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Abstract—In this paper, we consider multicast with Random
Network Coding (RNC) over a wireless network using Orthogo-
nal Frequency Division Multiple Access (OFDMA). Specifically,
we propose a cross-layer resource allocation mechanism to
minimize the total transmit power in the network to achieve a
target throughput. The problem in its original form is a NP-hard
mixed integer program. We alleviate this problem with a greedy
power and subcarrier allocation algorithm that is combinedwith
a node selection strategy that is enabled by RNC, which we
refer to as “min-cut chasing.” We compare it with a reference
algorithm that assigns subcarriers independently based onthe
max-min fairness criterion followed by optimal power allocation.
Our results reveal that the proposed greedy algorithm with min-
cut chasing, which is of polynomial complexity, yields power
savings of3dB and is within 1dB of a lower bound based on an
interference-free assumption.

I. I NTRODUCTION

We consider resource allocation in a wireless network
that uses Orthogonal Frequency Division Multiple Access
(OFDMA) and Random Network Coding (RNC) [1], [2] to
support a multihop multicast at the target rate. This problem
involves cross-layer optimization of subcarrier assignment,
power allocation and flow design. Such a joint design problem
is complicated by a number of factors: (i) The discrete nature
of subcarrier assignment leads to a mixed integer program that
is usually NP-hard; (ii) The discrete nature of bit assignment
for OFDM symbols also leads to a NP-hard mixed integer
program; (iii) Network flow design for optimal multicast with
traditional routing is equivalent to a NP-hard Steiner tree
packing problem [3]. Previous studies on OFDMA resource
allocation use several approaches to alleviate these difficul-
ties: (i) Subcarrier assignment that is designed separately,
fixed a priori [4]–[6] or relaxed from discrete assignment
to continuous assignment [7]; (ii) Relaxation of discrete bit
assignment to continuous bit assignment [7], [8] or use of a
greedy algorithm that simultaneously accomplishes subcarrier
assignment and bit loading [4], [5], [8]; (iii) Flow design
assuming the existence of a fixed multicast tree [6] or for
simplified networking scenarios [9] [10].

In this paper, we further alleviate the flow design with RNC,
which has been shown to achieve the cut-set bound and is
especially amenable to practical implementation of multicast
where the coding graphs constantly vary [11]. Because the cut-
set bound can be described by linear constraints, it enablesus
to extend the greedy resource allocation algorithm to allow

for multicast traffic with a target throughput over a multihop
OFDMA network, with discrete subcarrier assignment and
bit loading. In particular, we propose a technique that we
refer to as “min-cut chasing,” which successively provisions
additional bits to the nodes that form the min-cut for the
RNC multicast, and load them on the subcarriers that induce
the minimum marginal power increase, in order to minimize
the total transmit power. For comparison, we also propose a
two-stage algorithm that first makes a near optimal max-min
fair subcarrier assignment, then continuously and optimally
loads the bits, which generalizes algorithms with equal or pre-
determined subcarrier assignment [6] [8]. A relaxed version
of the two-stage algorithm based on an interference-free
assumption serves as a lower bound. Our algorithm shows
significant power savings compared to the two-stage algorithm
and performs close to the lower bound.

II. SYSTEM MODEL

Consider a wireless networkG consisting of a node set
ℳ = {1, 2, . . . ,M}, for which OFDMA is employed to
support interference free transmissions. Our target is to build
a multicast flow from node1 to a set of destinationsD at
a required multicast throughputr. We assume optimal RNC
is employed for the course of the multicast. In what follows,
we characterize the reception and interference models for this
network as well as the throughput achieved via RNC.

A. Reception and Interference Model

The OFDMA scheme usesK subcarriers (from subcarrier
1 to subcarrierK) shared by all the nodes inℳ where each
subcarrier width is assumed to beΔf , which is much less
than the coherence bandwidth so that the channel response for
subcarrierk from nodei to j is modeled as a multiplicative
scalarHk

i,j . We assume nodes are stationary and hence the
channels across the subcarriers can be frequency selectivebut
time invariant. A fixed power budgetP i (i ∈ ℳ) is optionally
imposed on each node.

In our reception model, we assume transmission from node
i can be received successfully only by the nodes in a setℛi.
The transmit power of nodei on subcarrierk is denoted as
P k
i . The maximum correctly decodable rate is given as [12]

rki,j = Δf log2(1 + �P k
i �

k
i,j)(bps), (1)
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where

�ki,j = ∣H
k
i,j ∣

2/Nj (2)

is the the normalized link gain withNj being the receiver
noise at nodej. The constant� ∈ (0, 1) represents the SNR
gap, which is the difference in required SNR between practical
coding and the Shannon bound to achieve a target bit error rate
(BER) [8] [12]. Define

�ki = min
j∈ℛi

�ki,j , (3)

then nodei can broadcast to all the nodes inℛi at the rate

rki = Δf log2(1 + �P k
i �

k
i )(bps). (4)

Note the transmission cannot be received by any node not in
ℛi.

