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Abstract—Content-oriented networking (CON) addresses the 

inefficiency of IP networks in supporting content distribution, by 

decoupling location from identity at the network level, and 

retrieving a content object through its name or identifier, instead 

of its storage location or host IP address. A naming scheme is 

critical in CON designs because a name is used to identify the 

object and acts as the key for location resolution and routing. 

This paper proposes a new TLV-structured naming scheme with 

Bloom filter summarization. The proposed scheme satisfies the 

requirements of name uniqueness and persistence, and enables 

more secure content-oriented trust model and effective routing 

state aggregation for scalability. It also addresses the “suffix-

hole” problem encountered in conventional prefix-based routing 

aggregation. We analyzed the performance of the proposed TLV-

structured naming and Bloom filter aggregation scheme and our 

early evaluation results shows that the proposed scheme greatly 

outperforms the prefix-based aggregation in terms of routing 

resolution error probability.  

Keywords-content-oriented networking; information-centric 
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I.  INTRODUCTION 

The Internet is primarily used for content retrieval and 
information access. Multimedia content traffic, especially video 
traffic is growing at an exponential rate. Another trend is that 
more and more users are accessing information over networks 
using their smart mobile devices equipped with multiple 
network interfaces. However today’s IP networks were built to 
interconnect fixed computing nodes (terminals, servers, etc.), in 
which communications are based on the node’s IP addresses. 
Such discrepancy causes inefficiencies in networks as well as 
in application designs. For example, a video clip may be 
encoded in multiple formats and resolutions, and can be 
replicated at multiple hosting locations. A mobile user is 
interested in the content itself, rather than its host. It is 
desirable that the content is delivered from the best/closest 
host, and the delivery matches the user device’s operating 
conditions in the proper format and at the best available 
quality. The TCP/IP architecture is not “intelligent” enough to 
meet the user’s requirements because it relies on the host-to-
host communication model. This leads to developing complex 
application-specific solutions such as content delivery networks 
(CDNs) and P2P overlays. But these application-specific 
solutions are costly and inefficient because they have limited 
information about underlying network status and require extra 
management mechanisms. 

Content-oriented networking (also referred to as 
information-centric or name-oriented networking) has been 
considered as an innovative architecture for the future Internet 
to address the above mismatch, which decouples content from 
hosts at the network level and retrieves a content object by its 
name (identifier), instead of its storage location (host IP 
address). This new networking paradigm naturally enables 
mechanisms such as in-network caching and delivery of 
content from the best location(s) to optimize bandwidth and 
improve users’ content access performance. It also allows 
network operators to interconnect their content service 
networks across domains to make more content available and 
share resources for cost reduction, as well as frees application 
developers from reinventing application-specific delivery 
mechanisms. Moreover, it solves or mitigates other Internet 
problems such as mobility and multi-homing. 

There are many challenges in the content-oriented 
networking (CON) design, such as how to name content 
objects, locate a particular content object, and deliver the 
content in a scalable and efficient way. In this paper we focus 
on the naming issue. The naming scheme is critical in CON 
designs because a name or an object identifier (OID) is used to 
identify the content object and acts as the key for location 
resolution and routing mechanisms. Note that the terms, 
“name”, “identifier”, and “OID” are used interchangeably in 
this paper, unless otherwise stated. 

For scalable, efficient, and secure content access, one 
would want that a naming scheme supports the following 
features. 

· Uniqueness: An OID should be globally unique to identify 
an object.  

· Persistence: Once an OID is assigned to a content object, 
users would like that the OID remain valid as long as the 
underlying object itself is available and not changed, that is, 
users would like to access the object with this name even if 
the location and administrative domain of the object is 
changed. 

· Trustworthiness: CON designs secure the content rather 
than the communication path between two communication 
points. The content is signed by the original content owner 
or creator (e.g. Disney). End users and network elements 
such as CON routers can authenticate the content by 
verifying the signature. Naming plays a role in this content-
oriented trust model from two aspects: binding between the 
user-friendly human-readable name and its corresponding 
CON OID, and binding between the OID and the public key 



(to authenticate the data). The integrity needs to be ensured 
from the user-friendly name to the CON OID and from the 
OID to the content. 

