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Abstract—In this paper, we consider multicast with Random for multicast traffic with a target throughput over a mulitho
Network Coding (RNC) over a wireless network using Orthogo- OFDMA network, with discrete subcarrier assignment and
nal Frequency Division Multiple Access (OFDMA). Specificdy, pi |oading. In particular, we propose a technique that we
we propose a cross-layer resource allocation mechanism to fer t “min-cut ch o hich vel -
minimize the total transmit power in the network to achieve a re e.r. 0 as .mln cut chasing,” whic successwey prowso
target throughput. The problem in its original form is a NP-hard ~ additional bits to the nodes that form the min-cut for the
mixed integer program. We alleviate this problem with a greely RNC multicast, and load them on the subcarriers that induce
power and subcarrier allocation algorithm that is combinedwith  the minimum marginal power increase, in order to minimize
a node selection strategy that is enabled by RNC, which we yhq tta] transmit power. For comparison, we also propose a

refer to as “min-cut chasing.” We compare it with a reference ¢ ¢ lqorithm that first K timal .
algorithm that assigns subcarriers independently based orthe wo-stage aigorithm that Iirst makes a near optimal max-min

max-min fairess criterion followed by optimal power allocation. ~ fair subcarrier assignment, then continuously and optymal

Our results reveal that the proposed greedy algorithm with min-  loads the bits, which generalizes algorithms with equalrer p

cut chasing, which is of polynomial complexity, yields powe determined subcarrier assignment [6] [8]. A relaxed versio

savings of3dB and is within 1dB of a lower bound based onan ot the two-stage algorithm based on an interference-free

interference-free assumption. . -
assumption serves as a lower bound. Our algorithm shows

significant power savings compared to the two-stage alyurit

and performs close to the lower bound.

We consider resource allocation in a wireless network

that uses Orthogonal Frequency Division Multiple Access Il. SYSTEM MODEL

(OFDMA) and Random Network Coding (RNC) [1], [2] to . . .

support a multihop multicast at the target rate. This pnoble Consider a wireless network consisting of a node set

involves cross-layer optimization of subcarrier assignmeM = {1,2,..., M}, for which OFDMA is employed to

. . L . t interference free transmissions. Our target isuttol b
ower allocation and flow design. Such a joint design roble?pror. Lo
pow : W desig u ot sign p a multicast flow from nodd to a set of destination® at

is complicated by a number of factors: (i) The discrete reatur . . — .
of subcarrier assignment leads to a mixed integer prograin t required multicast throughpat We assume optimal RNC
Is employed for the course of the multicast. In what follows,

is usually NP-hard; (ii) The discrete nature of bit assignie . . .
for OFDM symbols also leads to a NP-hard mixed integc\a’\fe characterize the reception and interference modelsisr t

program; (iii) Network flow design for optimal multicast it hetwork as well as the throughput achieved via RNC.
traditional routing is equivalent to a NP-hard Steiner treE
packing problem [3]. Previous studies on OFDMA resource’
allocation use several approaches to alleviate these udific The OFDMA scheme useK subcarriers (from subcarrier
ties: (i) Subcarrier assignment that is designed sepgyatél to subcarrierk’) shared by all the nodes iv where each
fixed a priori [4]-[6] or relaxed from discrete assignmergubcarrier width is assumed to kef, which is much less

to continuous assignment [7]; (i) Relaxation of discrete bthan the coherence bandwidth so that the channel response fo
assignment to continuous bit assignment [7], [8] or use ofsaibcarrierk from node: to j is modeled as a multiplicative
greedy algorithm that simultaneously accomplishes suilecar ScalarH{fj. We assume nodes are stationary and hence the
assignment and bit loading [4], [5], [8]; (iii) Flow designchannels across the subcarriers can be frequency selbotive
assuming the existence of a fixed multicast tree [6] or fdime invariant. A fixed power budgé?; (i € M) is optionally
simplified networking scenarios [9] [10]. imposed on each node.

