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Abstract—In the past decade, remarkable progress has been
made in the area of network coding in terms of theory, code
design, and applications. However, from a cross-layer perspective,
there have been fewer efforts on understanding the impact of
lower layers on coding of packets at network layer to improve
the network throughput. In this paper, we study and design power
control that can enhance the performance of random network
coding in wireless networks. Specifically, we utilize a differential
equation based framework to analyze random network coding
throughput, and design dynamic power control algorithm to
achieve higher multicast throughput.

I. INTRODUCTION

Network coding has attracted a large amount of attention
within the networking research community since its inception
[1], [2], and the focus has been placed on establishing the
performance bounds that are usually superior to traditional
copy-and-forward routing [2], and on discovering a variety of
applications, such as content delivery [3], [4] and distributed
storage [5]. While network coding is considered as a network
layer operation, one interesting and important question is how
the lower layers would impact its performance. Taking an
interference limited wireless network for example, increasing
the transmit power at any transceiver has a positive effect
in enhancing the signal-to-noise-and-interference-ratio for any
receiver that intends to detect that signal. Yet at the same time
it has a negative impact by raising interference for all the other
transmissions. Such a situation can be regulated by an effective
set of power control policies, as done for cellular networks
[6]. However, when an information flow is to be designed
across the wireless network using random network coding, the
problem becomes more difficult if throughput is the primary
concern. As a result, we want to design a power control
policy that interacts closely with random network coding.
There is a limited amount of existing work on this topic,
mainly because the analytic tools used previously are more
appropriate for uncoded networks. For example, in deriving the
capacity region with an interference limited wireless network,
[7] gives up full wireless multicast advantage in order to
convert the wireless network to a conceptual wired network.
The same approach was adopted in [8] with further restrictions
on the form of interference. Without this approach, [9] , [10]
studied the problem on cellular and linear networks that have a
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simplistic topology. It would be desirable to have a framework
by which the coupling between network coding and power
control can be studied for any wireless network in general.

In this paper, we adopt the recently proposed differential
equation framework (DE) in [11], which elegantly models
random network coding dynamics. We begin with a numerical
example to motivate the necessity of a network coding aware
power control policy. After that, we leverage the DE frame-
work and develop an algorithm to dynamically adapt transmit
power at each node. The time scale of power adjustment
implicitly assumed here is of the order of packet durations
at the network layer. The overall objective is to maximize the
minimum throughput at the destination nodes in a multicast
session. The simulation results demonstrate the efficacy of
the network coding aware power control. The contribution of
our work is three-fold. First, we derive an algorithm which,
unlike traditional power control algorithms, explicitly supports
random network coding performance. Second, the simplicity
and adaptivity of this algorithm make it more amenable
to be incorporated in practical design and implementation.
Third, the derivation of this policy serves to showcase how
the differential equation framework can be applied to yield
refreshing insights and design perspectives.

II. SYSTEM MODEL

A wireless network is naturally modeled with a directed
hypergraph G = (N , E) where N = {1, 2, . . . , N} denotes N
network nodes and E = {(i,K)|i ∈ N ,K ⊂ N} denotes the
hyperarcs in the hypergraph. The details of hypergraph model
can be found in [12]. We assume that every node is able to
receive and decode the signal transmitted by all other nodes.
Therefore, as each transmission in wireless environment is in
essence a broadcast, a hyperarc (i,K) captures the fact that
a transmitted packet from node i can be received by a set
of receivers K′ without error, where K′ ⊂ K. This model is
illustrated in Figure 1 where an arrowed line denotes a possible
direction of packet flow.

Moreover, consider that the network is performing random
network coding with a source s transmitting original packets
and a set of destinations D ⊂ N . We further assume there
exists an underlying MAC protocol such that each node i
is transmitting at λi packets per second on average and the
probability that a packet sent from node i is successfully
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Fig. 1. Hypergraph model of a wireless network of six nodes with s = 1
and D = {4, 5, 6}.

received by at least one node in K is Pi,K. We can then define
the transmission rate for the hyperarc (i,K) as

zi,K = λiPi,K. (1)

In addition, no routing operations are performed in the net-
work; all the nodes merely receive packets from the network
and broadcast the coded packets.