· Scalability: There are a huge number of content objects on 
the Internet and their locations frequently change due to 
dynamic caching and replacement. It is desirable that 
certain aggregation can be used to reduce the number of 
routing states and associated routing update overhead for 
scalability. 

There are two naming schemes proposed in the literature: 
flat self-certifying names [1, 2, 5, 6] and hierarchical identifiers 
[3, 4]. However, both of the approaches have their share of 
problems. The former defines an object name as a hash of a 
public key and a label. It meets uniqueness and persistence 
requirements, and allows network elements to verify the 
integrity of the data without need of any external mechanism, 
preventing denial-of-service attacks. But some external 
mechanism is required for binding the user-friendly name to 
the flat self-certifying name. This process can be subject to 
substitution attacks. In addition, flat names, consisting of a 
random looking series of bits with no semantics and structure, 
are difficult to aggregate for routing scalability. 

 To improve scalability, a hierarchical content naming 
scheme with a structure like binary-encoded URLs is 
introduced [3]. This scheme partially addresses the first aspect 
of the trustworthiness requirements: binding between the user-
friendly name and its corresponding CON OID. However it 
requires that a user knows the encoding rules employed by the 
content owner or naming authority to map the human-readable 
name to the OID. Moreover an external mechanism is needed 
to bind the CON OID to the key in order to authenticate the 
content matching the requested OID. Not only the end users but 
also CON infrastructure such as content routers should know 
the public key for a requested content OID. Otherwise the 
network may keep delivering false data even if the end user can 
authenticate the content, leading to denial-of-service attacks. 

Hierarchical naming structure can help scalability. It was 
proposed to aggregate routing entries for the hierarchical OIDs 
with a common prefix to reduce the number of routing states, 
just as network address prefix aggregation in IP routing [3]. For 
example, if all the content objects whose name starts with 
“example.com” are stored in a single node, a single entry is 
needed for these content objects in CON routers to route a 
content request to this node. However as content objects are 
cached or replicated at multiple places, prefix-based 
aggregation becomes less effective. A caching node may not 
have all the content objects for a given prefix. For example, 
there are a total of N (e.g. N=2000) content objects with the 
prefix “example.com,” and a node only stores M (e.g. M=1000) 
of them.  If the prefix-based aggregation is used to avoid the M 
routing states and associated routing update overhead, a lot of 
information will be lost. This is because a routing 
announcement with prefix-based aggregation can only express 
“some of the content objects with this prefix (e.g. 
example.com) can be reached via me.” We refer to this as a 
suffix hole. Suffix holes introduce uncertainty in locating a 
particular content object and then reduce routing efficiency. In 
addition, URLs or DNS names have their traditional semantics, 
somehow related to the location. The components in the above 
hierarchical naming (e.g. example.com/video/WidgetA.mpg) 

needs to be given new meanings (“example.com” is the object 
owner or creator, not host, “video” is the object type, not 
directory, WidgetA.mpg is the object title and format, not the 
file name). Otherwise, the name becomes misleading if the 
administrative domain or location of the object is changed. 

In this paper, we propose a new naming and aggregation 
scheme, in which a content object ID (OID) consists of a set of 
variable-size information elements (IEs), and each IE is 
encoded as type-length-value (TLV). The information elements 
can flexibly form hierarchical or peer relationships. The 
network imposes no restrictions to the OID assignment except 
the TLV structure, and does not have to know the meaning of 
types and values except certain “well-known” types. This TLV-
structured namespace can provide name uniqueness and 
persistence, and enable better scalability and trustworthiness. 
To address the suffix-hole problem, we propose to use a Bloom 
filter [10] to summarize the aggregated elements and generate 
digest elements. Then a routing advertisement can express 
more accurate information such as “the content objects with 
this prefix and digest value can be reached via me.” 
Furthermore, a content router or a distributed name resolution 
function can flexibly control the aggregation degree based on 
the distance or popularity of content objects in order to balance 
between needed resources and routing information 
compression. 

The remainder of the paper is organized as follows. Section 
II presents a high-level overview of the system model. In 
Section III, we describe the new TLV naming and Bloom filter 
aggregation scheme. In Section IV, we analyze the 
performance of the proposed naming and aggregation scheme, 
and present the evaluation results. The conclusions and future 
work are discussed in Section V.  