In our interference model, for every nodei, there is a
set ℱi consisting of all the nodes that would interfere with
nodei. Therefore under no circumstance can nodei use the
same subcarrier as any node inℱi. The interference model
captures a number of practical issues. For example, in order
to avoid the hidden node problem, some nodes cannot transmit
at the same time. The interference setℱi need not be disjoint
from the reception setℛi. A subcarrier assignment consists
of a collection of sets{Si}Mi=1, whereSi ⊂ {1, 2, . . . ,K}
represents the subcarriers allocated to nodei. A feasible
allocation scheme should satisfy the power constraints

∑

k∈Si

P k
i ≤ P i, ∀1 ≤ i ≤M (5)

and the interference constraints

Si ∩ Sj = ∅, ∀i ∈ ℳ, j ∈ ℱi. (6)

With a feasible allocation, the transmission rate of nodei is
given by

ri =
∑

k∈Si

rki . (7)

B. Hypergraph Model for Random Network Coding

In the hypergraph model for analyzing RNC (first intro-
duced in [13] and later expanded in [14]), the wireless network
G can be modeled as a hypergraphG = (ℳ, ℰ), where the
setℰ of hyperarcs is defined asℰ = {(i,ℛi)∣i ∈ ℳ}, which
follows from our reception model. Once the underlying MAC
(subcarrier assignment) and LINK (power allocation) layers
are given, each nodei would be transmitting at�i packets per
second, which is considered as the capacity of the hyperarc
(i,ℛi).

Given two nodess andt, a cut for the pair(s, t) is defined
to be a setT of nodes such thatt ∈ T and s ∈ T c. The
collection of all cuts for(s, t) is denoted byC(s, t). The size
of T is defined as

c(T ) =
∑

i∈T c

ℛi∩T ∕=∅

�i. (8)

The min cutTmin for (s, t), whose size is denoted ascmin(s, t)
is a cut satisfying

c(Tmin) = cmin(s, t) = min
T ′∈C(s,t)

c(T ′). (9)

It has been shown [13] [14] that for a RNC based multicast,
the maximum multicast throughput (the highest rate at which
nodes inD can receive information from the source simulta-
neously) is given by the cut-set bound

min
d∈D

cmin(1, d) = min
d∈D

min
T ′∈C(1,d)

∑

i∈T ′c

ℛi∩T ′ ∕=∅

�i. (10)

It would be useful in what follows to identifyG with a digraph
G′ = (ℳ, ℰ ′), whereℰ ′ = {(i, j)∣i ∈ ℳ, j ∈ ℛi}, and let
{ci,j} be the capacities of the links inℰ ′. Then the size of the
cut T ∈ C(s, t), denoted ascdir(T ), can be defined as

cdir(T ) =
∑

i∈T c

∑

j∈ℛi∩T

ci,j . (11)

The min cut for(s, t) in G′, denoted ascdir
min(s, t), is defined

as

cdir
min(s, t) = min

T ∈C(s,t)
cdir(T ). (12)

Assume each packet has a fixed length ofL bits, then

�iL = ri. (13)

Therefore, we may state our target multicast throughput con-
straint as

cmin(1, d) = min
T ′∈C(s,t)

∑

i∈T ′c

T ′∩ℱi ∕=∅

ri ≥ r, ∀d ∈ D, (14)

or equivalently

∑

i∈T ′c

T ′∩ℱi ∕=∅

ri ≥ r, ∀d ∈ D, ∀T ′ ∈ C(1, d). (15)

III. R ESOURCEALLOCATION FOR MULTICAST IN A

MULTIHOP OFDMA NETWORK USING RNC

Minimum cost multicast using RNC was first outlined in
[13], then elaborated in [11] and later discussed in [15] and
[16]. These previous works provide a framework as well as
optimization strategies that are based on utility functions and
cost metrics in a generic wireless network. In this paper,
we specifically consider the resource allocation (subcarrier
assignment and power allocation) in a OFDMA network with
multihop multicast using RNC, to achieve a target throughput
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r. The basic problem can be stated as

minimize
M∑

i=1

Pi, (16a)

subject to Pi =
∑

k∈Si

P k
i , P k

i ≥ 0 (16b)

Si ∩ Sj = ∅, ∀i andj ∈ ℛi, (16c)

ri ≤ Δf
∑

k∈Si

log2(1 + �P k
i �

k
i ), (16d)

cmin(1, d) ≥ r, ∀d ∈ D. (16e)

variables {P k
i }, {Si}, {ri}.

It is clear that, though we have a linear objective function
(16a), linear power allocation (16b) and linear RNC through-
put constraint (16e), the bit assignment constraint (16d) is
not convex because every OFDM symbol can only contain
an integer number of bits, i.e.,rki /Δf ∈ ℤ, which makes (16)
a nonlinear knapsack problem [17]. It becomes convex if real
(continuous) bits are assumed. But even with this assumption,
the subcarrier assignment constraint (16c) is not convex. In
fact, it is discrete in terms of subcarriers and complicatedby
the interference model. Such an interference model has also
been considered for the downlink of a cellular system [7], [8]
and for a one-hop network [5], but neither considers RNC or
multicast.

