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Abstract—In the past decade, remarkable progress has been
made in the area of network coding in terms of theory, code
design, and applications. However, from a cross-layer perspective,
the understanding of resource allocation for random network
coding (RNC) and its impact on network throughput has been
limited. In this article we address the problem of resource
allocation for RNC in a general wireless network, using the recent
framework that models the dynamics of RNC using a system
of differential equations. Based on this framework, we design
a gradient algorithm that can be used to improve a variety of
throughput objectives.

Index Terms—Random network coding, resource allocation,
differential equation, dynamical system, power control

I. INTRODUCTION

Resource allocation for random network coding (RNC) aims
to find an optimal allocation of communication resource, such
as power, bandwidth, time slots and codes, in support of
RNC based transport of information. This problem has been
extensively addressed with regard to many applications. The
methodologies used in the previous studies [1], [2] have a com-
monality that, in one way or another the problem of coding at
the network level is reduced to the traditional commodity-flow
[3] problem. For example, in a network where nodes perform
RNC, imposing a routing strategy may compromise valuable
benefits of RNC because fundamentally RNC is different from
routing in exploiting various diversities the network offers.
Specifically, a routing strategy fixes a set of routes over which
information is transported and this inevitably incurs loss on
the so called multicast advantage [1] of wireless. There are a
good number of other resource allocation methods tailored for
particular topologies or particular applications [4], [5]. These
approaches lack generality and most of them only superficially
make use of the advantages that RNC provides. In a recent
article [6], a dynamical system model for RNC has been
proposed to completely characterize the average behavior of
rank evolution – a crucial concept of RNC – that contains
all information of interest regarding RNC, such as throughput
and decoding delay. While this makes plausible an optimal
control theoretic strategy, a simpler resource allocation based
on gradient methods also works well, as will be discussed in
this article. In general, due to the memory of a dynamical
system, gradient methods are often not available. The case of
RNC comes off as an exception because of two remarkable
properties that have been revealed in previous works [6]–[8].

Specifically, we know with fixed MAC and PHY layer, i.e.,
fixed resource allocation, the rank of any node (or set)

1) increases linearly at a fixed rate and
2) linearly depends on the link rates, until it reaches full

rank.
The implications are, because of property 1, fixed allocation
corresponds to a fixed throughput, thus memory of the system
becomes irrelevant. Because of property 2, the system scales
in time (doubling the rates doubles the throughput), thus we
can put systems of different rates in a common time frame
through proper scaling. These implications are so useful that,
for the above mentioned dynamical system, they enable the
effective use of the gradient method to construct a state
feedback to continuously steer the network towards an ever
better allocation of resource.

In what follows we first briefly recap the dynamical system
view of RNC that has been elaborated in [6]. The resource
allocation problem is then cast in this framework and a
gradient based resource allocation is proposed. We analyze its
optimality, convergence and discuss its practical design consid-
erations. In the end we illustrate the use of the methodology by
designing an optimal power control algorithm for the wireless
network where nodes perform RNC.

II. PROBLEM SETUP

A. Dynamical System View of Random Network Coding

Consider a wireless network modeled as a hypergraph [6]
G = (N , E) where N is the set of transceiver nodes and
E are a collection of hyperarcs in the form of (i,K) pairs
where i ∈ N and K ⊂ N . The broadcasting phenomenon
from node i to an arbitrary set of nodes K is thus modeled
with the hyperarc K. We assume every node in the network
performs RNC on the finite field GF(q) where q is the size of
the underlying finite field. Whenever a node gets to transmit, it
transmits a coded packet that is a random linear combination of
all the packets available to it, including the packets it originates
and the coded packets it has received. Because RNC takes
packets as the atomic object to process, it represents a transport
strategy that is decoupled from the underlying MAC or PHY
technologies, whose operations are considered independent of
RNC. Take an arbitrary node i for example, typically the MAC
layer of node i determines the transmission (broadcast) rate
measured in packets per second. The PHY layer of node i



determines the error probability that a transmitted packet can
be correctly decoded at any receiver node j. In fact, according
to [6], the respective effect of MAC and PHY in a wireless
network can be shown through two variables:
• λi: the transmission rate at node i;
• Pi,K: the probability that a packet sent from node i can

be correctly decoded by at least one node in K.
It is possible to summarize the overall effect of MAC and
PHY by defining zi,K = λiPi,K, which can be conceived as
the capacity of the hyperarc (i,K). Given i ∈ Kc, we further
define the min cut capacity for (i,K) as

cmin(i,K) = min
K⊂T ,i6∈T

∑
j∈T c

zj,T . (1)

