leading to denial-of-service attacks.

Hierarchical naming structure can help scalability. It was
proposed to aggregate routing entries for the hierarchical OIDs
with a common prefix to reduce the number of routing states,
just as network address prefix aggregation in IP routing [3]. For
example, if all the content objects whose name starts with
“example.com” are stored in a single node, a single entry is
needed for these content objects in CON routers to route a
content request to this node. However as content objects are
cached or replicated at multiple places, prefix-based
aggregation becomes less effective. A caching node may not
have all the content objects for a given prefix. For example,
there are a total of N (e.g. N=2000) content objects with the
prefix “example.com,” and a node only stores M (e.g. M=1000)
of them. If the prefix-based aggregation is used to avoid the M
routing states and associated routing update overhead, a lot of
information will be lost. This is because a routing
announcement with prefix-based aggregation can only express
“some of the content objects with this prefix (e.g.
example.com) can be reached via me.” We refer to this as a
suffix hole. Suffix holes introduce uncertainty in locating a
particular content object and then reduce routing efficiency. In
addition, URLs or DNS names have their traditional semantics,
somehow related to the location. The components in the above
hierarchical naming (e.g. example.com/video/WidgetA.mpg)

needs to be given new meanings (“example.com” is the object
owner or creator, not host, “video” is the object type, not
directory, WidgetA.mpg is the object title and format, not the
file name). Otherwise, the name becomes misleading if the
administrative domain or location of the object is changed.

In this paper, we propose a new naming and aggregation
scheme, in which a content object ID (OID) consists of a set of
variable-size information elements (IEs), and each IE is
encoded as type-length-value (TLV). The information elements
can flexibly form hierarchical or peer relationships. The
network imposes no restrictions to the OID assignment except
the TLV structure, and does not have to know the meaning of
types and values except certain “well-known” types. This TLV-
structured namespace can provide name uniqueness and
persistence, and enable better scalability and trustworthiness.
To address the suffix-hole problem, we propose to use a Bloom
filter [10] to summarize the aggregated elements and generate
digest elements. Then a routing advertisement can express
more accurate information such as “the content objects with
this prefix and digest value can be reached via me.”
Furthermore, a content router or a distributed name resolution
function can flexibly control the aggregation degree based on
the distance or popularity of content objects in order to balance
between needed resources and routing information
compression.

The remainder of the paper is organized as follows. Section
II presents a high-level overview of the system model. In
Section III, we describe the new TLV naming and Bloom filter
aggregation scheme. In Section IV, we analyze the
performance of the proposed naming and aggregation scheme,
and present the evaluation results. The conclusions and future
work are discussed in Section V.

II. SYSTEM MODEL

Before we present the proposed naming scheme, we discuss
the CON system model in order to have a more complete
picture. In CON, a network element, e.g. a content router, has
storage capability. Content objects are cached or replicated at
multiple places. The CON employs a publish/subscribe model,
in which a content provider publishes the availability of its
objects and a user subscribes to (requests) the objects. The
object name is used as the key in this publish/subscribe
operation. Thus the providers and users do not have to know
each other’s locations and be online at the same time.

CON networks should be able to locate a requested content
object and route the content request to the closest or best
host(s) for serving the request based on the requested object
name. Different routing algorithms can be used such as
advertisement via simple flooding or distributed hash table
(DHT) [11, 12, 13]. Once a CON router receives a request, it
can either directly use the name for routing [2, 3] or maps the
name to a location or address through a resolution mechanism
[1, 4, 6]. The name of an object is independent of its location.
Decoupling of naming and location as well as name-based
routing enables CON to natively support in-network caching,
mobility, and multihoming.

In CON, the requested content object may be delivered
from a network element other than the origin server. It takes a
content-oriented trust model by leveraging public key
cryptography. The object is signed by the original content

owner using a private key that binds the CON OID to the
content data. A user needs to know the CON OID of the
desired content and the content owner’s public key in order to
retrieve and authenticate the content. CON network elements
also should bind the requested content OID to the
corresponding public key in order to prevent attackers from
sending false content for denial-of service attacks. From the
above discussions, we can see that naming plays an important
role in CON routing and trust models. The proposed TLV
naming scheme can be incorporated with a flooding-based or
DHT-based routing mechanism.