In this paper, we further alleviate the flow design with RNC, In our reception model, we assume transmission from node
which has been shown to achieve the cut-set bound and: igan be received successfully only by the nodes in aRset
especially amenable to practical implementation of magtic The transmit power of nodé on subcarrierk is denoted as
where the coding graphs constantly vary [11]. Because the c&;". The maximum correctly decodable rate is given as [12]
set bound can be described by linear constraints, it enables . bk
to extend the greedy resource allocation algorithm to allow ri; = Aflogy(1+ B pi ;) (P9, 1)

|. INTRODUCTION

Reception and Interference Model



where The min cutT;, for (s, t), whose size is denoted agiy (s, t)
is a cut satisfying

oy = H P /N; (2)
is the the normalized link gain witlV; being the receiver ¢(Tmin) = Cmin(s, ) = ng? t)C(T')- )
noise at nodg. The constants € (0,1) represents the SNR >
gap, which is the difference in required SNR between praktiGy a5 peen shown [13] [14] that for a RNC based multicast,
coding and the Shannon bound to achieve a target bit err rgfs ,aximum multicast throughput (the highest rate at which

(BER) [8] [12]. Define nodes inD can receive information from the source simulta-

ok = }2%{1 P?,jv (3) neously) is given by the cut-set bound
then nodei can broadcast to all the nodes7y at the rate min ¢min(l,d) =min _ min Z A (20)
deD deD T'eC(1,d) ieTre
ri = Aflogy(1+ BPFpy)(bps. 4) RiNT'#0
Note the transmission cannot be received by any node nofigq g be useful in what follows to identifg with a digraph
Ri. G = (M, &), where&’ = {(i,5)|li € M,j € R;}, and let

In our interference model, for every node there is a ¢ij} be the capacities of the links /. Then the size of the
set F; consisting of all the nodes that would interfere Wltfbut’T € C(s,t), denoted anir(T) can be defined as
nodei. Therefore under no circumstance can nedese the o ’

same subcarrier as any node . The interference model dir B

captures a number of practical issues. For example, in order (T) = Z Z Cig- (11)
to avoid the hidden node problem, some nodes cannot transmit
at the same time. The interference 3&tneed not be disjoint . L dir . )
from the reception seR;. A subcarrier assignment consists "€ min cut for(s, ¢) in ', denoted as; (s, t), is defined
of a collection of sets{S;}M,, where S, c {1,2,...,K}

€T JER:NT

represents the subcarriers allocated to nede\ feasible dir : dir
allocation scheme should satisfy the power constraints Cmin(8,) = Teon € (7). (12)
PF<P;, VI<i<M 5 , ,
k%; b == ®) Assume each packet has a fixed lengthLdbits, then
and the interference constraints ML =7y (13)
SiﬂSj:@, Vie M,j € F,. (6)

_ . . o Therefore, we may state our target multicast throughput con
With a feasible allocation, the transmission rate of nod® straint as

given by
r= 3k @  com(ld)=_min ; ri>T, VdeD, (14)
hes: TIAFi#0
B. Hypergraph Model for Random Network Coding _
In the hypergraph model for analyzing RNC (first intro®" equivalently
duced in [13] and later expanded in [14]), the wireless netwo a ,
G can be modeled as a hypergraph= (M, £), where the >, r>T, VdeD,NT €C(1,d) (15)
set& of hyperarcs is defined &= {(i, R;)|i € M}, which TZ(GVZ_#@

follows from our reception model. Once the underlying MAC

(subcarrier assignment) and LINK (power allocation) layer . RESOURCEALLOCATION FOR MULTICAST IN A

are given, each nodewould be transmitting ak; packets per MULTIHOP OFDMA NETWORK USING RNC
second, which is considered as the capacity of the hyperarc
(4, Ri)- Minimum cost multicast using RNC was first outlined in

Given two nodes andt, a cut for the pail(s, t) is defined
to be a set7 of nodes such that € 7 ands € T¢. The
collection of all cuts for(s, ¢) is denoted byC(s, t). The size
of 7 is defined as

[13], then elaborated in [11] and later discussed in [15] and
[16]. These previous works provide a framework as well as
optimization strategies that are based on utility functiand
cost metrics in a generic wireless network. In this paper,
oT) = Z A (8) Wwe specifically consider the resource allocation (subearri
ieTe assignment and power allocation) in a OFDMA network with
RiNT#0 multihop multicast using RNC, to achieve a target throughpu



7. The basic problem can be stated as (e.g., larger constellation for MQAM). Assume one bit is

o loaded (i.e.,Ar¥/Af = 1) on to subcarriek of nodei in

minimize ZP“ (16a) an iteration, then the power incread&”” can be calculated
Pl using (4) as
; _ k k rk ok
subjectto P = > PF, Pf>0 (16b) Lot 9 g
kesS; AP = e Tt a7)
) . BPFp; BPf ph
Si N Sj = @, Vi andj € R;, (16c) L v
Since we ultimately want to build a multicast at the target
- k k
ri < Af Z logy (1 + 8P} pi), (16d) throughput, as shown in (16e), the nodes and subcarriers that
kesi_ the algorithm chooses should contribute to this goal. Tloeee
Cmin(1,d) 27, VdeD. (16€) it makes sense to choose from the nodes whose transmit rates
variables {PF},{S;}, {r:}. affect the smallest min-cut. Specifically, let
It is clear that, though we have a linear objective function Dinin = argmincmin (1, d), (18)
(16a), linear power allocation (16b) and linear RNC through deb