The nonconvexity difficulty incurred by subcarrier assign-
ment can be tackled with two strategies, both leading to
suboptimal solutions. The first strategy begins by noticing
that, with the real bit assignment assumption, once a feasible
subcarrier assignment is obtained, (16c) can be removed from
(16), which then becomes a convex program. In other words,
this strategy can be executed through two stages. In the first
stage, a feasible subcarrier assignment is determined inde-
pendently based on some optimality criterion. For example,
we first assign subcarriers based on the max-min fairness
criterion such that the smallest number of subcarriers assigned
to any node is maximized. Then a convex program is solved to
determine the optimal power allocation. Although this strategy
seems reasonable giving as many subcarriers to every node as
possible, it disregards the channel state of the subcarriers and
the topological connectivity of the nodes. The second strategy,
which has been more widely used, is the greedy resource
allocation algorithm [4], [5], [8] based on integer bit loading. It
jointly allocates integer bits, discrete subcarriers and power to
different nodes iteratively until all the constraints are satisfied.
In this paper we will adopt the greedy strategy but also discuss
the two-stage strategy for comparison.

A. Greedy Algorithm to Solve(16)

The greedy resource allocation strategy successively
chooses a particular node and a particular subcarrier, then
assigns additional bits to them. The choice should minimize
the induced power increase, and at the same time satisfy (16c).
Specifically, loading additional bits on the subcarrier implies
increasing the modulation efficiency of an OFDM symbol

(e.g., larger constellation for MQAM). Assume one bit is
loaded (i.e.,Δrki /Δf = 1) on to subcarrierk of node i in
an iteration, then the power increaseΔP k

i can be calculated
using (4) as

ΔP k
i =

2
rk
i

Δf
+1 − 1

�P k
i �

k
i

−
2

rk
i

Δf − 1

�P k
i �

k
i

. (17)

Since we ultimately want to build a multicast at the target
throughputr, as shown in (16e), the nodes and subcarriers that
the algorithm chooses should contribute to this goal. Therefore
it makes sense to choose from the nodes whose transmit rates
affect the smallest min-cut. Specifically, let

Dmin = argmin
d∈D

cmin(1, d), (18)

define

C(d) = {i ∈ℳ∣∃T ∈ C(1, d) s.t.ℛi ∩ T ∕= ∅

andc(T ) = cmin(1, d)}, ∀d ∈ Dmin, (19)

and

C(Dmin) =
∪

d∈Dmin

C(d). (20)

Then we would assign an additional bit to one of the nodes in
C(Dmin). We refer to the strategy that always picks a node
from C using (18)–(20) as “min-cut chasing” (MCC). The
basic greedy resource allocation algorithm with MCC is shown
in Alg. 1 with a description of steps in italics.

Alg. 1 Greedy Resource Allocation with Ideal MCC

Require: Si = ∅, C = {1}, P k
i = 0, ri = 0, calculateΔP k

i

according to (17)
1: repeat
2: Dmin ← argmin

d∈D
cmin(1, d) {pick the smallest flow}

3: calculateC(Dmin) = ∪d∈Dmin
C(d) using (19) {MCC}

4: (imin, kmin)← argmin
i∈C(Dmin),k∈Si

ΔP k
i {greedy allocation}

5: rimin
← rimin

+Δf {1-bit loading}
6: P kmin

imin
← P kmin

imin
+ΔP kmin

imin

7: Sj ← Sj ∖ {kmin}, ∀j ∈ ℱimin
{avoid interference}

8: updateΔP kmin

imin
according to (17)

9: calculateri according to (7)
10: until mind cmin(1, d) ≥ r,

B. Min-Cut Chasing

Execution of MCC via evaluation of (20) is not practical.
Although the constraints it represents are all linear, as shown
in (15), the number of the constraints grows exponentially
with M . Instead we chase a reasonable superset ofC using
an idea that was suggested in [13]. Specifically, for the
hypergraph modelG of our network, the min-cutcmin(1, d)
for a given destinationd can be found as the max flow of the
corresponding digraphG′ discussed in Section II-B. If{fd

i,j}
designate a network flow from node1 to d in G′, where link
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(i, j) carries the flowfd
i,j , then the max-flow can be solved

using a linear program (LP) as follows
Theorem 1:The min-cut cmin as shown in (14) can be

calculated as the optimal value of the following LP

maximize
∑

j∈ℛ1

fd
1,j −

∑

1∈ℛj

fd
j,1, (21a)

subject to
∑

j∈ℛi

fd
i,j −

∑

i∈ℛj

fd
j,i = 0, ∀i ∕= 1, d, (21b)

∑

j∈ℛi

fd
i,j ≤ ri, ∀i ∈ℳ ∖ {d}, (21c)

fd
i,j ≥ 0, ∀i ∈ℳ andj ∈ ℛi, (21d)

variables {fi,j}.

The number of constraints in LP (21) is3M − 3 and hence
can be solved efficiently. We first prove a weak duality result:

Lemma 1:Let fd∗ denote the optimal value of (21). We
have

fd∗ ≤ cmin(1, d). (22)

Proof to Lemma 1:For anyi such thatℛi ∕= ∅, pick an
arbitraryji ∈ ℛi. Add capacityci,j to link (i, j) where

ci,j =

{
fd∗
i,j , j ∕= ji,

ri −
∑

j∈ℛi∖{ji}
fd∗
i,j , j = ji.

