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Abstract—FCC requires that any white space device be able to  « Energy Detector H; is claimed ifzij\il lyn|? is above
sense wireless microphone (WM) signals at-114dBm typically a threshold. This method is very unreliable at low SNR.
corresponding to a SNR of —20dB, an extremely challenging « Sectral Detector This method estimates the power

task. This paper presents a novel WM detector based on the . . .
ESPRIT algorithm along with an auxiliary prewhitening filte r spectral density (PSD) or the autocovariance function

that meets this requirement. Compared with existing deteairs, (ACF) of y,. H; is claimed if a high peak on the
the proposed WM detector not only successfully combats nas PSD or resonance between the ACF and certain sinusoid
but also provides a technique to mitigate the effect of adjaent is observed[[1] [[4]. A variant works with the cyclic
channel interference caused by DTV transmission leakage,na spectrum|[5] instead of PSD.

issue much less studied. « Eigenvalue Detector This method tries to separate the

signal subspace from the noise subspace by exploring the
eigenvalue patterns of the covariance mairix [6]. A variant
As required by FCC, any white space device (WSD) must works with singular values. They provide high spectral
be capable of detecting wireless microphone (WM) signals resolution, but they do not address the interference issue.
at —114dBm, which usually translates inte20dB signal-to-  « Filter Bank Detector A filter bank detector divides the
interference-noise ratio (SINR) in practice. This requoieat spectrum into subbands, after which detection is carried
poses a big challenge to the design of spectrum sensing al- out in each subband where SNR has been imprdved [7].
gorithms because most WM devices employ analog frequency Depending on the type of the filter bank employed, this
modulation (FM) without preambles or outstanding carriers ~method is either equivalent to the spectral detector, or the
typical to digital transmissions that can be recognized as a Wwavelet detector.
signature of the particular signal. At very low SNR, WM « Wavelet Detector A proper choice of wavelets can
signals are not only smeared by noise but are also possibly possibly reveal the feature of the WM signal [8]. The
obscured by adjacent channel interference due to DTV trans- major challenge is to design the best wavelet for this job.
mission leakage. The latter problem is much less studied. Th ~ Since WM signal is sinusoid-like, it is naturally difficult
best result to the authors’ knowledge was presentedlin [1] to match it with any temporally localized wavelets.
where an SINR of-28dBm is required to achieve an erronn this paper we present a novel WM detector based on the
rate of 0.01. Rest of the current literature on WM detectiorESPRIT algorithm[[9] along with an auxiliary prewhitening
mainly focuses on reliably detecting WM at the designatdiker that meets the stringent low SNR requirement and also
Rx power of —114dBm in the background of white noise.mitigates adjacent channel interference.
While some of the detectors manage to handle such low Rx
power, they do not handle interference equally well. Reader Il. SYSTEM MODEL AND METHODOLOGY
may refer to[[2], [[3] for a literature review of these detesto A \Wreless Microphone Signals
In principle, WM detection is a binary hypothesis test with
N observations of the received signéd,, } = uniformly
sampled atF:

|. INTRODUCTION

A WM signal y(t) is typically frequency modulated

y(t) = A, cos (27rfct +2wAf /t m(T)dT) (2)
0

n=01,...,N—=1, (1) whereA., f., Af andm(t) represent the carrier magnitude,
carrier frequency, frequency deviation and message (vamice

wheres,, represents the WM signal,, represents the noiseaudio) signals, respectively. According fo [10], WM badlica
andi, represents the interferencs,, v,, andi, are assumed Operates in three profiles which can be modeled as:

to have zero mean. The statisticsgf andi,, are unknown « Slent Mode System user is silentn(t) is a 32KHz

but we usually assume they are wide sense stationary for the sinusoid andA f = 5KHz.

duration of sensing. Current treatments of this problembm=n « Soft Mode System user is a soft speaken(t) is a

summarized as follows. 3.9KHz sinusoid andA f = 15KHz.

HO Y Yn =Vn + in
H; - yn:sn"i_l/n'i'in7



o Loud Mode System user is a loud speaket.t) is a
13.4KHz sinusoid andA f = 32.6KHz.

It can be seen from these models that WM signals have K
very narrow bandwidth, resembling a pure sinusoid at lo\ : GO T S
SNR. This observation is the starting point for practically ' R
all WM detectors. The problem then boils down to detectin ; preeeed
low power (-114dBm) sinusoids in e&MHz DTV channel T e T T e
containing strong noise and interference. One should mate t (@) (b)
the sinusoid resemblance is strong only when the SNR or
SINR is fairly low. Limitations of this approximation can be
discovered from simulations and will be discussed in Sactic ™[> weeen
D] Among the three profiles, the loud mode is the mos ™
difficult to detect because its large frequency deviatiorkesa
it least resemble a sinusoid.