put constraint (16e), the bit assignment constraint (18d) define

not convex because every OFDM symbol can only contain

an integer number of bits, i.e:¥ /A f € 7, which makes (16) C(d) ={i e M|3T € C(1,d) st R, NT #0

a nonlinear knapsack problem [17]. It becomes convex if real andc(7T) = cmin(1,d)},  Vd € Dpin, (19)
(continuous) bits are assumed. But even with this assumptio

the subcarrier assignment constraint (16c) is not convex. qnd
fact, it is discrete in terms of subcarriers and complicatgd C(Din) = U C(d). (20)
the interference model. Such an interference model has also dE€Din

been considered for the downlink of a_cellular system [71. [8rhen we would assign an additional bit to one of the nodes in
and for a one-hop network [5], but neither considers RNC g,r(Dmin)_ We refer to the strategy that always picks a node

multicast. : . )

. . . . from C using (18)—(20) as “min-cut chasing” (MCC). The

The nonconvexity d'ﬁ'C.U|ty incurred by subcarrier assi9fpasic greedy resource allocation algorithm with MCC is show
ment can be tackled with two strategies, both leading

X ) , X 2 Alg. 1 with a description of steps in italics.
suboptimal solutions. The first strategy begins by noticing
that, Wit.h the r_eal bit afssignm_ent assumption, once a fmsrﬁ&lg. 1 Greedy Resource Allocation with Ideal MCC
subcarrier assignment is obtained, (16c¢) can be removed fre — : ?
(16), which then becomes a convex program. In other word3gauire: Si = 0,C = {1}, P = 0,r; = 0, calculate AP,
this strategy can be executed through two stages. In the first 2ccording to (17)
stage, a feasible subcarrier assignment is determined ind& ePeat _ _
pendently based on some optimality criterion. For example? ~ Pmin < arg;gmcmin(l’@ {pick the smallest floy
we first assign subcarriers based on the max-min fairess calculateC(Dy,in) = Ugep,,,,C(d) using (19) {MCC}
criterion such that the smallest number of subcarriergaesi  4: (i, kmin) < argmin AP} {greedy allocation
to any node is maximized. Then a convex program is solved to i€C(Dmin),kES; ) _
determine the optimal power allocation. Although thistetgy > "ipin < Timjn Af . {1-bit loading;
seems reasonable giving as many subcarriers to every node8&s Linn < Pt T AP" o
possible, it disregards the channel state of the subcamied 7 9 < 55 \ ékrﬂin}a Vj € Fi,.. {avoid interferencg
the topological connectivity of the nodes. The secondegyat & UPdateAr; = according to (17)
which has been more widely used, is the greedy resourcd calculater; according to (7)
allocation algorithm [4], [5], [8] based on integer bit Ioag. It~ 10: Until ming cin(1,d) > 7,
jointly allocates integer bits, discrete subcarriers aodgr to
different nodes iteratively until all the constraints aatisfied. ) )
In this paper we will adopt the greedy strategy but also discuB- Min-Cut Chasing

the two-stage strategy for comparison. Execution of MCC via evaluation of (20) is not practical.
) Although the constraints it represents are all linear, asvsh
A. Greedy Algorithm to SolvéL6) in (15), the number of the constraints grows exponentially

The greedy resource allocation strategy successiveljth M. Instead we chase a reasonable supersét o§ing
chooses a particular node and a particular subcarrier, theam idea that was suggested in [13]. Specifically, for the
assigns additional bits to them. The choice should minimizg/pergraph modelz of our network, the min-cut,i, (1, d)
the induced power increase, and at the same time satisfy. (16ar a given destination can be found as the max flow of the
Specifically, loading additional bits on the subcarrier i@p corresponding digrapty’ discussed in Section |1-B. I{f;fj}
increasing the modulation efficiency of an OFDM symbdlesignate a network flow from nodeto d in G’, where link



(i,7) carries the flowfﬁj, then the max-flow can be solved T’

using a linear program (LP) as follows *
Theorem 1:The min-cutc,y;, as shown in (14) can be

calculated as the optimal value of the following LP

i d d
maximize Y fi, - Y i, (2la)
JER1 1ER;
subjectto Y f, = > fl =0, Vi#1l.d, (21b)
JER: iER;
d .
Z fi,j <ri, VieM \ {d}’ (21C) Fig. 1. lllustration of the proof to Theorem 1. Not2; and Q> all have
JER; forward links tod. Q1 has zero residual capacity a@b has positive residual
. I~ ; -
Zdj >0, VieMandjeR:, (21d) capacity. A (min-)cut7” for (1, d) contracts to a (min-)cut fof1, g).

variables {f; ;}.
(iv) It constitutes a max-flow o’ (cf. (24)) whose capacities
fre given as in (23).