(23)

Then consider the max-flow problem on the digraphG′ where
{fd

i,j} designate a flow from node1 to d:

maximize
∑

j∈ℛ1

fd
1,j −

∑

1∈ℛj

fd
j,1, (24a)

subject to
∑

j∈ℛi

fd
i,j −

∑

i∈ℛj

fd
j,i = 0, ∀i ∕= 1, d, (24b)

fd
i,j ≤ ci,j , ∀i ∈ ℳ ∖ {d} andj ∈ ℛi, (24c)

fd
i,j ≥ 0, ∀i ∈ℳ andj ∈ ℛi, (24d)

variables {fd
i,j}.

Since the feasible region of (24) is a subset of that of (21), the
optimal value of (24), denoted asfd∗∗, satisfiesfd∗∗ ≤ fd∗.
Since fd∗

i,j satisfy all the constraints of (24), it follows that
fd∗∗ = fd∗. By the weak duality of a capacitated digraph,
∀T ∈ C(1, d) we have

fd∗ = fd∗∗ ≤ cdir(T )

=
∑

i∈T c

∑

j∈ℛi∩T

ci,j ≤
∑

i∈T c

ℛi∩T ∕=∅

ri ≤ c(T ). (25)

Since (25) holds for any cutT ∈ C(1, d), it also holds for the
min-cut, hencefd∗ ≤ cmin(1, d).

In order to prove Theorem 1, we also need:
Claim 1: There exists an optimizer{fd∗

i,j} to (21) that has
the following properties: (i) There is no flow in any cycle;
(ii) There is no outgoing flow from noded; (iii) The flow
designated by{fd∗

i,j} can be decomposed into a finite number
of flows, each carried by a simple path from node1 to noded;

Q1

Q2

d1

T ′

q

Fig. 1. Illustration of the proof to Theorem 1. NoteQ1 andQ2 all have
forward links tod. Q1 has zero residual capacity andQ2 has positive residual
capacity. A (min-)cutT ′ for (1, d) contracts to a (min-)cut for(1, q).

(iv) It constitutes a max-flow onG′ (cf. (24)) whose capacities
are given as in (23).

Proof: Consider the following LP:

minimize
∑

i∈ℳ

∑

j∈ℛi

fd
i,j , (26a)

subject to
∑

j∈ℛi

fd
i,j −

∑

i∈ℛj

fd
j,i = 0, ∀i ∕= 1, d, (26b)

∑

j∈ℛ1

fd
1,j −

∑

1∈ℛj

fd
j,1 = fd∗, (26c)

∑

j∈ℛi

fd
i,j ≤ ri, ∀i ∈ℳ, (26d)

fd
i,j ≥ 0, ∀i ∈ℳ andj ∈ ℛi, (26e)

variables {fd
i,j}.

Comparison of (21) and (26) reveals that the optimizer of (26)
is also an optimizer of (21) with the total link flows minimized.
Property (i) follows from the fact that removal of any flow in
a cycle can only lower the objective of (26) without violating
any constraints; Property (ii) follows from property (i) from
the fact that an outgoing flow fromd eventually returns tod
through a cycle due to flow conservation; Property (iii) follows
from a standard flow decomposition argument [18]; Property
(iv) follows from the proof to Lemma 1.

Proof to Theorem 1: In light of Lemma 1, all we need
to do is to find aT ∈ C(1, d), such thatfd∗ = c(T ). Since
c(T ) ≥ cmin(1, d), we would have then establishedfd∗ =
cmin(1, d). We show such aT ∈ C(1, d) exists by induction.
Whenℳ = {1, d}, T = {d} satisfiesfd∗ = c(T ). Assume
for ∣ℳ∣ < M , a T ∈ C(1, d) always exists such thatc(T ) =
fd∗. Then we need to show that such aT ∈ C(1, d) also
exists when∣ℳ∣ = M .

With the flow designated by{fd∗
i,j} on G′, consider the set

of all nodesQ that haved as a recipient, i.e.,Q = {i∣d ∈ ℛi}.
If 1 ∈ Q, let T = {d} and the proof is complete. Otherwise
we may assume that∀i ∈ Q, all outgoing flow is only through
the link (i, d), i.e.,

fd∗
i,j = 0, ∀j ∈ ℛi andj ∕= d. (27)

Suppose it were not so, then we show how the flows{fd∗
i,j}

and link capacities{ci,j} can be modified such that{fd∗
i,j} still
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constitute a max-flow ofG′ with the new capacities, while
still satisfying the properties in Claim 1. Iffd∗

i,j > 0 for some
j ∕= d and j ∈ ℛi, then a simple pathp = (s1 = i, s2 =
j, s3, . . . , sℎ = d) exists, which carries a positive flow�f
(it follows from property (i) and (iii) of Claim 1). We can
reassign the flow�f from p onto the link(i, d), i.e.,fd∗

st,st+1
←

fd∗
st,st+1

− �f , t = 1, 2, . . . , ℎ − 1 and fd∗
i,d ← fd∗

i,d + �f , and
reset the capacities{ci,j} (i ∈ Q) of the digraphG′

ci,j =

{
0, j ∕= d,

ri, j = d.
(28)

It can be verified that the resulting{fd∗
i,j} are still an optimizer

of (21) with the four properties in Claim 1. The procedure can
be repeated for all nodes inQ until (27) holds.