II. SYSTEM MODEL 

Before we present the proposed naming scheme, we discuss 
the CON system model in order to have a more complete 
picture. In CON, a network element, e.g. a content router, has 
storage capability. Content objects are cached or replicated at 
multiple places. The CON employs a publish/subscribe model, 
in which a content provider publishes the availability of its 
objects and a user subscribes to (requests) the objects. The 
object name is used as the key in this publish/subscribe 
operation. Thus the providers and users do not have to know 
each other’s locations and be online at the same time.  

CON networks should be able to locate a requested content 
object and route the content request to the closest or best 
host(s) for serving the request based on the requested object 
name. Different routing algorithms can be used such as 
advertisement via simple flooding or distributed hash table 
(DHT) [11, 12, 13]. Once a CON router receives a request, it 
can either directly use the name for routing [2, 3] or maps the 
name to a location or address through a resolution mechanism 
[1, 4, 6]. The name of an object is independent of its location. 
Decoupling of naming and location as well as name-based 
routing enables CON to natively support in-network caching, 
mobility, and multihoming.  

In CON, the requested content object may be delivered 
from a network element other than the origin server. It takes a 
content-oriented trust model by leveraging public key 
cryptography. The object is signed by the original content 



owner using a private key that binds the CON OID to the 
content data. A user needs to know the CON OID of the 
desired content and the content owner’s public key in order to 
retrieve and authenticate the content. CON network elements 
also should bind the requested content OID to the 
corresponding public key in order to prevent attackers from 
sending false content for denial-of service attacks. From the 
above discussions, we can see that naming plays an important 
role in CON routing and trust models. The proposed TLV 
naming scheme can be incorporated with a flooding-based or 
DHT-based routing mechanism.  

III. CONTENT NAMING AND AGGREGATION 

An OID in the proposed TLV naming scheme is composed 
of a set of variable-sized information elements (IEs), and each 
IE is encoded as type-length-value (TLV). The type and length 
fields are fixed in size, e.g. 1 octet, and the value field is of 
variable size. The type field indicates the kind of elements and 
the length field defines the size of the value field contained in 
the TLV. A TLV may contain multiple sub-TLVs in its value 
field. 

The IEs in a content OID can have hierarchical or peer 
relationships, which offer flexibility and extensibility in content 
naming. They can be processed very fast using generalized 
parsing functions in binary format. It is also fairly easy to map 
text or XML-based human readable names to TLVs. During the 
content request routing and data transport process, CON routers 
(CRs) in the network do not need to know the meaning of type 
and value fields in a TLV, except certain “well-known” types, 
such as digest TLV, although the type and value may be 
meaningful for some higher layer applications. The network 
imposes no restrictions to the OID assignment except the TLV 
structure. A CON router just uses the length field to parse the 
TLV elements and treats the whole element as a binary number 
in object publishing, routing aggregation, and resolution 
process as described below.  

As an example, a content owner or a naming authority may 
assign a movie clip with an OID like “organizationTLV-
categoryTLV-subcategoryTLV-titleTLV-formatTLV-
segmentationTLV.” Note that characters “-” are used to 
separate the elements for notation purpose, and are not part of 
OIDs. This content OID naming reflects the application-level 
human-readable name, including content owner’s organization 
ID, category ID, subcategory ID, title ID, format ID (a code to 
indicate audio/video coding format and resolution), and 
segmentation ID (a code to indicate the temporal starting point 
and duration of this movie clip as well as its version number). 
Note that an ID here is just an assigned number. Another 
content owner may name its content objects using a different 
convention. This TLV naming scheme can be used for naming 
anything, not just content. 

The TLV naming meets uniqueness and persistence 
requirements. As long as a content owner has a globally unique 
organization ID (e.g. the hash of its public key or its binary-
encoded DNS name), locally unique content OIDs assigned by 
this content owner can be guaranteed to be globally unique. 
Persistence follows from the fact that the OIDs don’t refer to 
location, and thus the object can be hosted anywhere. The same 
OID can be used even if the object changes its administrative 
domain. In addition, for flexibility, a user can issue a request 

with an OID that contains wild card elements. A well-known 
wild card TLV or a wild card value in a TLV can be defined for 
this purpose. 