Proof: Consider the following LP:

The number of constraints in LP (21) 3/ — 3 and hence
can be solved efficiently. We first prove a weak duality resu
Lemma 1:Let f%* denote the optimal value of (21). We

have minimize Y~ Y £, (26a)
F < cmin(1, ). (22) reIeRs
_ subjectto Y ff,— > fl.=0, Vi#1,d, (26b)
Proof to Lemma 1:For anyi such thatR; # (), pick an iR, ieR, '
arbitrary j; € R;. Add capacitye; ; to link (i, j) where ! .
d+ J o D= 2 =T (26c)
Ci i o= 0,57 J 7& Jis (23) JER1 1eER;
D Seraga il 0= STl <, YieM, (26d)
Then consider the max-flow problem on the digraghwhere ]iRi ) .
{f2} designate a flow from nodeto d: ij =0, vie MandjeR;, (26e)

variables {f{}.

Comparison of (21) and (26) reveals that the optimizer oj (26
. d a4 _ . is also an optimizer of (21) with the total link flows minimie
subject to Z fig = Z fa=0, Vi#ld, (24b) Property (i) follows from the fact that removal of any flow in

maximize Z - Z £ (24a)

JER: 1eER;

IERy €R; a cycle can only lower the objective of (26) without violagin

f” <c¢j, Vie M\{d}andj € R;, (24c) any constraints; Property (ii) follows from property (ijofn

>0, VieMandjemR, (24d) the fact that an outgoing flow frord eventually returns tal

z,] — Y ) i
variables {f¢} through a cycle due to flow conservation; Property (iii) dats
By from a standard flow decomposition argument [18]; Property

Since the feasible region of (24) is a subset of that of (218, t(iv) follows from the proof to Lemma 1. [ |

optimal value of (24), denoted g&"**, satisfiesf®** < fdo*. Proof to Theorem 1:In light of Lemma 1, all we need

Since f{ satisfy all the constraints of (24), it follows thatto do is to find a7 C(1,d), such thatf®* = ¢(T). Since
[ = fd* By the weak duality of a capacitated digraph;(7) > cmin(1,d), we would have then establisheff* =

YT € C(1,d) we have cmin (1, d). We show such § € C(1,d) exists by induction.
b edee i When M = {1,d}, T = {d} satisfiesf®* = ¢(T). Assume
[T =1 < AT for M| < M, aT € C(1,d) always exists such tha{7T) =
= Z Z cij < Z ri < e(T). (25) f%. Then we need to show that such7ae C(1,d) also
ieTe jeRNT ieT” exists when M| =
RiNT#0 With the flow designated by f’*} on G, consider the set
Since (25) holds for any ctf € C(1,d), it also holds for the ©f all nodesQ that haved as a recipient, i.eQ = {i|[d € R;}.
min-cut, hencef** < e (1, d). m If1e€Q letT = {d} and the proof is complete. Otherwise
In order to prove Theorem 1, we a|so need: we may assume that ¢ Q, all OUthing flow is Only thrOUgh
Claim 1: There exists an optimizeff{:} to (21) that has the link (i, d), i.e.,
the following properties: (i) There is no flow in any cycle; ,- “—0,Vj € R; andj # d. (27)

(i) There is no outgoing flow from nodé; (iii) The flow
designated b){fd*} can be decomposed into a finite numbeBuppose it were not so, then we show how the flc{\ﬁﬁ }
of flows, each carrled by a simple path from ndd® noded; and link capacitie§c; ;} can be modified such thaif Tt st|II



constitute a max-flow of?’ with the new capacities, while A new set of link capacities is given by combining the
still satisfying the properties in Claim 1. yf;f;f > 0 for some capacities of links intdd} U Q,,
j # dandj € R;, then a simple pathh = (s1 = 7,80 =

j,83,...,8, = d) exists, which carries a positive flowf AT R E J# 4 Vi e /\7\ (q)
(it follows from property (i) and (iii) of Claim 1). We can " Y eRin({dyus) Cii's T = s '
reassign the flowi f from p onto the link(z, d), i.e. fét O (36)
Sy =0 t=1,2,... h—1andf¥ « f¥ +4f, and N N
reset the capacitief; ;} (i € Q) of the7digrath’ It can be verified thaf /', }, {7;} satisfy (21c), and thaft/{; },
) {¢;,;} satisfy (24c).
Cij = {07 Jj#d, (28) Next we construct the desired ct ¢ C(1,d) in G by
’ ri, Jj=d. identifying it with a cut7 € C(1,q) in G, through the