III. CONTENT NAMING AND AGGREGATION

An OID in the proposed TLV naming scheme is composed
of a set of variable-sized information elements (IEs), and each
IE is encoded as type-length-value (TLV). The type and length
fields are fixed in size, e.g. 1 octet, and the value field is of
variable size. The type field indicates the kind of elements and
the length field defines the size of the value field contained in
the TLV. A TLV may contain multiple sub-TLVs in its value
field.

The IEs in a content OID can have hierarchical or peer
relationships, which offer flexibility and extensibility in content
naming. They can be processed very fast using generalized
parsing functions in binary format. It is also fairly easy to map
text or XML-based human readable names to TLVs. During the
content request routing and data transport process, CON routers
(CRs) in the network do not need to know the meaning of type
and value fields in a TLV, except certain “well-known” types,
such as digest TLV, although the type and value may be
meaningful for some higher layer applications. The network
imposes no restrictions to the OID assignment except the TLV
structure. A CON router just uses the length field to parse the
TLV elements and treats the whole element as a binary number
in object publishing, routing aggregation, and resolution
process as described below.

As an example, a content owner or a naming authority may
assign a movie clip with an OID like “organizationTLV-
categoryTLV-subcategoryTLV-titleTLV-formatTLV-
segmentationTLV.” Note that characters “-” are used to
separate the elements for notation purpose, and are not part of
OIDs. This content OID naming reflects the application-level
human-readable name, including content owner’s organization
ID, category ID, subcategory ID, title ID, format ID (a code to
indicate audio/video coding format and resolution), and
segmentation ID (a code to indicate the temporal starting point
and duration of this movie clip as well as its version number).
Note that an ID here is just an assigned number. Another
content owner may name its content objects using a different
convention. This TLV naming scheme can be used for naming
anything, not just content.

The TLV naming meets uniqueness and persistence
requirements. As long as a content owner has a globally unique
organization ID (e.g. the hash of its public key or its binary-
encoded DNS name), locally unique content OIDs assigned by
this content owner can be guaranteed to be globally unique.
Persistence follows from the fact that the OIDs don’t refer to
location, and thus the object can be hosted anywhere. The same
OID can be used even if the object changes its administrative
domain. In addition, for flexibility, a user can issue a request

with an OID that contains wild card elements. A well-known
wild card TLV or a wild card value in a TLV can be defined for
this purpose.

To handle a large number of content objects on the Internet,
aggregation of content location information is necessary.
However, as mentioned before, the conventional prefix-based
routing aggregation is not effective because a content object
may be replicated at multiple locations and a node may not
have the location information of all the content objects whose
OIDs starts with a given prefix, leading to suffix holes. The
TLV structure enables to employ better aggregation
mechanisms because an OID can be easily extended to carry
the digest information. We propose to apply Bloom filters [7]
on the aggregated TLV elements to generate digest elements
and a CON router to advertise both the prefix and digests for its
content objects. Bloom filters are a computationally efficient
hash-based scheme, allowing control of the error probability.

Assume a CON router has the location information for
some content objects whose OIDs start with the same
organizationTLV, categoryTLV and subcategoryTLV. We want
to use a summary OID (sOID) to represent them. The sOID
consists of the common organizationTLV, categoryTLV and
subcategoryTLV (prefix) of these content objects and also the
digests of their titleTLVs, formatTLVs, and segmentationTLVs
(suffix). Its format is organizationTLV-categoryTLV-
subcategoryTLV-digestTLV1-digestTLV2-digestTLV3 where the
values in digestTLV1, digestTLV2, and digestTLV3 are generated
by Bloom filters from the content titleTLVs, formatTLVs, and
segmentationTLVs, respectively. Thus, the CON router can just
use a single sOID to publish or announce the location
information for these content objects, and other CON routers
receiving the announcement only need to maintain one routing
state for this sOID. By using the sOID in a routing
announcement, it means “I have the location information for
the content objects with this organizationTLV, categoryTLV
and subcategoryTLV, and the digests of the title, format, and
segmentation equal to the values in digestTLV1, digestTLV2,
and digestTLV3, respectively.”