As decodability of RNC entirely depends on the number of
linearly independent coding vectors, i.e., the rank, and as there
is no explicit routing, it is important to keep track of the rank at
any node. We use Vi to denote the rank at any node i. It turns
out to be rewarding that we also define the rank at any set K,
denoted by VK, as the number of linearly independent coding
vectors that the nodes in K collectively possess. Apparently Vi
and VK are random increment processes. Suppose the number
of source packets is m. Since every coded packet is a random
linear combination of m source packets, i can start decoding as
soon as Vi = m. In [6] the authors discussed a concentration
phenomenon of RNC, that when m is sufficiently large, Vi and
VK behave in a very predictable way, much like deterministic
functions of time. Such a concentration phenomenon has also
been observed and discussed even earlier in [8]. Its implication
triggers the conjecture that Vi and VK may be modeled as a
system of differential equations. This is indeed true and, when
MAC and PHY are fixed such that zi,K are known parameters,
these equations are explicitly written down in [6] as

V̇K =
∑
i∈Kc

zi,K(1− qVK−V{i}∪K), ∀∅ 6= K ⊂ N . (2)

If we stack VK into a column vector V and stack all zi,K in
z, we may write (2) in a more compact form

V̇ = f(V, z) (3)

where f is the stacking of the right-hand sides of (2). Note
the instantaneous throughput of set K is given by V̇K. Suppose
node 1 is the only source node. When m → ∞, [6] showed
that

V̇K(t) = cmin(1,K), when VK(t) < m, (4)

i.e., the instantaneous throughput is almost a constant if m is
sufficiently large. The fact that when z is fixed and m is large,
V̇ is constant can be written in a more compact form

JVf(V, z) = 0, (5)

where JVf(V, z) is the Jacobian of f(V, z). Another useful
observation from (2) is that V̇K only linearly depends on zi,K.
Mathematically, this implies

(Jzf)(V, z) = (Jzf)(V). (6)

While (6) is precise, (5) is a good approximation with large
m. Equations (5) and (6) constitute the basis for the resource
allocation strategy to be discussed.

B. Resource Allocation with the Dynamical System Model

Since RNC is decoupled from MAC and PHY layers, it is
particularly easy to discuss resource allocation and its effect
on RNC at an abstract level. When there is a single resource to
be allocated to N nodes, the allocation scheme is represented
by a N -dimensional column vector r, whose i-th component
represents the allocation to node i. Consequently, the effect of
resource allocation is captured in the mapping

λi = λi(r) and Pi,K = Pi,K(r), (7)

or more concisely, zi,K = zi,K(r). In vector form, we may
write z = z(r).

An allocation scheme is invariably a deliberate design to
achieve a certain objective. In this article, we assume the
objective is a function of throughputs, which can be solved
with the system of differential equations in (2). Specifically,
we assume the objective to be maximized can be written as
T (V̇) where T can be any continuous function in the first
quadrant with partial derivatives defined almost everywhere.
As a result, we wish to solve

maximize T (V̇) (8)

subject to V̇ = f(V, z) (9)
z = z(r) (10)

Equation (8) takes a distinct form from previous resource
allocation problems for RNC. Rather than treating RNC as
a static transport strategy, (8) looks at it from the dynamical
system point of view, which means the allocation may also
be dynamic and changes over time. Moreover, it can take the
form of state feedback

ṙ = g(V, V̇) (11)

where g is some function of V. The second distinction is that
(8) is the first formulation that takes full multicast advantage
of a wireless network, while previous formulations inevitably
break down the wireless transmission into independent links
to approximately convert the wireless network to a wired
network. Doing so, they lose a portion of the multicast
advantage.

III. GRADIENT BASED RESOURCE ALLOCATION

While a problem of the form of (8) falls in the traditional
category of optimal control and is usually solved using calcu-
lus of variations, there are a few reasons that this approach
may not be appropriate. First, calculus of variations is as
computationally intensive as expensive, which can be practi-
cally prohibitive in wireless networks. Second, the wireless
communication environment can be dynamic (e.g., due to
fading or mobility), and may require certain adaptivity in the
devices. Fortunately, when we restrict our objective T to be a
function of throughputs, the special problem structure of RNC



can be utilized to derive a simple gradient based control which
is adaptive.