Consider the partitionQ = Q1 ∪Q2, such thatQ1 consists
of all the nodes whose outgoing links have no residual capacity
(cf. (28)), i.e.,

Q1 = {i ∈ Q∣fd∗
i,d = ci,d = ri},

Q2 = {i ∈ Q∣fd∗
i,d < ci,d = ri}.

(29)

The partition is shown in Fig. 1, where we use dashed arrows
to represent links with positive residual capacities and solid
arrows for zero residual capacities. Let us contract{d} ∪ Q2

into a compound nodeq. Due to property (ii) of Claim 1 and
(27), q has no outgoing flows. Consequently, the contraction
produces a new hypergraph̃G = (ℳ̃, ℰ̃) with

ℳ̃ = (ℳ∖ {d} ∖ Q2) ∪ {q},

ℰ̃ = {(i, ℛ̃i)∣i ∈ ℳ̃},
(30)

whereℛ̃q = ∅ and∀i ∈ ℳ̃ ∖ {q},

ℛ̃i =

{
ℛi, ℛi ∩ ({d} ∪ Q2) = ∅,

(ℛi ∖ {d} ∖ Q2) ∪ {q}, ℛi ∩ ({d} ∪ Q2) ∕= ∅.

(31)

The hyperarc capacity{r̃i} for G̃ remain the same fori ∈
ℳ̃ ∖ {q}, i.e.,

r̃i = ri, ∀i ∈ ℳ̃ ∖ {q}. (32)

The contraction also produces a new digraphG̃′ = (ℳ̃, ℰ̃ ′)
with

ℰ̃ ′ = {(i, j)∣i ∈ ℳ̃, j ∈ ℛ̃i}. (33)

A new flow onG̃′ is given by combining the flows into{d}∪
Q2. Specifically,∀i ∈ ℳ̃ ∖ {q}, we let

f̃d
i,j =

{
fd∗
i,j , j ∕= q,∑
j′∈ℛi∩({d}∪Q2)

fd∗
i,j′ , j = q,

, ∀i ∈ ℳ̃ ∖ {q}.

(34)

It can be verified that the flow designated by{f̃d
i,j} satisfies

(21b)((24b)) and its value remains to befd∗, i.e.,
∑

j∈ℛ̃1

f̃d
1,j −

∑

1∈ℛ̃j

f̃d
j,1 = fd∗. (35)

A new set of link capacities is given by combining the
capacities of links into{d} ∪ Q2,

c̃i,j =

{
ci,j , j ∕= q,∑

j′∈ℛi∩({d}∪Q2)
ci,j′ , j = q,

∀i ∈ ℳ̃ ∖ {q}.

(36)

It can be verified that{f̃d
i,j}, {r̃i} satisfy (21c), and that{f̃d

i,j},
{c̃i,j} satisfy (24c).

Next we construct the desired cutT ∈ C(1, d) in G by
identifying it with a cut T̃ ∈ C(1, q) in G̃, through the
following steps:

1) With (36), it can be verified (see Fig. 1) that∀T ′ ∈
C(1, d) in G′, such thatQ2 ⊂ T ′, we havecdir(T ′) =
cdir(T̃ ′) where T̃ ′ ∈ C(1, q) in G̃′ denotesT ′ after
contraction. With (32), it can also be verified that
c(T ′) = c(T̃ ′).

2) For the digraph min-cutT ′ ∈ C(1, d) in G′, because all
the links fromQ2 to d have positive residual capacity
(cf. (29)),Q2 ⊂ T ′. Therefore it can be contracted to
T̃ ′ ∈ C(1, q) in G̃′.

3) By the max-flow min-cut theoremcdir(T ′) = fd∗. It
follows from step 1 thatcdir(T̃ ′) = fd∗.

4) Based on step 3 and (35), the max-flow min-cut theorem
implies that{f̃d

i,j} designate a max-flow iñG′. Thus
{f̃d

i,j} is an optimizer of (24) forG̃′ with the optimal
value fd∗. By the proof of Lemma 1, it is also an
optimizer of (21) with the optimal valuefd∗.

5) By step 4 and the induction assumption, a hypergraph
min-cut T̃ ∈ (1, q) in G̃ exists, such thatfd∗ = c(T̃ ).
By step 1,fd∗ = c(T ) whereT ∈ C(1, d) in G is T̃ ′

before contraction. This concludes the proof.