To handle a large number of content objects on the Internet, 
aggregation of content location information is necessary. 
However, as mentioned before, the conventional prefix-based 
routing aggregation is not effective because a content object 
may be replicated at multiple locations and a node may not 
have the location information of all the content objects whose 
OIDs starts with a given prefix, leading to suffix holes. The 
TLV structure enables to employ better aggregation 
mechanisms because an OID can be easily extended to carry 
the digest information. We propose to apply Bloom filters [7] 
on the aggregated TLV elements to generate digest elements 
and a CON router to advertise both the prefix and digests for its 
content objects. Bloom filters are a computationally efficient 
hash-based scheme, allowing control of the error probability. 

Assume a CON router has the location information for 
some content objects whose OIDs start with the same 
organizationTLV, categoryTLV and subcategoryTLV. We want 
to use a summary OID (sOID) to represent them. The sOID 
consists of the common organizationTLV, categoryTLV and 
subcategoryTLV (prefix) of these content objects and also the 
digests of their titleTLVs, formatTLVs, and segmentationTLVs 
(suffix). Its format is organizationTLV-categoryTLV-
subcategoryTLV-digestTLV1-digestTLV2-digestTLV3 where the 
values in digestTLV1, digestTLV2, and digestTLV3 are generated 
by Bloom filters from the content titleTLVs, formatTLVs, and 
segmentationTLVs, respectively. Thus, the CON router can just 
use a single sOID to publish or announce the location 
information for these content objects, and other CON routers 
receiving the announcement only need to maintain one routing 
state for this sOID. By using the sOID in a routing 
announcement, it means “I have the location information for 
the content objects with this organizationTLV, categoryTLV 
and subcategoryTLV, and the digests of the title, format, and 
segmentation equal to the values in digestTLV1, digestTLV2, 
and digestTLV3, respectively.”  

 

Figure 1. Summary OID generation 

Figure 2. Digest TLV format 

As shown in Fig. 1, to generate the value field of 
digestTLV1, a Bloom filter is used on the titleTLVs of the 
content objects whose routing entries will be aggregated. The 
CON router treats a titleTLV element as a binary number in the 



process and does not need to know its meaning. To build a 
digest with a Bloom filter, a bit array of m bits is allocated, 
with all bits initially set to 0, and k independent hash functions, 
h1, h2, ..., hk, are also needed, To add an element to the digest, 
feed it to each of the k hash functions to get k array positions, 
i.e. the element hashed with any of these functions gives a 
value between 1 and m, and the hashed value represents the 
position in the array. The bits at all the corresponding positions 
are set to 1. The same process can be used to generate the 
digest values for format and segmentation TLVs. Fig. 2 shows 
the format of a digest TLV. Its type is “well-known” by all the 
CON routers. The value field of a digest TLV includes a fixed-
size sub-field indicating the number of aggregated elements 
added to the digest; the rest of the value field is used to store 
the digest value itself. 

In general, the OID for a content object consists of J TLVs, 
TLV1-TLV2-TLV3 … TLVJ. For the content objects whose OIDs 
have the common first j TLVs ( ), a CON router can 
use a summary OID to represent them so that only a single 
routing state for these content objects is needed. A sOID 
consists of a prefix (the first j common TLVs) and J-j digest 
TLVs, TLV1-……TLVj-DigestTLV(j+1) … DigestTLVJ. The value 

in DigestTLVi (i=j+1,…,J)  is obtained by taking the ith TLV 

from each of the OIDs and applying the Bloom filter on it.  
A CON router can flexibly control the aggregation degree 

based on the popularity of the content objects or the distance to 
the location that the content objects reside. For example, no 
aggregation is performed in routing publishing messages for 
the content objects residing in the local domain, but a domain 
gateway router publishes the summary OIDs of its content 
objects to outside domains. The prefix size j, i.e. the number of 
non-aggregated TLVs in the sOID can be adjusted to balance 
between the network resources needed for maintaining routing 
states and the information loss. One learns from the sOID in the 
received publishing message that requests for the content 
objects with this prefix and digest may be served by this 
domain.  