It can be verified that the resultingf? 1 are still an optimizer following steps:

of (21) with the four properties in Ciaim 1. The procedure can 1) With (36), it can be verified (see Fig. 1) thal” e

be repeated for all nodes i@ until (27) holds. C(1,d) in G, such thatQ, C 7", we havec™(T") =
Consider the partitior® = Q; U Q,, such thatQ; consists A"(T") where 7' € C(1,q) in G' denotesT" after
of all the nodes whose outgoing links have no residual cépaci ~ contraction. With (32), it can also be verified that
(cf. (28)), i.e., o(T") = e(T).
, s 2) For the digraph min-cuf”’ € C(1,d) in G’, because all
Q1 ={i € Qlfiqg=cia=ri}, (29) the links from Q, to d have positive residual capacity
Qs ={i € QIf" < cia=ri}. (cf. (29)), Q> C T'. Therefore it can be contracted to

T e C(1,q) in G
3) By the max-flow min-cut theorem® (77) = f*. It
follows from step 1 thatd"(77) = fd*,
4) Based on step 3 and (35), the max-flow min-cut theorem
|mpI|es that{ffj} designate a max-flow i?’. Thus

The partition is shown in Fig. 1, where we use dashed arrows
to represent links with positive residual capacities anlitiso
arrows for zero residual capacities. Let us contfattu Q-

into a compound node. Due to property (ii) of Claim 1 and
(27), ¢ has no outgoing flows. Consequently, the contraction

produces a new hypergragh= (M, £) with {f&;} is an optimizer of (24) for’ with the optimal
— value f¥*. By the proof of Lemma 1, it is also an
M= (M\{d}\ Q) U{q}, (30) optimizer of (21) with the optimal valugd*.
E={(i,Ry)|i € M}, 5) By step 4 and the induction assumption, a hypergraph
_ N min-cut7 € (1,q) in G exists, such thaf® = ¢(T).
whereR, = 0 andVi € M\ {q}, By step 1,f% = ¢(T) whereT € C(1,d) in G is T’
. . o before contraction. This concludes the proof.
R, - Ri, RiN({d} U Q) =0, .
(Ri\{d}\ Q2) U{q}, Rin({d}U Q2) #0.

Theorem 1 also suggests an alternative MCC procedure that
(31) . i . .
N is more amenable to implementation. We first obt@lp;,
The hyperarc capacity7;} for G remain the same foir ¢ by (18) wherecyin(1,d) is calculated through (21). Once

M\ {q}, ie., Cmin(1,d) (d € Duin) is known, we solve (26) withf¢* =
_ o~ ¢min(1,d). Then instead of using (19) and (20), we chase the
ri=ri, Vie M\{q}. (32) nodes in the set
The contraction also produces a new digragh= (M, &) C'(Dunin) = Uaen,.C'(d). 37)
with
& = {(i,j)lie M,j e Ri}. (33) Where
~ . dx*
A new flow onG’ is given by combining the flows intgd} U C'(d) = {i e M\ {d}| Z fig =ri}- (38)
Q,. Specifically,vi € M\ {q}, we let JER:
N s [ - The application of (26) is merely to remove flows in cycleg tha
f{fj = { b 0 ‘7 e Vi e M\ {q}. could unnecessarily enlarg¥(d). Leti € C(d) (d € Dmin)
2jerin(ayues fige J=4 andT € C(1,d) such thate(7T) = cmin(1,d), we have
(34)

fd* = Cmin(l, d) = Z T

It can be verified that the flow designated bi.‘fj} satisfies

(21b)((24b)) and its value remains to lfé*, i.e., ng; 0
PRI (35) EEDIED DN = DI D ¢ B LN D)
€T JER; €T jER:NT

j6ﬁ1 leﬁj RNT=0



where the last inequality follows from flow conservatioe,,. V. RESOURCEALLOCATION WITH POWER CONSTRAINT
that any incident flow across a cut is greater than the net inci
dent flow across the cut. Eqg. (39) implies t@tjem f,ff;f =
r;, henceC(d) c C'(d) and C(Dwin) C C'(Duin). If we