Theorem 1 also suggests an alternative MCC procedure that
is more amenable to implementation. We first obtainDmin

by (18) wherecmin(1, d) is calculated through (21). Once
cmin(1, d) (d ∈ Dmin) is known, we solve (26) withfd∗ =
cmin(1, d). Then instead of using (19) and (20), we chase the
nodes in the set

C′(Dmin) = ∪d∈Dmin
C′(d). (37)

where

C′(d) = {i ∈ℳ ∖ {d}∣
∑

j∈ℛi

fd∗
i,j = ri}. (38)

The application of (26) is merely to remove flows in cycles that
could unnecessarily enlargeC′(d). Let i ∈ C(d) (d ∈ Dmin)
andT ∈ C(1, d) such thatc(T ) = cmin(1, d), we have

fd∗ = cmin(1, d) =
∑

i∈T c

ℛi∩T =∅

ri

≥
∑

i∈T c

ℛi∩T =∅

∑

j∈ℛi

f∗
i,j ≥

∑

i∈T c

∑

j∈ℛi∩T

fd∗
i,j ≥ fd∗, (39)
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where the last inequality follows from flow conservation, i.e.,
that any incident flow across a cut is greater than the net inci-
dent flow across the cut. Eq. (39) implies that

∑
j∈ℛi

fd∗
i,j =

ri, henceC(d) ⊂ C′(d) and C(Dmin) ⊂ C
′(Dmin). If we

keep allocating power to the nodes inC′(Dmin), eventually
we would be allocating power to nodes inC(Dmin). By (18),
it follows thatmind∈D cmin(1, d) will be increased, as well as
the achievable throughput for RNC (cf. (10) and (18)).

Another implication of Theorem 1 is that the original
problem (21) can be equivalently solved by the following
problem:

minimize
M∑

i=1

Pi, (40a)

subject to Pi =
∑

k∈Si

P k
i , P k

i ≥ 0 (40b)

Si ∩ Sj = ∅, ∀i andj ∈ ℛi, (40c)

ri ≤ Δf
∑

k∈Si

log2(1 + �P k
i �

k
i ), (40d)

∀d ∈ D :
∑

j∈ℛi

fd
i,j −

∑

i∈ℛj

fd
j,i = 0, ∀i ∕= 1, d (40e)

∑

j∈ℛi

fd
i,j ≤ ri, ∀i, (40f)

fd
i,j ≥ 0, ∀i andj ∈ ℛi, (40g)
∑

j∈ℛ1

fd
1,j −

∑

1∈ℛj

fd
j,1 ≥ r, (40h)

variables {P k
i }, {Si}, {ri}, {fi,j}.

Eq. (40e)–(40g) are adapted from (21) to replace (16e) and to
allow for MCC. Once a bit is greedily loaded, a set of new
rates{ri} is plugged into (40e)–(40g) (or (21)) to start chasing
for the next min-cut using (37). Alg. 2 shows the details.

Alg. 2 Greedy Resource Allocation with Alternative MCC

Require: Si = {1, . . . ,K}, C′ = {1}, P k
i = 0, ri = 0,

calculateΔP k
i according to (17)

1: repeat
2: solve (21) forfd∗, ∀d ∈ D {Theorem 1}
3: Dmin ← argmin

d∈D
cmin(1, d) {pick the smallest flow}

4: C′(Dmin) = ∪dmin∈Dmin
C′(dmin) using (37) {MCC}

5: (imin, kmin)← argmin
i∈C′,k∈Si

ΔP k
i {greedy allocation}

6: rkmin

imin
← rkmin

imin
+Δf {1-bit loading}

7: P kmin

imin
← P kmin

imin
+ΔP kmin

imin

8: Sj ← Sj ∖ {kmin}, ∀j ∈ ℱimin
{avoid interference}

9: updateΔP kmin

imin
according to (17)

10: calculaterimin
according to (7)

11: until mind cmin(1, d) ≥ r,

IV. RESOURCEALLOCATION WITH POWER CONSTRAINT

With power constraint, problem (16) can be equivalently
formulated, with the help of Theorem 1, as

minimize
M∑

i=1

Pi, (41a)

subject to Pi =
∑

k∈Si

P k
i , P k

i ≥ 0 (41b)

Pi ≤ P i, (41c)

Si ∩ Sj = ∅, ∀i andj ∈ ℛi, (41d)

ri ≤ Δf
∑

k∈Si

log2(1 + �P k
i �

k
i ), (41e)

∀d ∈ D :
∑

j∈ℛi

fd
i,j −

∑

i∈ℛj

fd
j,i = 0, ∀i ∕= 1, d (41f)

∑

j∈ℛi

fd
i,j ≤ ri, ∀i ∈ ℳ, (41g)

∑

j∈ℛ1

fd
1,j −

∑

1∈ℛj

fd
j,1 ≥ r, (41h)

fd
i,j ≥ 0, ∀i andj ∈ ℛi, (41i)

variables {P k
i }, {Si}, {ri}, {fi,j}.

Note (41c) is the additional individual constraint on power
budget. If an optimal/suboptimal solution calculated by Alg. 2
does not violate these individual power constraints, it is also
an optimal/suboptimal solution to (41). Therefore, when Alg.
2 fails to produce a feasible solution to (41), an alternative
greedy algorithm is required. A common approach (e.g., [5])
to incorporate the individual power constraints is by replacing
the greedy allocation step in Alg. 2 with

(imin, kmin)← argmin
i∈C′(dmin),k∈Si

ΔP k
i /P i. (42)

The rationale for this change is that, with the individual power
constraint, the minimum marginal power increase may not
represent the best choice since nodes with small power budgets
may still use up all the power quickly. Choosing the minimum
marginal percentage increase allows for such possibility,and
hence represents a better option if Alg. 2 does not yield
a feasible solution. This procedure may fail to proceed if
none of the nodes identified by MCC can be loaded with an
additional bit without violating the power constraint. Details
of the modified algorithm are shown in Alg. 3.