Consider the objective function T (V̇) which can be any
function that has a gradient almost anywhere in the first quad-
rant. Our choice of feedback (see (11)) is g = ∇rT (V̇). Note
without (13), it is not clear how to compute ∇rT (V̇) because
V̇ is apparently affected by a number of factors including
topology, transmission rates and the coding operation. By
applying (2), the effect of the resource vector r is abstracted in
(10), the topology information encoded in the partially ordered
index K ⊂ N and the dynamism represented as the differential
operator. The system of equations in (2) thus allow us to find
an expression for the feedback as1

ṙ = aJ>r zJ>z f∇V̇T (12)

where ∇V̇T is the gradient of T (V̇), Jzf the Jacobian of
f(V, z) with respect to z, Jr(z) the Jacobian of z(r). Note we
have introduced a > 0 as a feedback gain parameter. Combin-
ing (9) and (12) we have a closed-loop system that describes
the rank evolution with a dynamic resource allocation strategy

V̇ = f(V, z),

ṙ = aJ>r zJ>z f∇V̇T.
(13)

Strictly speaking, the feedback in (12) is not a gradient of the
objective function T . It is nevertheless capable of continuously
computing the instantaneous resource vector r in the direction
that T improves.

IV. ANALYSIS OF RESOURCE ALLOCATION

In this section we will show that choosing the particular
feedback in the form of (12) most effectively improves the
objective function T . As we will see, the system of differential
equations in (2) not only facilitates design, but also analysis.
The main theorem is the following

Theorem 1: By introducing the feedback (12) in (13),
Ṫ ≥ 0. Among all possible feedback ṙ = g such that
‖g‖ = ‖aJ>r zJ>z f∇V̇T‖, Ṫ is maximized by (12).

Proof: Ṫ ≥ 0 can be seen from the following computation

Ṫ = (∇V̇T )>V̈ = (∇V̇T )>ḟ(V; z)

= (∇V̇T )>
(
JVfV̇ + Jzf ż

)
= (∇V̇T )>JzfJrzṙ (due to (5))

= (∇V̇T )>aJzfJrzJ
>
r zJ>z f∇V̇T

= a(∇V̇T )>JzfJrzJ
>
r zJ>z f∇V̇T

= a‖(∇V̇T )>JzfJrz‖2 ≥ 0.

(14)

Given any g such that ‖g‖ = ‖aJ>r zJ>z f∇V̇T‖, repeating
the computation as shown in (14), we get

Ṫ = a(∇V̇T )>JzfJrzg, (15)

so

|Ṫ | ≤ ‖a(∇V̇T )>JzfJrz‖‖g‖
= a‖(∇V̇T )>JzfJrz‖2. (16)

1The superscript > stands for matrix transpose.

Note (16) achieves equality when the feedback is chosen as
shown in (12).
Note Theorem 1 is true regardless whether T is concave or
whether T is monotonic. It is also true regardless whether z =
z(r) is concave or monotonic. Therefore it can be applied to a
wide array of problems. Theorem 1 is also true when T is non-
differentiable on a null set since what really matters is

∫
Ṫdt.

As a result, when we have multiple interested destinations
d1, d2, . . . ∈ D, an objective of the form

T (V̇) = min
d∈D

Vd (17)

can still be maximized with the chosen feedback. With Theo-
rem 1, we immediately have

Corollary 1: If r is contained in a bounded set (i.e., finite
resource allocation), z(r) is continuous and T is continuous,
with the feedback in (12), T converges.

Proof: We have

V̇K =
∑
i∈Kc

zi,K(1− qVK−VK∪{i}) ≤
∑
i∈Kc

zi,K. (18)

Because r is bounded, it is contained in a compact set.
Therefore z is contained in a compact set and from (18) V̇
is contained in a compact set. Since T is continuous on this
compact set, T is also bounded. This implies that, if T is
monotonically increasing, it must converge.
From (14) we see that Ṫ (the rate of convergence) can be
calculated if an expression is known for Jr(z). In the absence
of the exact knowledge of Jr(z), we also see the feedback
gain a can be used to speed up convergence. However, the
tradeoff is, with a too large we are at the risk of changing
z too fast thus invalidating (5). It remains to be answered
how different the solution and optimality will be if we vary
a without invalidating (5). The next theorem shows that the
solutions for V and r are basically the same except for a
proper scaling and the optimality is insensitive for a range of
a. This is generally not true when dealing with other dynamical
systems where different feedback gains lead to very different
trajectories. Before we proceed to the theorem, it would be
convenient to define fa to be the same with f , except the field
size q is replaced by qa.