With power constraint, problem (16) can be equivalently
formulated, with the help of Theorem 1, as

keep allocating power to the nodes @(Dmin), eventually M
we would be allocating power to nodes@D,,,). By (18), minimize ZR-, (41a)
it follows thatmingep cmin(1, d) Will be increased, as well as ;
the achievable throughput for RNC (cf. (10) and (18)). subject to P, = Z Pk PE>0 (41b)
Another implication of Theorem 1 is that the original keS;
problem (21) can be equivalently solved by the following P, <P, (41c)
problem: SinS; =0, Viandjc R, (41d)
M ri SAFY logy(1 4 BPFYY), (41e)
minimize P, (40a) kES;
Z Vd €D :
subjectto P, = > PF, Pf>0 (40b) S-S =0, Vizld (416
kES; JER: 1€ER;
Si N Sj =0, Viandje R, (40c) Z 4 < <r, VieM, (419)
ri SAF Y logo(1+ BPFPF), (40d) =
keS; =Y =T (41h)
2J 3l ="
VdeD: JER 1ER;
ST =D =0, Vi#l,d (40e) d.>0, ViandjeR;, (41i)
TR 1R variables  {Pf}, {Si}, {r:}, {fi}-
S < Vi, (40f) _ o |
=g Note (41c) is the additional individual constraint on power
. . budget. If an optimal/suboptimal solution calculated byg At
d .
ij 20, ViandjeR;, (409) does not violate these individual power constraints, itls® a
o= > > (40h)  an optimal/suboptimal solution to (41). Therefore, wheg.Al
JER, 1ER; 2 fails to produce a feasible solution to (41), an altermativ
variables {PF},{S;},{ri}, {fis}. greedy algorithm is required. A common approach (e.g., [5])

to incorporate the individual power constraints is by rejlg

Eq. (40e)—(40g) are adapted from (21) to replace (16e) andﬂt]e greedy allocation step in Alg. 2 with

allow for MCC. Once a bit is greedily loaded, a set of new (imins kmin) < argmin  APF/P;. (42)
rates{r;} is plugged into (40e)—(40g) (or (21)) to start chasing 1€C (dmin),kES;

for the next min-cut using (37). Alg. 2 shows the details. The rationale for this change is that, with the individualvyeo

constraint, the minimum marginal power increase may not
Alg. 2 Greedy Resource Allocation with Alternative MCC  represent the best choice since nodes with small power bsidge
Require: S; = {1,...,K},C' = {1},PF = 0,r;, = 0, may still use up all the power quickly. Choosing the minimum

calculateAPi’“ according to (17) marginal percentage increase allows for such possibdityl
1: repeat hence represents a better option if Alg. 2 does not yield
2. solve (21) forf®, vd € D {Theorem } & feasible solution. This procedure may fail to proceed if

3 Duin  argminemin(1,d)  {pick the smallest flo none of the nodes identified by MCC can be loaded with an
deD , additional bit without violating the power constraint. Rié$
C'(Dumin) = Udyin €D C' (dimin) USING (37)  {MCC}

4 . i i of the modified algorithm are shown in Alg. 3.

5  (imin, kmin) < argmin APF {greedy allocation

o Tf”’i:’ - m‘:, fszesi {1-bit loading} V. REFERENCEALGORITHMS

7 P%m'" — Pmk“““ + APZZ’,’,’;“ In this section, we further propose two reference algorghm
8: S il S5\ {kmm}, Vi € Fi... {avoid interferencg to be compared with the greedy resource allocation alguasth
9: updateAPn‘l‘;;l“ according to (17) with or without individual power constraints. The basis of
10: calculater; , according to (7) these algorithms follows from the observation that, if we
11 until ming cpin(1,d) > 7, remove (40c) from (40) (or (41d) from (41)) and independentl

determine subcarrier assignmefi$;}, then we only need
to solve the remaining convex program for optimal power



Alg 3 Greedy Resource Allocation with MCC and |ndiVidua|t turns out that (44) is equiva|ent to ﬂ‘@raph C0|Oring