To query whether an element exists based on the digest, the 
element is fed to each of the k hash functions to calculate k 
array positions. If any of the corresponding bits in the array are 
0 then the element is not present. If all of the corresponding 
bits in the array are 1 then the element is likely to be present. 
Note that with Bloom filters, false positives are possible, but 
false negatives are not. It is possible that a collision in the 
digest occurs if the corresponding bits in the digest have been 
set to 1 during the insertion of other elements. Then the digest 
incorrectly indicates an element is present. However, the 
probability of a collision can be controlled by designing 
appropriate filters and limiting the number of summarized 
elements that are added to a digest. Given a filter, when the 
number of elements added to a digest exceeds the limit, we can 
divide the elements into groups. Each group generates a digest. 
We also define a new TLV, concatenated digest TLV, which 
contains multiple digest sub-TLVs, each is generated from a 
group of aggregated elements.  

For a match between a queried OID and a sOID, the 
corresponding prefix j un-summarized TLVs should be exactly 
the same and every digest TLV in the sOID should give a 
positive match to indicate that the corresponding element in the 
queried OID is likely to be present. Since a sOID carries the 

digests of the last J-j TLVs of the summarized content OIDs, it 
helps mitigate the suffix-hole problem while achieving routing 
scalability. 

To support the content-oriented trust model, we define two 
well-known TLV types, name signature TLV and key signature 
TLV. The value field of the name signature TLV is a signature 
generated by the content owner with its private key to bind the 
content OID to the human readable name of the content object. 
This private key can be the same key used to sign the content 
data for binding between the content data and the content OID 
(called the content key). The key signature TLV contains the 
signature signed by a higher-level authority or a higher-level 
key of the content owner. It binds the content owner’s content 
public key to its human-readable organization name. We also 
define extended OIDs (xOIDs) that consist of the OID 
appended by a name signature TLV and a key signature TLV. 
In addition, a content owner uses the hash of its content public 
key as its own organization ID, i.e. the value field of the 
organization TLV in the OID. Then the OID contains the 
content public key information and is self-certifying as 
described below.  

The name signature TLV and the key signature TLV are 
only used by end users and need not be sent in the content 
requests. An end user can obtain the higher-level public key 
through other means. The number of the higher-level keys is 
much smaller than the number of the content keys so that it is 
easy to manage. A user does not have to know the content 
owner’s OID naming and encoding convention. One can 
employ external mechanisms (e.g. search engines and personal 
contacts) to obtain the xOID of the content object he wants as 
well as the public key used to sign the content by the owner.  
Before issuing the content request, the user can verify the 
correctness of the content public key by checking the key 
signature in the xOID, and verifies the correctness of the 
content OID by checking the name signature in the xOID. This 
prevents OID substitution attacks. The content public key 
information in the OID enables CON network elements to 
verify the authenticity of the content data and prevent denial-
of-service attacks without requiring the infrastructure to obtain 
and verify the content public key through external secure 
mechanisms. When a user requests a content object with its 
OID, the data is delivered along with the content public key 
and signature. Once a network element receives the data, public 
key and signature triplet, it can immediately verify the 
correctness of the public key by checking that the public key 
hashes to the organization ID of the requested OID and the 
integrity of the content by checking the signature. The xOID 
addresses the security weaknesses in the prior works and 
satisfies the trustworthy need.  

IV. ANALYSIS AND PRELIMINARY RESULTS 

We present in this section a simplified quantitative analysis 
of the proposed Bloom filter-based aggregation method to 
furnish a few first-order insights. As part of our future work, 
we plan to conduct more thorough study on the impact of 
routing state aggregation (not only Bloom filter-based but also 
other aggregation techniques) to CON scalability.  

For a Bloom filter with m bits in the array, k hash functions, 
and n aggregated elements, the false positive probability is 
approximately given as [10] 



 

 (1)   

Figure 3 shows the false positive probability pf as a function 
of the number of aggregated elements n in the filter and the 
filter size m, assuming an optimal value of k is used. The 
probability of false positives decreases as m increases, and 
increases as n increases. Note that sOIDs are only used in the 
content object publishing, and are not carried in the data 
packets. Thus there is great flexibility in designing the filter 
length to meet the requirements of false positive probability 
and the maximum number of elements to be aggregated in a 
filter. For example, a false positive probability of 10

-4
 can be 

achieved with a 32-byte long Bloom filter when 27 elements 
are inserted in the filter (reducing the number of entries in the 
routing table by 27 times).  