Theorem 2: Let Va, ra, za satisfy (13) with an arbitrary
a > 0. Let V(t) = aVa(t/a), r(t) = ra(t/a) and z(t) =
za(t/a). Then V, r and z satisfy

V̇(t) = f1/a(V, r),

ṙ(t) = J>r zJ>z fa∇V̇T (V̇).
(19)

Proof: For rank evolution, we have

V̇(t) = aV̇a(t/a)/a = f(Va(t/a), za(t/a))

= f

(
1

a
V(t), z(t)

)
= f1/a(V(t), z(t)). (20)

The last step follows from the fact

1− q 1
aVK− 1

aVK∪{i} = 1−
(
q1/a

)VK−VK∪{i}
. (21)



To verify the feedback equation in (19), we assume z, r, V
are an arbitrary component of z, r, V, respectively. Likewise,
assume za, ra, V a are an arbitrary component of za, ra, Va,
respectively. Then we have

∂z

∂r
(t) =

ż

ṙ
(t) =

ża

ṙa
(t/a) =

∂za

∂ra
(t/a), (22)

∂f

∂z
(V, z) =

∂f

∂z
(aVa(t/a)) =

∂fa

∂za
(t/a), (by (6)) (23)

∂T (V̇)

∂V̇
= lim

∆t→0

T (V̇a(t/a+ ∆t/a))− T (V̇a(t/a))

V̇ a(t/a+ ∆t/a)− V̇ a(t/a)

=
∂T

∂V̇ a

(
t

a

)
. (24)

From (22) – (24) and

ṙa(t) = aJ>raz
aJ>zaf∇V̇aT (Va), (25)

we know

ṙ(t) =
1

a
ṙa
(
t

a

)
= J>raz

a

(
t

a

)
J>zaf

(
t

a

)
∇V̇aT (V̇a)

(
t

a

)
= J>r z(t)J>z fa(t)∇V̇T (V̇)(t). (26)

In [6], a concentration result has been obtained regardless of q
as long as q is sufficiently large. In practice, the effect of finite
q on the concentration speed is minimal if q ≥ 2, because in
this case q−x → 0 quickly as x > 0 increases. Rank evolution
is therefore insensitive to a wide range of q, with which it
concentrates to the same solution. As a result, as long as qa �
1 and q1/a � 1, different a’s in (13) yield the same system
trajectory given by

V̇ = f(V, r),

ṙ = J>r zJ>z f∇V̇T (V̇),
(27)

after proper scaling as described in Theorem 2. Hence we have
Corollary 2: If a is chosen such that f ≈ fa ≈ f1/a, T

converges to the same value.
Proof: This is true because after scaling V, z, r satisfy

(27). But

V̇(t) = V̇a(t/a). (28)

Then

lim
t→∞

T (V̇a(t)) = lim
t→∞

T (V̇a(t/a)) = lim
t→∞

T (V̇(t)). (29)

When choosing a, we want it to be large for fast conver-
gence, but not so large that q1/a ≈ 1 in (20). On the other
hand, we want to avoid making a so small that qa ≈ 1 in (23).
Both extremes would undermine the concentration assumption.
In general, concentration is essential for RNC to achieve the
throughput, and it is also the key assumption for what we have
discussed so far to remain valid. To do this, given the real field
size q used, we may set a threshold qth < q below which the
concern for concentration will arise. Then pick a such that

qa, q1/a ≥ qth, (30)

i.e., from the interval [log qth/ log q, log q/ log qth].
If we wish to know how bad the algorithm would perform

with a so large that (5) becomes invalid (but the concentration
assumption still holds), Theorem 3 indicates that (13) may still
work.

Theorem 3: Assume a is so large that (5) is not valid.
If T is continuously differentiable in the first quadrant
and r is constrained in a bounded set, Ṫ ≥ 0 until
‖J>r zJ>z fa∇V̇T (V̇)‖ < c/a for some constant c independent
of a.

Proof: Since we do not have (5) any more, we must write

Ṫ = (∇V̇T )>V̈

= (∇V̇T )>
(
JVfV̇ + Jzf ż

)
= (∇V̇T )>JVfV̇ + a‖(∇V̇T )>JzfJrz‖2.