B. Detecting WM Signals in White Noise with ESPRIT

To detect WM at low SNR with the sinusoid approximation d
assumption, we apply the ESPRIT] [9] algorithm which is © @
widely used in array processing as the core block of tiRy. 1. [[@FCC DTV emission mask (based on measurement bathdw

detector. As a subspace method that works with eigenvali@&§00 kHz).B)PSD of &MHz DTV channel with WM signal a600KHz
from the lower band edge and lower adjacent channel intaréer, SINR=

of covariance matrices, ESPRIT has a lot in common with the,,yp[The same signal prewhiterfed](d) The magnitude respof the
algorithm proposed in_[6]. However, one often cannot extragrewhitening filter.

sufficient information by only looking at eigenvalues, whic

is in principle a refined energy detector that measures gnerg

in the signal and noise subspaces separately. ESPRIT, onsignal subspace from the noise subspace, yet at the same time

contrary, simultaneously measures the frequency and pofveadds to the computational cost.

the buried sinusoids, a crucial augmentation comparedt® pu Thermal noise generated in the receiver antenna within

eigenvalue detectors, especially when interference einber the 6MHz channel assumes a power ofl06dBm at room

picture. We briefly review ESPRIT in the following. temperature. With 40dB detector noise figure, the noise has
With ESPRIT one assumeg, = s, + v, with v, being a power of—96dBm which is18dB higher than the minimum

wide sense stationary white noise with powerodf ands,, detectable WM signal power as required by FCC.

a sum of sinusoids,, = Zle Aged@em | each with power o

P, = |Ay?, ¢ =1,2,..., L. ESPRIT starts with the estimatedC- Interference and Prewhitening

order-\/ autocovariance matrix and delayed cross covarianceA major source of interference is the spectral leakage from

matrix, the adjacent digital television (DTV) channel which casrie
;| N2 ;| N2 ATSC (Advanced Television Systems Committee) transmis-
C=—— N — ny L 3) sion. High power DTV signal is measured-a28dBm ,in
NI 2 Ot = g 2 YnYas, (3)  sion. High power g : m [11]
n=M n=M which case the interference produced in the adjacent channe

can be as high as-86dBm [1], equivalent to an SINR of
—28dB for WM. This phenomenon is reflected in the DTV
spectral mask shown in Fig. I[a) (excerpted frond [12]). is th
paper, we mainly address how to mitigate the adverse effects
(C —6%I) — AN(C1 — 6%1h) (4) of adjacent channel interference due to DTV transmission.
The consequence of adjacent channel interference is that
strong colored noise will be present in the channel to beeskens

wherey, = [Yn,Yn_1,---,Yn_n|". Estimate of the noise
power 52 is identified as the smallest eigenvalue®f Next
ESPRIT calculates the roots of the matrix pencil

wherel is the identity matrix and; is the zero matrix with the
first upper diagonal filled with ones. Among th¢ + 1 roots

(2} THL L of them, sayzy, 2. .. ., 21, give the estimates of as iIIustrgted in Fig[_I(b). With-20dB SINR, it is possible
ejwl,g;‘527 ..., ei%r_The rest are spurious roots. The estimatégat the interference almqst completely masks_ qut the.WM
of Py, P, ..., Py, are calculated as difgf (C — 6%1)(SH)1] S|gn_al. ESPRIT cannot directly handle such difficulty since
where the interference could induce too many spurious (and sjrong
) ) ) harmonics, making identification of the true signal impbkesi
S=|* 2 ZL (5)  To solve this problem, we adopt the strategy proposed in
z{” : zé” B z% [13] and [14]: before the execution of ESPRIT, a prewhitgnin

filter estimated from an auto-regressive (AR) model is agubli
is the (estimated) steering matrix. The constdhtneeds to to the signal to obtain a flat noise spectrum. Specifically,
be carefully chosen — largeévl generally better separates thave may use the Yule-Walker method to extract the filter



coefficients fromy,,. Let p denote the filter order and = C. Prewhitening and ESPRIT
[1,a1,a2,...a,)T be the coefficients, thea (as well as the

o SN . . With the estimated filten, we obtain the whitened signal
prediction error powet?) is obtained by solving

T, = an * Yy, to which we apply ESPRIT. In practice, the
T sensing time is usuallyms for signals buried in thermal noise