A. Random Network Coding

We now briefly describe the random network coding
scheme. Consider a multicast session in which node 1 is
the source trying to deliver m packets to every node in the
destination set D. Each packet w is a row vector of length L
from FL

q where Fq is a given finite field of size q. During the
multicast session, each node keeps a reservoir of packets. In
the initialization stage, node 1 puts all the source packets into
its reservoir. Whenever a node receives a packet, it adds the
packet to its reservoir. Suppose at time t, the reservoir of an
arbitrary node i is Rsv(i, t) = {wi,1, wi,2, · · · , wi,n}. Then
whenever node i is to transmit a packet, a coded packet v will
be formed such that v = a1wi,1+a2wi,2+· · ·+anwi,n, where
[a1, a2, · · · , an] ∈ Fn is randomly generated. Since the coding
operation is entirely linear, we get v = bi,1w1 +bi,2w2 + · · ·+
bi,mwm where w1, w2, · · · , wm are the m source packets and
[bi,1, bi,1, · · · bi,m] ∈ Fm is called the global coefficient vector
associated with v. The global coefficient vector will be sent
along with corresponding coded packets.

Let Si denote the vector space spanned by the global coeffi-
cient vectors received by node i. We call Vi = dim Si the rank
of node i. Note Vi is time-varying and when Vi = m, node i
can decode and recover the m original packets. Additionally,
we extend the definition of rank to a subset K of N , i.e.
VK = dim

(∑
i∈K Si

)
.

B. The DE Framework

In a hypergraph, a cut for (S,K), where S,K ⊂
N and S∩K = ∅ is defined as T such that K ⊂ T ⊂ Sc. The
capacity of a cut is c(T ) =

∑
i∈T c zi,T and the min cut for

(S,K) is the cut with the minimum size. Then the throughput
of a multicast session from s to destinations D is determined
by the min cut between {s} and D, as is shown in [1].

In [11], it has been established that under the fluid approxi-
mation, we have E[VK(t)]

.
= VK(t), and VK satisfies a system

of differential equations:

V̇K =
∑
i/∈K

zi,KI(Vi∪K − VK), ∀K ⊂ N . (2)

where
I(x) =

{
1, x > 0,
0, otherwise. (3)

A detailed treatment of the derivation of equations above
can be found in [11]. Since Vi(t) is the number of received
innovative packets, we define V̇i(t) as the rate that node i is
receiving innovative packets, i.e., throughput.

C. Interference Model

We assume a path loss model for every point-to-point link in
the network G with additive noise and interference. Let PTx,i
denote the transmit power at node i, i ∈ N . When i transmits
a signal, the received signal power at node j is PTx,ihji where
hji is the link gain. The noise power is denoted as σ2 and the
interference power is given by

∑
k 6=i,j PTx,khjk. We further

assume each node i implements certain processing gain gi in
its modulation, such that when j attempts to receive the signal
from i, the observed interference power is given as

Jji =
∑
k 6=j,i

(PTx,k · hjk/gk). (4)

Consequently, the point-to-point signal-to-noise-and-
interference ratio (SINR) for the sender-receiver pair
(i, j) is given as

SINR(i,j) =
PTx,i · hji
Jji + σ2

. (5)

In practice, given a modulation and coding scheme, the
packet error rate pi,j for the pair (i, j) is a function of
SINR, i.e., pi,j = pi,j(SINR(i,j)). In this paper, we only
need to assume that pi,j(SINR(i,j)) is a differentiable function.
Without loss of generality, we assume each packet contains L
bits. Then the probability that node j can receive a packet sent
by node i without error, Pi,j , is

Pi,j = (1− pi,j)L. (6)

While the work presented in this paper can be easily
extended to the case of cooperative reception, for the sake
of simplicity, we only consider independent receptions here.
Therefore, the reception probability Pi,K is given as

Pi,K = 1−
∏
j∈K

(1− Pi,j) . (7)

III. EFFECT OF INTERFERENCE ON NETWORK CODING
THROUGHPUT

We now present an example to show that by manipulating
transmit powers at each node in a wireless network, the rate
of rank evolution at the destination nodes can be altered.
Consider a wireless network with 6 nodes which are depicted
in Figure 1. We assume the received signal is interfered by
all the other nodes which are also transmitting and the packet
loss is only due to bit error based on the interference model,



i.e. there is no loss because of congestion or buffer overflow.
We further assume that no routing operations are performed
in this network, and each node merely receives packets and
sends out linear combination of received packets. Consider a
multicast session starting from t = 0ms in this network with
source node 1 and destination nodes {4, 5, 6}. The source has
1000 packets to be delivered to the destinations and every
node is transmitting at the rate of 1 packet per millisecond.
At t = 0ms, the transmit power at each node is set to 13dBm.
Subsequently, at t = 500ms, t = 1000ms, t = 1500ms, and
t = 2000ms, PTx,1, PTx,3, PTx,4 and PTx,5 are increased to
14dBm, respectively. We utilize the DE framework to model
this process. Figure 2 and Figure 3 show the rank evolution
and throughput of the destination nodes respectively.
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Fig. 2. Impact of interference on rank evolution
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Fig. 3. Impact of interference on throughput