Power Constraints problem [19] which is NP-complete. Therefore we solve (44)
Require: S; = {1,...,K}(Vi € M),C’ = {1}, PF = suboptimally with a greedy assignment algorithm, as shown
0,7; = 0, calculateA P} according to (17) in Alg. 4. We first identify a se of nodes that have the least
1: repeat number of assigned subcarriers, then we randomly generate
2. solve (21) forf*, Vd € D{Theorem } a maximal independent seMIS) in Z, which is further
3t dmin < argmincnin(1, d){pick the smallest flow randomly enlarged into a MIS it. An independent setlS,
deD\B / ; i Qi i i
& calculatel’ = Uy, cp.. C'(dmin) USing (37YMCC} cf. [19]) is a node setin which none of them is interferinghwit
. ; . each other. A MIS is an IS that is not a proper subset of any
5 (imin, kmin) <~ argmin AP;/P; such thatP; + o . . .
€ (duin) kES: IS. A new subcarrier is assigned to the resulting MISAif
APF < P;{greedy allocatioh Note the subroutin®andMIS(Z;,Z,) randomly enlarges an
6. if i, does not existhen IS fromZ, C Z, to a MIS inZ;, as shown in Alg. 5.
7: break{algorithm has faile
8 end if Alg. 4 Greedy Algorithm for Max-Min Subcarrier Assignment
9 1y, 7. 4+ Af{1-bit loading Require: s¥ =0
10:  PPmin ¢ phmin | A phmin 1: for k=1to K do

Tmin Tmin Tmin

11: ;< S\ {kmin}, Vj € Fi...{avoid interferencp 2. T+ argmin Z,le sk {nodes with least subcarriefs

min

. Kmin i i
12 updateA [ according to (17) s T+ RandMIS(Z,() find a MIS inZ
13: (t:? cula eriminlagco; ing 1o ) 4. T+ RandMIS(M,Z){enlarge it into a MIS inM}
14: until ming cmin(1,d) > 7, 5. sfe=1 VieT {assign them a subcarri¢r
allocation: 6: end for
M
minimize Y P, (43a)
i=1 Alg. 5 SubroutineZ = RandM1S(7Z,,7,)
subjectto P, = » PF, PF>0 (43b) Require: 7 is an IS inZ;
keS; 1. 7+ 1y
<A ] 1 Pk 43¢ 2: while Z; \ Z 75 ¢ do
= fk%; o821+ AP pi), (43¢) 3. randomly pickj € Z; \ Z
Vd €D : Z 4 I < I\ {j}
’ 5. if j & Uz F; then
ML= =0, Vi#£l,d (43d) e T + T U {j} {if j does not interfere witlT, add it}
JER; i€R; 7 end if
Z flo <, Vi, (43¢) _8 end while
JER:
Z - Z o>, (43f) B. Two-Stage Algorithm with an Interference-Free Assuonpti
’iRl 1ER; If we relax the interference model, i.e., assume interfegen
;> 0, Viandj € R;, (439) free operation, we would have the subcarrier assignment
H k
variables  {F7}, {ri}, {fi} S;={1,2,....K}, Vie M. (45)
A. Two-Stage Algorithm with Max-Min Fair Subcarrier As-_ . . . . .
signment This imaginary assignment would produce strictly the most

optimal value for (45), since it allows the largest feasibét

The first reference algorithm assigns subcarriers based g 45) Therefore it serves as a lower bound on performance
a max-min fairness criterion, i.e., it seeks to maximize the

minimum number of subcarriers assigned to any node. Let VI. NUMERICAL RESULTS
s € {0,1} be a variable that indicates if subcarrieris  |n this section, we compare the performance of the greedy
assigned to node (sf = 1) or not (sf = 0), the problem ajgorithm with MCC with those of the reference algorithms.
can be stated as a binary program: We simulate a network with nodes placed inE0m x 5000m
maximize t, (44a) region. Two nodes and; are considered to be within each
% other’s transmission range if the distan¢g; between them
subject to ¢ < Zsf’ ieM, (44b) is less thanl000m. We considerj € F; if R; N R; # 0.

Pt This rule is designed to avoid the hidden node probléi.
o 4 S§ <1, VieMandjeR: (44c) nodes will be randomly placed repetitively until at legsf /2]
) . nodes are path connected to nddehe default source node.
variables ¢ € Z, {s;'} € {0,1}. Among these connected nodes, four nodes other than node



1 are randomly chosen as the destinations for multicast. Tlever bound and more thaBdB better than the two-stage
target multicast throughp@tis set to20kbps. We assume that,algorithm with max-min fair subcarrier assignment.