] 6) only and 50ms when interference is present. We therefore
~ assume a sensing time &¥ms corresponding t&v = 60000.
where R is the estimated order-autocovariance matrix (cf. \wjith this choice, we can determine the parametér for
(). Fig.[I(c) shows the same signal after prewhitening. AESPRIT, To have a satisfactory performance, we generally
though the magnitude of the WM signal is equally suppressgghuire 1/ < N/100 so that the estimation ifi(3) is reliable.
with the interference, it now stands out spectrally and cgf the contrary}M must be sufficiently large (e.g., larger than
be easily picked up by ESPRIT. Another problem with thghe signal subspace dimension). Although in Secfioch IV we
prewhitening approach is that when WM is fairly strongyerify the detector’s performance with a single potentiaiw
its presence can noticeably mislead the Yule-Walker methgder in the whole channel, it is well possible that multipl&iw
such that a spectral notch is created where WM signal siffers exist in a practical scenario. Besides, a real hanwiti
However, in this case prewhitening is most likely unnecgssaye detected as two conjugate harmoniggshould be greater

Ra=1[62 0 --- 0

and ESPRIT can be applied directly. than the largest possible number of true harmonics. However
largerM also implies higher computational complexity. Trade-
I1l. WM D ETECTORDESIGN WITHESPRIT off has to be made when selecting propét

The ESPRIT algorithm yield3/ + 1 harmonicse?“*" with
With the building blocks of ESPRIT and the prewhiteningpower P, ¢ = 1,2,..., M + 1 (typically all the roots of[(4)
filter, we can now design a complete WM detector whosee close to the unit circle). We will use all the estimated

structure is shown in Fid.] 2. harmonics to form a pseudo-spectrum for detection.
D. Pseudo-Spectrum Condensing
RATE - YULE o PRE-
CONVERSION "| WALKER "| WHITENING Subspace methods for harmonics estimation often make use
_‘ pseudo-spectrum (e.g., the MUSIC, Eigenvector and Minimum
Norm methods, cf.[[16]) which is a function defined on the
spectrum where harmonics are shown as peaks. For the WM
ESPRIT | SPECTRUM > PEAK detector, we form a pseudo-spectrum with ESPRIT, where the
CONDENSING DETECTION peaks represent the power of the harmonics. We define the

function ® : {f/}s>0 — R as the pseudo-spectrum by

Fig. 2. Structure of the WM detector. combining the conjugate harmonics:

O(fe) = 20(f2), fe>0,
®(0) = 7
A. Rate Conversion ®(0) XZ: D(fe)- (7)
fe=0

In practice, the typical sampling rate and IF com-
binations for DTV tuners are33.333MHz/8MHz or When WM signal is present in a band where interference
21.52MHz/5.38MHz. To fully explore the ability of ESPRIT is weak, the sinusoid approximation may no longer hold.
and to gain maximum frequency resolution, it is advisable fespecially with loud mode, ESPRIT may produce multiple
further down shift the IF signal to the baseband and convéaarmonics to represent the WM signal with the actual signal
the sampling rate to the Nyquist limit, i.e., we assume is thpower distributed among them. On the pseudo-spectrum, this
paper that eventually the TV channel signal is centered iatshown as multiple dwarfed adjacent peaks as illustrated
3MHz with a sampling frequency of2MHz. Practically this in Fig. [3(a). Spectral splitting severely degrades the guerf
is not absolutely necessary but it is helpful in demonstgati mance of the detector based on scanning the peaks of the
the design in this paper. pseudo-spectrum. To remedy this problem, one may perform
spectrum condensing to recombine the signal power. The first
approach is to use the ESPRIT outcome to form a refined
pseudo-spectrum. Specifically, for each repof (@) and the
This module estimates the prewhitening filter coefficiengssociated powef,, a signal model of the forns, = /P2y,
with (B). The only parameter we need to choose for this=0,1,2,... is assumed, which has a spectrum of
function is the filter ordemp, which can be determined by
the Minimum Description Length (MDL) [15] criterion or by SUf) = \/E ) (8)
simply picking the smallesp that yields satisfactory results. |1 — zpe=32m/Fs|

B. Yule-Walker Estimation




it i « The distribution is unimodal, i.e., it has a single local
maximum on the support.
= ol .- =2 threshold o - There are many distributions sharing the same properties,

: A e among which the Gamma distribution is the simplest one.
: : For this reason, we assume the distribution functiomk, )

pe10? T §o0 Mp o900 o9, o petl 1 Moo T3 0000 | o0, oo to be Gamma, specified by (shape parameter) artt(scale
o 1 2 f,?\]]-[z a 5 6 0 1 2 f ?\1HZ 4 5 6 parameter):
(a) (b) k=1,—p/0
. . i . . (plk, 0) = P (12)
Fig. 3. [(@)Pseudo-spectrum with spectral splitting.#MHz causing a miss q\pIr, F(k)gk
detectior).(b) Condensed pseudo-spectrum and success@atidn.