As can be seen from Figure 3, increasing transmit power
at one node does not necessarily improve the throughput of
all the destination nodes. In fact, if the increase in interfer-
ence incurred by the power improvement compromises the
throughput increase, incrementing transmit power would not
be the optimal choice. This triggers our speculation that there
is a way to adjust power so that network throughput can be
maximized with the powers subject to a certain budget. In light
of this, we present the network coding aware power control
algorithm in the next section.

IV. POWER CONTROL ALGORITHM
FOR WIRELESS NETWORK CODING

A. Problem Formulation

We first algebraically formulate the power control problem
in network coding based on the system model introduced
in section II. We consider a wireless network G = (N , E)
which is performing random network coding and running
a multicast session with sender s ∈ N and destinations
D = {d1, d2, ..., dr}, where di ∈ N , i = 1, ..., r. Our goal is to
adapt transmit powers at each node such that the destinations’
throughput is improved. Note that the multicast throughput is
bounded by the minimum unicast throughput [1]; therefore
by increasing the minimum unicast throughput, the overall
performance of network coding will be improved. Recall from
section II-B that we use V̇i to denote the throughput of node
i. The problem of power control to maximize throughput can
then be stated as:

maximize min
1≤j≤r

V̇dj

subject to V̇K =
∑
i/∈K

zi,K(PTx) · I(Vi∪K − VK), ∀K ⊂ N .

zi,K = λiPi,K = λi

1−
∏
j∈K

(1− Pi,j)

 .

Pi,j = Pi,j

(
SINR(i,j)

)
.

0 � PTx � Pmax
Tx .

variables PTx.
(8)

where PTx ∈ RN is the vector of transmit powers at each
node.

Since random network coding is performed, the first three
constraints hold due to the DE framework and our network
model. The last constraint reflects the practical power budget
at each node. We can see that the above optimization problem
is non-convex.

B. Gradient-based Power Control Algorithm

Since it is algorithmically difficult to achieve a globally
optimal solution for such a non-convex optimization problem,
a local optimum, if not computationally complex to find,
would still be of interest. Therefore, we design an algorithm to
approach a locally optimal solution for the max-min through-
put problem, by adjusting the transmit powers towards the
direction given by the gradient of the minimum throughput
among all the destinations.

Note that with the DE framework, the network is modeled
as a continuous system. As a result, we adjust transmit powers
continuously as well. At time t, we first identify the node with
the minimum throughput among the destinations which have
not reached full rank for the current session, R, i.e., to find k
such that

k = arg min
j∈R

V̇j . (9)

By definition, the gradient of V̇k is determined by



∇V̇k(PTx) =

(
∂V̇k(PTx)

∂PTx,1
,
∂V̇k(PTx)

∂PTx,2
, ...,

∂V̇k(PTx)

∂PTx,N

)
.

(10)
If PTx increases towards the direction of ∇V̇k(PTx), V̇k(PTx)
will increase. Therefore, the adjustment of transmit power is
then given by the following equation:

ṖTx = a′ · ∇V̇k (PTx) . (11)

where a′ is the gain.

C. Estimation of Gradient

If we know a priori, the analytic expression for
Pi,j(SINR(i,j)) for all pairs of (i, j) ∈ N ×N , equation (10)
can be evaluated. However, there are two reasons to avoid
this approach. First, the analytic expression may be unknown
or too complicated to calculate. Second, the expression may
even change as the environment changes, due to mobility, etc.
Therefore we seek to estimate rather than exactly evaluate (10).
Specifically, by adopting a sufficiently small parameter ∆q, we
have the following approximation for the partial derivative

∂V̇k(PTx)

∂PTx,i
≈ V̇k(PTx + ∆qei)− V̇k(PTx)

∆q
. (12)

where ei is a vector of length N with ith element being 1 and
0 elsewhere,

Plugging (2) in (12), and letting qi be the transmit power
vector with small increment ∆q at ith node, i.e.