V. REFERENCEALGORITHMS

In this section, we further propose two reference algorithms
to be compared with the greedy resource allocation algorithms,
with or without individual power constraints. The basis of
these algorithms follows from the observation that, if we
remove (40c) from (40) (or (41d) from (41)) and independently
determine subcarrier assignment{Si}, then we only need
to solve the remaining convex program for optimal power
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Alg. 3 Greedy Resource Allocation with MCC and Individual
Power Constraints
Require: Si = {1, . . . ,K}(∀i ∈ ℳ), C′ = {1}, P k

i =
0, ri = 0, calculateΔP k

i according to (17)
1: repeat
2: solve (21) forfd∗, ∀d ∈ D{Theorem 1}
3: dmin ← argmin

d∈D∖ℬ
cmin(1, d){pick the smallest flow}

4: calculateC′ = ∪dmin∈Dmin
C′(dmin) using (37){MCC}

5: (imin, kmin) ← argmin
i∈C′(dmin),k∈Si

ΔP k
i /P i such thatPi +

ΔP k
i < P i{greedy allocation}

6: if imin does not existthen
7: break{algorithm has failed}
8: end if
9: rimin

← rimin
+Δf{1-bit loading}

10: P kmin

imin
← P kmin

imin
+ΔP kmin

imin

11: Sj ← Sj ∖ {kmin}, ∀j ∈ ℱimin
{avoid interference}

12: updateΔP kmin

imin
according to (17)

13: calculaterimin
according to (7)

14: until mind cmin(1, d) ≥ r,

allocation:

minimize
M∑

i=1

Pi, (43a)

subject to Pi =
∑

k∈Si

P k
i , P k

i ≥ 0 (43b)

ri ≤ Δf
∑

k∈Si

log2(1 + �P k
i �

k
i ), (43c)

∀d ∈ D :
∑

j∈ℛi

fd
i,j −

∑

i∈ℛj

fd
j,i = 0, ∀i ∕= 1, d (43d)

∑

j∈ℛi

fd
i,j ≤ ri, ∀i, (43e)

∑

j∈ℛ1

fd
1,j −

∑

1∈ℛj

fd
j,1 ≥ r, (43f)

fd
i,j ≥ 0, ∀i andj ∈ ℛi, (43g)

variables {P k
i }, {ri}, {fi,j}.

A. Two-Stage Algorithm with Max-Min Fair Subcarrier As-
signment

The first reference algorithm assigns subcarriers based on
a max-min fairness criterion, i.e., it seeks to maximize the
minimum number of subcarriers assigned to any node. Let
ski ∈ {0, 1} be a variable that indicates if subcarrierk is
assigned to nodei (ski = 1) or not (ski = 0), the problem
can be stated as a binary program:

maximize t, (44a)

subject to t ≤
K∑

k=1

ski , i ∈ℳ, (44b)

ski + skj ≤ 1, ∀i ∈ ℳ andj ∈ ℛi, (44c)

variables t ∈ ℤ, {ski } ∈ {0, 1}.

It turns out that (44) is equivalent to theGraph Coloring
problem [19] which is NP-complete. Therefore we solve (44)
suboptimally with a greedy assignment algorithm, as shown
in Alg. 4. We first identify a setℐ of nodes that have the least
number of assigned subcarriers, then we randomly generate
a maximal independent set(MIS) in ℐ, which is further
randomly enlarged into a MIS inℳ. An independent set(IS,
cf. [19]) is a node set in which none of them is interfering with
each other. A MIS is an IS that is not a proper subset of any
IS. A new subcarrier is assigned to the resulting MIS inℳ.
Note the subroutineRandMIS(ℐ1, ℐ2) randomly enlarges an
IS from ℐ2 ⊂ ℐ1 to a MIS in ℐ1, as shown in Alg. 5.

Alg. 4 Greedy Algorithm for Max-Min Subcarrier Assignment

Require: ski = 0
1: for k = 1 to K do
2: ℐ ← argmin

i

∑K

k=1 s
k
i {nodes with least subcarriers}

3: ℐ ← RandMIS(ℐ, ∅) find a MIS inℐ
4: ℐ ← RandMIS(ℳ, ℐ){enlarge it into a MIS inℳ}
5: ski ←= 1, ∀i ∈ ℐ {assign them a subcarrier}
6: end for

Alg. 5 Subroutineℐ = RandMIS(ℐ1, ℐ2)

Require: ℐ2 is an IS inℐ1
1: ℐ ← ℐ2
2: while ℐ1 ∖ ℐ ∕= ∅ do
3: randomly pickj ∈ ℐ1 ∖ ℐ
4: ℐ1 ← ℐ1 ∖ {j}
5: if j ∕∈ ∪i∈ℐℱi then
6: ℐ ← ℐ ∪ {j}{if j does not interfere withℐ, add it}
7: end if
8: end while

B. Two-Stage Algorithm with an Interference-Free Assumption

If we relax the interference model, i.e., assume interference-
free operation, we would have the subcarrier assignment

Si = {1, 2, . . . ,K}, ∀i ∈ℳ. (45)

This imaginary assignment would produce strictly the most
optimal value for (45), since it allows the largest feasibleset
for (45). Therefore it serves as a lower bound on performance.