However, since we applied the prewhitening filter whose
magnitude response is not flat (cf. F[g- 1(d))s must be
A condensed (refined) pseudo-spectrum is then obtained aequency dependent, i.e., we need to sg(f) for all f
L between0 and 6MHz. Similarly, parametek and# are also
(f) = Z Sf(f), (9) frequency dependent. The only practical way to evalpate)
-1 is by interpolation: we first evaluaten(f;) with MLE for a

Not only this method recovers the true WM power as theelected collection of f;}, then additionapu(f) is obtained
height of the peak, the location of the peak also serves astiplinear interpolation or extrapolation.

estimate of the center frequency of WM. This method works The MLE of k andf (i.e., k(f;) andé(f;)) can be obtained,
well especially when)! is small. If the precise center fre-assuming we have formed a sampje (f;)};—, at frequency
quency of the WM signal is not the primary concern, a simpldy: Py solving the following equations

condensed pseudo-spectrum can be computed instead. As a

prior knowledge, we know that WM signal has a bandwidth Zlogpj(fi) — Jpo(k(fi)) — Jlog(f;) = 0,

of no more tharR00KHz, therefore, for each harmonic with =1 (13)
a frequency off, in the pseudo-spectrum, we can recalculate Z(_z pi(f)
its power as the sum of all harmonics withial 00KHz as =LY Jk(f) =0,
identified by ESPRIT, 0(f:)
B(f,) = Z P (10) where)y is the digamma function defined as
1<j<M+1 d

| f5—fe|<100KHz Yo(k) = T logI'(k). (24)
It turns out that the. simplified mgthod delivers qune g.OOEinaIIy, the threshold is determined by
performance whe/ is large and it is used for the simulation
presented in this paper. Fig. 3(b) shows the pseudo-spectru pin(fi) . .
condensed from Fig. 3{a). A q(p(f)|k(f:),0(f:))dp(fi) = Pup.  (15)

E. Peak Detection and Thresholding Fig. [4(B) shows the frequency dependency of thresholds at
The condensed pseudo-spectrum’s peak value max® different SINR’s, assuming lower adjacent channel interfe
serves as the decision statistic. The decision rule is ence exists. We can observe that near the lower boundary
H, where the interference is strong, the threshold is smaler a
p 2 Ph (11) the prewhitening filter has more suppression in this region.

Ho

As SINR goes up, the interference becomes weaker since we

Usually pyn is set to produce the desired miss detectiofk the noise power at-96dBm, hence the curve levels off.
probability Pyp. As the distribution ofp is unknown, we

can either determiney, by generating a large sample pf
and setpy, to yield Pyp x 100% miss rate for the sample .
[1], or we can assume an approximate distribution (e.g. by .*| ; T ]
checking the histogram gf) and determine the distribution , ; ,
parameters with the Maximum-Likelihood Estimator (MLE). £ ,
The latter approach is adopted in this paper because, if tt ° ” .

a(plk,0)

—s—SINR = -18dB
—e—SINR = -19dB

—e—SINR = -21dB
distribution is chosen properly, it requires only a smathpée LS. e /]
size and exhibits little variance. Fig. 4(a) shows the lgjsin ’ - [
of a sample ofy with a size of50, from which we make the @ ()
following observations: Fig. 4. With noise and lower adjacent channel interferef@jistogram ofy

« The support of the distribution of is approximately atf = 800KHz;[B}threshold-frequency curves, set to achigkg = 0.01.
[0, 00);
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Fig. 5. Error rate performance of the ESPRIT Fig. 6. ROC of the ESPRIT detector. Fig. 7. Comparison between ESPRIT and the
detector at different SINR'’s. detector in[[1].

IV. SIMULATION V. CONCLUSION

In this paper, we presented a novel WM detector based
on the ESPRIT algorithm and auxiliary prewhitening, which
6ﬁhows impressive performance even in the case of strong

lenge to anv detector that uses the sinusoid a roximatio%djacem channel DTV interference, achieving an error rate
nge to any det . . : PP 108 0.01 at —21dB SINR. We also introduced the concept of
Simulation in this section will be carried out solely with

the loud mode. We choose — 20 and M — 51 based spectral condensation to improve the performance when we

. . ve a medium detector SINR.
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