 
Figure 3. The false positive probability of Bloom Filters 

Consider a CON node that hosts a set Ω of content objects 
whose OIDs have the common first j TLVs. An OID consists 
of J TLVs: TLV1-TLV2-TLV3 … TLVJ. The CON node performs 
Bloom filter-based aggregation for the |Ω| OIDs on their (J-j) 
suffix TLVs to generate a sOID TLV1-……TLVj-DigestTLV(j+1) 

… DigestTLVJ and publishes the sOID, rather than |Ω| OIDs, 
for scalability purpose. Bloom filter i is used to generate 
DigestTLVi, i=j+1, …,J. When another CON router resolves 
the location for a content request, the false positive match may 
occur due to aggregation. Even if the prefix j TLVs of the 
published sOID match those of the requested OID and every 
digest TLV in the sOID indicates that the corresponding TLV 
elements of the requested OID is likely to be present, the 
publishing CON node may actually not possess the requested 
content object. This routing resolution error occurs if at least 
one false positive occurs on an aggregated TLV. 

Let  denote the set of the ith TLV in the 
OIDs of the objects hosted by the publishing node, 

  (2)   

 denotes the number of distinct TLVi values in the set. 
Note that some OIDs may have the same TLVi value. Let ui 
denote the number of potential values that TLVi can take. The 
routing resolution error probability can be calculated as follows 
(we omit the detail proof due to the space limit, and let 
interested readers refer to [9]). To encounter a false positive, 
we need  filters ( ) each return a 
false positive, which happens with probability 

 

and an exact match on the other  tags, with probability 

 

Therefore the false positive probability is given as  

 

 

(3)   

where  is the individual false positive probability associated 

with Bloom filter i as calculated in (1). As a comparison, the 
prefix aggregation scheme simply discards the last (J-j) TLVs 
in an OID for aggregation. When a perfect match occurs on the 
prefix TLVs, an error occurs if at least one of the (J-j) suffix 
TLVs does not match. This probability is given as 

 

 (4)   

We carry out a numerical experiment. For ease of 
exposition, we set  to  uniformly for . 
Figure 4 shows the routing resolution error probability as a 
function of the ratio  and the number of aggregated TLVs in 
the OID (i.e., ). The OID consist of J=6 TLVs. Up to J-
j=3 suffix TLVs are aggregated and ui are set uniformly to 500 
for TLVi, i=4, 5, 6. The Bloom filter size is set to be 128 bytes. 
For comparison, we also show the routing resolution error 
probability if the conventional prefix aggregation is used. 

 
Figure 4. Routing resolution error probabilities of Bloom-filter and 

prefix aggregations 

As shown in Fig. 4, the proposed Bloom filter aggregation 
greatly outperforms the conventional prefix aggregation. The 
benefits of Bloom-filter aggregation are more conspicuous as  
approaches 0. This is because the Bloom filter digests in the 
sOID provide reliable extra information to test whether a 
requested OID is in the set of content objects hosted by the 



publishing node. Although use of a Bloom filter has overhead 
in bandwidth, computing and memory usage, this overhead is 
minimal. The routing resolution error probability also decreases 
to 0 when  approaches 1 because in this case the publishing 
node has every possible object in possession. The routing 
resolution error peaks for moderate  when Bloom filters return 
more false positives. When  is small, the error probability 
decreases as the number of aggregated TLVs increases (i.e., 
increasing ) because the Bloom filters rarely return a 
false positive. However, this trend is reversed when  becomes 
large. With a large r, the Bloom filters become less reliable, 
and the Bloom-filter aggregation scheme degrades to the prefix 
aggregation scheme, whose performance worsens as the 
number of TLVs employed in the prefix shrinks. 

V. DISCUSSIONS AND FUTURE WORK 

This paper proposes a new content naming scheme using 
the structured TLVs and Bloom filter summarization to 
improve routing scalability and enable more secure content-
oriented trust model. The early results show that the proposed 
scheme can greatly reduce routing resolution error probability 
compared to the conventional prefix-based routing aggregation.  

For future work, we plan to implement the proposed 
scheme and integrate it in our CON system testbed. We’ll also 
conduct extensive experiments to evaluate its performance and 
compare it with other naming schemes. In particular, we would 
like to get thorough understanding on the impact of routing 
state aggregation to the scalability. 
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