qi = PTx + ∆qei. (13)

we obtain

∂V̇k(PTx)

∂PTx,i
=

1

∆q
·∑

j 6=k

(zj,k(qi)− zj,k(PTx))I(Vj∪k − Vk)

 . (14)

Assume each node i ∈ N has a power budget 0 ≤ Pi ≤
Pmax
i , and let a be a gain parameter. Then we propose that

the transmit power will be adjusted based on the following
differential equation:

ṖTx,i =


0, if PTx,i = Pmax

Tx,i and gi > 0,
or if PTx,i = 0 and gi < 0;

agi, otherwise,
(15)

where

gi =
∑
j 6=k

(zj,k(qi)− zj,k(P))I(Vj∪k − Vk). (16)

When a = 1/∆q, ṖTx,i = ∂V̇k(PTx)
∂PTx,i

.

To sum up, the power control algorithm is characterized by
the following set of equations

k = arg minj∈R V̇j .

ql = PTx + ∆qel, ∀l ∈ N .

gl =
∑

i 6=k(zi,k(ql)− zi,k(PTx))I(Vi∪k − Vk).

ṖTx,l =


0, if (PTx,l = Pmax

Tx,l and gl > 0)

or if (PTx,l = 0 and gl < 0);
agl, otherwise,

(17)

Our algorithm essentially works in the following fashion.
It continuously identifies the destination k which has the
minimum throughput, and it then estimate the gradient of V̇k
with respect to PTx. The power is adjusted in the direction
of the gradient. By continuing this operation, the algorithm is
approaching a maximum throughput value, even though it is
not necessarily globally optimal. Besides, since this algorithm
dynamically adapts powers and takes into account the latest
topology information, it is capable of optimizing the network
throughput in spite of any network changes, such as nodes
being moved or switched off.

V. NUMERICAL RESULTS

We show the simulation results for the max-min throughput
algorithm based on the RNC and interference model. Consider
again the topology in Figure 1 with source being node 1 which
has 2000 packets to send to destinations 4, 5, 6. Again, we
assume no packet loss due to network congestion or buffer
overflow and no routing operations of any kind is performed
in this network, i.e., each node simply receives packets and
sends out linear combination of received packets. Assume each
node is transmitting 1 packet per millisecond. We adopt the
ITU model for the calculation of path loss PL [13]

PL = 20 log f + 10n log d+ Pf (n)− 28. (18)

We choose the transmitted signal frequency f to be 2.4GHz,
path loss exponent n to be 3, and floor penetration factor
Pf (n) to be 11, for the purpose of simulating a wireless
network with all nodes placed in the same floor inside a
closed building. Although our algorithm does not presume
any particular bit error model, for the sake of simulation, we
assume BPSK signaling and a Gaussian interference model.
Therefore the bit error rate for sender-receiver pair (i, j) is
given by

pi,j = Q

(√
PTx,i · hji∑

k 6=i,j(PTx,k · hjk/gk) + σ2

)
. (19)

We choose the initial transmit power at each node to be
equally 13dBm, and PTx,i of node i subject to the power
budget 0 ≤ PTx,i ≤ 15dBm. The power control gain, a is set
to 0.1, and the processing gain is chosen to be 8. The complete
dynamical system is evaluated with a numerical solver.



Figure 4 shows the rank evolution process and Figure 5
shows destinations’ throughput, both in the case of with power
control and without power control. With power control, the
rank at each destination grows faster than without power
control. Also, as can be readily seen in Figure 5, with power
control gain a = 0.1, throughput at t = 500ms roughly
doubles that at t = 0ms and the throughput at each destination
is gradually approaching a stable state. As an illustration of
the role of the gain, the convergence is also shown in Figure
5 for a gain value of a = 0.05. Figure 6 shows how the
corresponding powers are adapted by the policy. As seen, all
the powers at the various nodes have converged by the time
t=1600ms.
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VI. CONCLUSION

We studied power control for random network coding in
wireless networks as an example of exploring the impact of
lower layers on coding of packets at the network layer. By
using a differential equation framework (DE) as an analytic
tool to model random network coding performance, we pre-
sented an algorithm to dynamically adapt transmit power at
each node to achieve higher throughput in a multicast session.
Our results reveal that our algorithm is effective in speeding up
the rank evolution process and achieving the desired objective.
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Fig. 6. Power levels at each node

The approach presented here can also be used for studying and
designing other lower layer parameters to improve network
coding performance.
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