(31)

From (18) we already know V̇ is contained in a compact
set. ∇V̇T is thus bounded as T is continuously differentiable.
Moreover, we can bound ‖JVf‖. To see this, note for arbitrary
row K of JVf , all entries are zero except for column K and
column K ∪ {i} (i ∈ Kc), whose entries are

∂V̇K
∂VK

= − log q
∑
i∈Kc

zi,Kq
VK−VK∪{i} ≥ − log q

∑
i∈Kc

zi,K;

(32)

∂V̇K
∂VK∪{i}

= log qzi,Kq
VK−VK∪{i} ≤ log qzi,K. (33)

Therefore, JVf is also bounded. Hence there exists a constant
c independent of a, such that

‖(∇V̇T )>JVf V̇ ‖ ≤ c. (34)

It is clear that, as long as a‖(∇V̇T )>JzfJrz‖2 ≥ c, Ṫ ≥ 0.

Note when Ṫ < 0, it must be true that a‖(∇V̇T )>JzfJrz‖2 <
c, which can be regarded as the first order stopping criteria.
Although Theorem 3 makes the choice of a even more
liberal, it is nevertheless advisable to choose a reasonably
small, otherwise additional nonlinearities may start to enter
the picture. This is especially true when we move from the
continuous system (13) to a discretized system that adjusts
resource allocation only at time instants it is triggered.

V. NUMERICAL EXAMPLE

In this section, we use the network coding aware power
control as an example to demonstrate the performance of the
gradient based algorithm as shown in (13). Consider the 6-
node network shown in Fig. IV where nodes perform RNC on
GF(2) as described in Section II. Node 1 attempts to multicast
to nodes in D = {2, 3, 4, 5, 6} and we wish to maximize
the worst-case throughput in the network, i.e., maximize the
minimum throughput given in (17). We assume the MAC has
been fixed so that node i (i = 1, . . . , 6) transmits at λi = 1
packet per millisecond. However, the transmit power of each
node can be flexibly adjusted from 0 to 15dBm. The initial
transmit powers are set uniformly to 13dBm. Let P Tx

i denote
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Fig. 1. (a)A 6-node wireless network; (b)a = 10; (c)a = 0.1.

the transmit powers at node i, hji denote the link gains from
node i to node j, σ2 = −101dBm denote the thermal noise
power at every receiver. We also associate with each node i
a processing gain gi = 8. Consequently, we can model the
signal-to-interference-noise ratio (SINR) at node j when j
attempts to decode the transmission from i as

SINRji =
P Tx
i hji∑

k 6=i,j P
Tx
k hjk/gi + σ2

. (35)

For the link gains, we use the ITU indoor attenuation model
[9] based on distance. The path loss PL over distance d is
given by

PL = 20 log fc + 10n log d+ Pf (n)− 28 (36)

where fc is the center frequency, n the path loss exponent
and Pf (n) the floor penetration factor. Consequently the link
gain is given by h = 10PL/10. In the simulation, we choose
fc = 2.4GHz, n = 3, Pf (n) = 11. We use uncoded BPSK
modulation with a codeword/packet length of L = 160 bits.
Assuming a Gaussian distribution for the interference, the bit
error rate for j decoding i is given by

P bit
ji = Q

(√
SINRji

)
. (37)

The packet error rate is given by Pji = 1 − (1 − P bit
ji )L.

Assuming independent reception, we thus have

Pi,K = 1−
∏
j∈K

Pji and zi,K = λiPi,K. (38)

Using the model specified by (35) – (38), we execute (13)
to demonstrate our power control algorithm. Fig. 1b – 1c
show the throughputs as functions of time with a = 10, and
a = 0.1, respectively, in addition to throughputs achieved
without power control. With a = 10, the minimum throughput
T (the lower envelop of all the curves) increases quickly.
But as z changes too fast, (5) becomes invalid and leads
to oscillation of the trajectory of T . Lowering a results in
a smoother trajectory with slower convergence. However, in
both settings, T eventually achieves the the same value of 1
packet per millisecond. Considering the transmit rate of node
1 (the source) is also 1 packet per millisecond, the gradient
based resource allocation has achieved the maximum possible

objective without giving up any multicast advantage and also
showed significant improvement over no power control.

VI. CONCLUSION

In this article we presented a new resource allocation
algorithm specifically designed for RNC and throughput based
objectives. Using the dynamical system model of RNC, the
algorithm evolves by introducing a gradient based state feed-
back. We proved that this feedback adaptively computes the
allocation that continuously improves the objective. We also
discussed convergence of the algorithm as well as design
considerations for the feedback gain. We illustrated the use
of the resource allocation methodology by designing power
control for maximizing minimum throughput in a multicast.
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