Figure 1. Summary OID generation

Figure 2. Digest TLV format

As shown in Fig. 1, to generate the value field of
digestTLV1, a Bloom filter is used on the titleTLVs of the
content objects whose routing entries will be aggregated. The
CON router treats a titleTLV element as a binary number in the

process and does not need to know its meaning. To build a
digest with a Bloom filter, a bit array of m bits is allocated,
with all bits initially set to 0, and k independent hash functions,
h1, h2, ..., hk, are also needed, To add an element to the digest,
feed it to each of the k hash functions to get k array positions,
i.e. the element hashed with any of these functions gives a
value between 1 and m, and the hashed value represents the
position in the array. The bits at all the corresponding positions
are set to 1. The same process can be used to generate the
digest values for format and segmentation TLVs. Fig. 2 shows
the format of a digest TLV. Its type is “well-known” by all the
CON routers. The value field of a digest TLV includes a fixed-
size sub-field indicating the number of aggregated elements
added to the digest; the rest of the value field is used to store
the digest value itself.

In general, the OID for a content object consists of J TLVs,
TLV1-TLV2-TLV3 … TLVJ. For the content objects whose OIDs
have the common first j TLVs (), a CON router can
use a summary OID to represent them so that only a single
routing state for these content objects is needed. A sOID
consists of a prefix (the first j common TLVs) and J-j digest
TLVs, TLV1-……TLVj-DigestTLV(j+1) … DigestTLVJ. The value

in DigestTLVi (i=j+1,…,J) is obtained by taking the ith TLV

from each of the OIDs and applying the Bloom filter on it.
A CON router can flexibly control the aggregation degree

based on the popularity of the content objects or the distance to
the location that the content objects reside. For example, no
aggregation is performed in routing publishing messages for
the content objects residing in the local domain, but a domain
gateway router publishes the summary OIDs of its content
objects to outside domains. The prefix size j, i.e. the number of
non-aggregated TLVs in the sOID can be adjusted to balance
between the network resources needed for maintaining routing
states and the information loss. One learns from the sOID in the
received publishing message that requests for the content
objects with this prefix and digest may be served by this
domain.

To query whether an element exists based on the digest, the
element is fed to each of the k hash functions to calculate k
array positions. If any of the corresponding bits in the array are
0 then the element is not present. If all of the corresponding
bits in the array are 1 then the element is likely to be present.
Note that with Bloom filters, false positives are possible, but
false negatives are not. It is possible that a collision in the
digest occurs if the corresponding bits in the digest have been
set to 1 during the insertion of other elements. Then the digest
incorrectly indicates an element is present. However, the
probability of a collision can be controlled by designing
appropriate filters and limiting the number of summarized
elements that are added to a digest. Given a filter, when the
number of elements added to a digest exceeds the limit, we can
divide the elements into groups. Each group generates a digest.
We also define a new TLV, concatenated digest TLV, which
contains multiple digest sub-TLVs, each is generated from a
group of aggregated elements.

For a match between a queried OID and a sOID, the
corresponding prefix j un-summarized TLVs should be exactly
the same and every digest TLV in the sOID should give a
positive match to indicate that the corresponding element in the
queried OID is likely to be present. Since a sOID carries the

digests of the last J-j TLVs of the summarized content OIDs, it
helps mitigate the suffix-hole problem while achieving routing
scalability.

To support the content-oriented trust model, we define two
well-known TLV types, name signature TLV and key signature
TLV. The value field of the name signature TLV is a signature
generated by the content owner with its private key to bind the
content OID to the human readable name of the content object.
This private key can be the same key used to sign the content
data for binding between the content data and the content OID
(called the content key). The key signature TLV contains the
signature signed by a higher-level authority or a higher-level
key of the content owner. It binds the content owner’s content
public key to its human-readable organization name. We also
define extended OIDs (xOIDs) that consist of the OID
appended by a name signature TLV and a key signature TLV.
In addition, a content owner uses the hash of its content public
key as its own organization ID, i.e. the value field of the
organization TLV in the OID. Then the OID contains the
content public key information and is self-certifying as
described below.