VI. N UMERICAL RESULTS

In this section, we compare the performance of the greedy
algorithm with MCC with those of the reference algorithms.
We simulate a network with nodes placed in a5000m×5000m
region. Two nodesi and j are considered to be within each
other’s transmission range if the distancedi,j between them
is less than1000m. We considerj ∈ ℱi if ℛi ∩ ℛj ∕= ∅.
This rule is designed to avoid the hidden node problem.M
nodes will be randomly placed repetitively until at least⌈M/2⌉
nodes are path connected to node1, the default source node.
Among these connected nodes, four nodes other than node
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1 are randomly chosen as the destinations for multicast. The
target multicast throughputr is set to20kbps. We assume that,
for the greedy algorithm, one bit is loaded (1bit/Hz) each time
onto a subcarrier (cf. (17)). The path loss model follows the
one used in [8]

PL = 128.1 + 37.6 log10 di,j (dB) (46)

with di,j in km. A small-scale fluctuation that is i.i.d. normal
with a standard deviation of8dB is further added to the path
loss to produce the channel state (in dB) forHk

i,j , ∀i, j, k,
which is assumed to be static. Our results are obtained by
averaging over40 channel realizations. The subcarrier has a
10kHz bandwidth (Δf = 10kHz) and the noise density at
every receiver is identically−174dBm/Hz. The SNR gap in
(1) is chosen to be [12]

� = −
1.5

5 log2 BER
(47)

with BER= 10−5.
Fig. 2 shows the total transmit power required to achieve

r = 20kbps without individual power constraints as a function
of the number of nodes. The number of subcarriers is fixed
at 64. It can be observed that with the increasing number
of nodes involved in the multicast, the total transmit power
becomes larger. However, the greedy algorithm with MCC
almost always performs within1dB from the lower bound and
more than3dB better than the two-stage algorithm with max-
min fair subcarrier assignment.
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Fig. 2. Comparison in total transmit power of the lower bound, greedy with
MCC and two-stage algorithms, with64 subcarriers and variable number of
nodes.

Fig. 3 shows the total transmit power required to achieve
r = 20kbps without individual power constraints as a function
of the number of subcarriers. The number of nodes is fixed
at 30. It can be observed that with the increasing number
of subcarriers (i.e., larger total bandwidth), the total transmit
power becomes smaller. However, the greedy algorithm with
min-cut chasing almost always performs within1dB from the

lower bound and more than3dB better than the two-stage
algorithm with max-min fair subcarrier assignment.
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Fig. 3. Comparison in total transmit power of the lower bound, greedy
with MCC and two-stage algorithms, with30 nodes and variable number of
subcarriers.

To study the effect of individual power constraints, we
consider36 nodes (one source and three destinations) on a
5000m × 5000m grid, with individual power constraints as
shown in Fig. 4. Specifically, we set the power constraint of
nodei as

P i = 3−
di,c
250
× 0.3 (dBm). (48)

wheredi,c is the distance in meters from nodei to the center
of the grid.
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Fig. 4. A grid OFDMA network with36 nodes (one source (S) & three
destinations (D)) and individual power constraints in dBm.

Note that under individual power constraints, the proposed
algorithms may not produce a feasible solution. Fig. 5 shows
the fraction of trials for which feasible solutions are produced,
as a function ofr. It is observed that asr increases, the
greedy algorithm with MCC maintains a level of feasibility
comparable to the interference-free lower bound. Thus it is
more robust than the two-stage algorithm with max-min fair
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subcarrier assignment whose ability to produce a feasible
solution declines rapidly. Fig. 6 shows the total transmit power
required as a function ofr. We observe that the greedy
algorithm with MCC has nearly constant3dB performance
loss compared to the lower bound and is marginally better than
the two-stage algorithm in terms of the averaged total transmit
power when the algorithms produce a feasible solution.
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Fig. 5. Comparison in algorithm failure rate on the 36-node grid network.
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Fig. 6. Comparison in total transmit power of the lower bound, greedy
with MCC and two-stage algorithms on a 36-node grid network with variable
number of target throughput and 64 subcarriers.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we described a a greedy resource allocation
algorithm to support a multicast in a multihop OFDMA net-
work using random network coding. In particular, we proposed
an ancillary node selection procedure to facilitate the greedy
iteration, which we refer to as “min-cut chasing.” The greedy
algorithm with MCC performs nearly optimally when there
are no individual power constraints compared to a lower

bound based on an interference-free assumption and at least
3dB better than a reference algorithm based on the max-min
fair subcarrier assignment. When individual power constraints
are imposed, the greedy algorithm with MCC shows robust
performance with regard to different throughput requirements.
The problem can be extended to cover multiple multicast
sessions.
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