for the greedy algorithm, one bit is loadetbit/Hz) each time

onto a subcarrier (cf. (17)). The path loss model follows th

one used in [8] T ‘ " [WEE Lower Bound
16 B Greedy MCC ||
PL=128.1+ 37.6log;, d; ; (dB) (46) [ Two-Stage
14~ :
with d; ; in km. A small-scale fluctuation that is i.i.d. normal (:% ol |
with a standard deviation afdB is further added to the path =
loss to produce the channel state (in dB) Hgfj, Vi, j, k, 5w ]
which is assumed to be static. Our results are obtained | % . ] ]
averaging overl0 channel realizations. The subcarrier has i A~
10kHz bandwidth Af = 10kHz) and the noise density at E ° i
every receiver is identically-174dBm/Hz. The SNR gap in HO 4 .
(1) is chosen to be [12] , |
1.5
B=——"cn (47) 0 32 64 128
5log, BER Number of Subcarriers

with BER = 1072.
Fig. 2 shows the total transmit power required to achiewég. 3. Comparison in total transmit power of the lower baugceedy
T = 20kbps without individual power constraints as a functioW'th MCC and two-stage algorithms, wits0 nodes and variable number of

. ... Subcarriers.
of the number of nodes. The number of subcarriers is flxeéb

at 64. It can be observed that with the increasing number To study the effect of individual power constraints, we
of nodes involved in the multicast, the total transmit powgfonsider36 nodes (one source and three destinations) on a
becomes larger. However, the greedy algorithm with MCE)00om x 5000m grid, with individual power constraints as

almost always performs withibdB from the lower bound and shown in Fig. 4. Specifically, we set the power constraint of
more than3dB better than the two-stage algorithm with maxpode; as

min fair subcarrier assignment.

_ d; .
P;=3—- =2 x0.3 (dBm). 48
16 whered; . is the distance in meters from nodéo the center

Il Lower Bound M of the grid.
| B Greedy MCC | |

H[ ] Two-Stage | D 48 9 40 Jo0 9 8
I 1 w0009 Bl g3 3 1 9

s000l0 3 46 b6 3 ho

)

[N
N

[N
o

4l | soooll0 13l e 43 o
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Fig. 2. Comparison in total transmit power of the lower bougigedy with
MCC and two-stage algorithms, wittd subcarriers and variable number ofFig. 4. A grid OFDMA network with36 nodes (one source (S) & three
nodes. destinations (D)) and individual power constraints in dBm.

Fig. 3 shows the total transmit power required to achieve Note that under individual power constraints, the proposed
7 = 20kbps without individual power constraints as a functioalgorithms may not produce a feasible solution. Fig. 5 shows
of the number of subcarriers. The number of nodes is fixdlde fraction of trials for which feasible solutions are puodd,
at 30. It can be observed that with the increasing numbes a function ofr. It is observed that a¥ increases, the
of subcarriers (i.e., larger total bandwidth), the totahsmit greedy algorithm with MCC maintains a level of feasibility
power becomes smaller. However, the greedy algorithm witlomparable to the interference-free lower bound. Thus it is
min-cut chasing almost always performs witHidB from the more robust than the two-stage algorithm with max-min fair



subcarrier assignment whose ability to produce a feasitidleund based on an interference-free assumption and at least
solution declines rapidly. Fig. 6 shows the total transroivpr 3dB better than a reference algorithm based on the max-min
required as a function of. We observe that the greedyfair subcarrier assignment. When individual power cotistsa
algorithm with MCC has nearly constagtlB performance are imposed, the greedy algorithm with MCC shows robust
loss compared to the lower bound and is marginally better thperformance with regard to different throughput requiratae

the two-stage algorithm in terms of the averaged total tréins The problem can be extended to cover multiple multicast
power when the algorithms produce a feasible solution.  sessions.

1 ‘ .

ool Bl 1 ovwer Bound (1]
0k . I Greedy MCC ,
o7l [ |Two-Stage 4
>
= osf 1 [3]
D o5l ]
‘7% [4]
S oaf 1
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(6]
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Target Throughput (kbps) [7]

Fig. 5. Comparison in algorithm failure rate on the 36-node getwork. (8]
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Fig. 6. Comparison in total transmit power of the lower bougceedy [16]
with MCC and two-stage algorithms on a 36-node grid netwoitk wariable

number of target throughput and 64 subcarriers. (7

VIlI. CONCLUSION AND FUTURE WORK [18]

In this paper, we described a a greedy resource allocati[(i)gJ
algorithm to support a multicast in a multihop OFDMA net-
work using random network coding. In particular, we progbse
an ancillary node selection procedure to facilitate theedye
iteration, which we refer to as “min-cut chasing.” The grged
algorithm with MCC performs nearly optimally when there
are no individual power constraints compared to a lower
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