The name signature TLV and the key signature TLV are
only used by end users and need not be sent in the content
requests. An end user can obtain the higher-level public key
through other means. The number of the higher-level keys is
much smaller than the number of the content keys so that it is
easy to manage. A user does not have to know the content
owner’s OID naming and encoding convention. One can
employ external mechanisms (e.g. search engines and personal
contacts) to obtain the xOID of the content object he wants as
well as the public key used to sign the content by the owner.
Before issuing the content request, the user can verify the
correctness of the content public key by checking the key
signature in the xOID, and verifies the correctness of the
content OID by checking the name signature in the xOID. This
prevents OID substitution attacks. The content public key
information in the OID enables CON network elements to
verify the authenticity of the content data and prevent denial-
of-service attacks without requiring the infrastructure to obtain
and verify the content public key through external secure
mechanisms. When a user requests a content object with its
OID, the data is delivered along with the content public key
and signature. Once a network element receives the data, public
key and signature triplet, it can immediately verify the
correctness of the public key by checking that the public key
hashes to the organization ID of the requested OID and the
integrity of the content by checking the signature. The xOID
addresses the security weaknesses in the prior works and
satisfies the trustworthy need.

IV. ANALYSIS AND PRELIMINARY RESULTS

We present in this section a simplified quantitative analysis
of the proposed Bloom filter-based aggregation method to
furnish a few first-order insights. As part of our future work,
we plan to conduct more thorough study on the impact of
routing state aggregation (not only Bloom filter-based but also
other aggregation techniques) to CON scalability.

For a Bloom filter with m bits in the array, k hash functions,
and n aggregated elements, the false positive probability is
approximately given as [10]

 (1)

Figure 3 shows the false positive probability pf as a function
of the number of aggregated elements n in the filter and the
filter size m, assuming an optimal value of k is used. The
probability of false positives decreases as m increases, and
increases as n increases. Note that sOIDs are only used in the
content object publishing, and are not carried in the data
packets. Thus there is great flexibility in designing the filter
length to meet the requirements of false positive probability
and the maximum number of elements to be aggregated in a
filter. For example, a false positive probability of 10

-4
 can be

achieved with a 32-byte long Bloom filter when 27 elements
are inserted in the filter (reducing the number of entries in the
routing table by 27 times).

Figure 3. The false positive probability of Bloom Filters

Consider a CON node that hosts a set Ω of content objects
whose OIDs have the common first j TLVs. An OID consists
of J TLVs: TLV1-TLV2-TLV3 … TLVJ. The CON node performs
Bloom filter-based aggregation for the |Ω| OIDs on their (J-j)
suffix TLVs to generate a sOID TLV1-……TLVj-DigestTLV(j+1)

… DigestTLVJ and publishes the sOID, rather than |Ω| OIDs,
for scalability purpose. Bloom filter i is used to generate
DigestTLVi, i=j+1, …,J. When another CON router resolves
the location for a content request, the false positive match may
occur due to aggregation. Even if the prefix j TLVs of the
published sOID match those of the requested OID and every
digest TLV in the sOID indicates that the corresponding TLV
elements of the requested OID is likely to be present, the
publishing CON node may actually not possess the requested
content object. This routing resolution error occurs if at least
one false positive occurs on an aggregated TLV.

Let denote the set of the ith TLV in the
OIDs of the objects hosted by the publishing node,

 (2)

 denotes the number of distinct TLVi values in the set.
Note that some OIDs may have the same TLVi value. Let ui
denote the number of potential values that TLVi can take. The
routing resolution error probability can be calculated as follows
(we omit the detail proof due to the space limit, and let
interested readers refer to [9]). To encounter a false positive,
we need filters () each return a
false positive, which happens with probability

and an exact match on the other tags, with probability

Therefore the false positive probability is given as

(3)

where is the individual false positive probability associated

with Bloom filter i as calculated in (1). As a comparison, the
prefix aggregation scheme simply discards the last (J-j) TLVs
in an OID for aggregation. When a perfect match occurs on the
prefix TLVs, an error occurs if at least one of the (J-j) suffix
TLVs does not match. This probability is given as

 (4)

We carry out a numerical experiment. For ease of
exposition, we set to uniformly for .
Figure 4 shows the routing resolution error probability as a
function of the ratio and the number of aggregated TLVs in
the OID (i.e.,). The OID consist of J=6 TLVs. Up to J-
j=3 suffix TLVs are aggregated and ui are set uniformly to 500
for TLVi, i=4, 5, 6. The Bloom filter size is set to be 128 bytes.
For comparison, we also show the routing resolution error
probability if the conventional prefix aggregation is used.

Figure 4. Routing resolution error probabilities of Bloom-filter and

prefix aggregations

As shown in Fig. 4, the proposed Bloom filter aggregation
greatly outperforms the conventional prefix aggregation. The
benefits of Bloom-filter aggregation are more conspicuous as
approaches 0. This is because the Bloom filter digests in the
sOID provide reliable extra information to test whether a
requested OID is in the set of content objects hosted by the

publishing node. Although use of a Bloom filter has overhead
in bandwidth, computing and memory usage, this overhead is
minimal. The routing resolution error probability also decreases
to 0 when approaches 1 because in this case the publishing
node has every possible object in possession. The routing
resolution error peaks for moderate when Bloom filters return
more false positives. When is small, the error probability
decreases as the number of aggregated TLVs increases (i.e.,
increasing) because the Bloom filters rarely return a
false positive. However, this trend is reversed when becomes
large. With a large r, the Bloom filters become less reliable,
and the Bloom-filter aggregation scheme degrades to the prefix
aggregation scheme, whose performance worsens as the
number of TLVs employed in the prefix shrinks.

V. DISCUSSIONS AND FUTURE WORK

This paper proposes a new content naming scheme using
the structured TLVs and Bloom filter summarization to
improve routing scalability and enable more secure content-
oriented trust model. The early results show that the proposed
scheme can greatly reduce routing resolution error probability
compared to the conventional prefix-based routing aggregation.

For future work, we plan to implement the proposed
scheme and integrate it in our CON system testbed. We’ll also
conduct extensive experiments to evaluate its performance and
compare it with other naming schemes. In particular, we would
like to get thorough understanding on the impact of routing
state aggregation to the scalability.

REFERENCES

[1] T. Koponen et al., “A Data-Oriented (and Beyond) Network
Architecture,” SIGCOMM ’07, 2007, pp. 181–92.

[2] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and S.
Shenker, “ROFL: Routing on Flat Labels,” SIGCOMM, 2006.

[3] V. Jacobson et al., “Networking Named Content,” CoNEXT ’09, New
York, NY, 2009, pp. 1–12.

[4] M. Gritter and D. R. Cheriton, “An Architecture for Content Routing
Support in the Internet,” 3rd Usenix Symp. Internet Technologies and
Sys., 2001, pp. 37–48.

[5] K. Visala et al., “An Inter-Domain Data-Oriented Routing Architecture,”
Wksp on Rearchitecting the Internet, New York, NY, 2009, pp.55–60.

[6] D. Raychaudhuri, “MobilityFirst Vision & Technical Approach
Summary,” MobilityFirst External Advisory Board Meeting, Feb 2011.

[7] L. Fan, P. Cao, J. Almeida, A. Z. Broder, "Summary Cache: A Scalable
Wide-Area Web Cache Sharing Protocol," ACM SIGCOMM '98.

[8] J. Choi, et al, “A Survey on Content-Oriented Networking for Efficient
Content Delivery,” IEEE Communications Magazine, March 2011.

[9] H. Liu, et. al. “An Information-Centric Networking Architecure,” Tech.
Rep., 2011.

[10] Goel, Ashish; Gupta, Pankaj, "Small subset queries and bloom filters
using ternary associative memories, with applications", ACM Sigmetrics
2010.

[11] I. Stoica, et al, “Chord: a scalable peer-to-peer lookup service for
Internet applications,” SIGCOMM 2001.

[12] P. Ganesan, K. Gummadi, H. Garcia-Molina, “Canon in G major:
designing DHTs with hierarchical structure,” ICDCS, March 2004.

[13] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient routing for peer-to-
peer overlays,” NSDI, March 2004.

