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Abstract—FCC requires that any white space device be able to
sense wireless microphone (WM) signals at−114dBm typically
corresponding to a SNR of −20dB, an extremely challenging
task. This paper presents a novel WM detector based on the
ESPRIT algorithm along with an auxiliary prewhitening filte r
that meets this requirement. Compared with existing detectors,
the proposed WM detector not only successfully combats noise,
but also provides a technique to mitigate the effect of adjacent
channel interference caused by DTV transmission leakage, an
issue much less studied.

I. I NTRODUCTION

As required by FCC, any white space device (WSD) must
be capable of detecting wireless microphone (WM) signals
at −114dBm, which usually translates into−20dB signal-to-
interference-noise ratio (SINR) in practice. This requirement
poses a big challenge to the design of spectrum sensing al-
gorithms because most WM devices employ analog frequency
modulation (FM) without preambles or outstanding carriers
typical to digital transmissions that can be recognized as a
signature of the particular signal. At very low SNR, WM
signals are not only smeared by noise but are also possibly
obscured by adjacent channel interference due to DTV trans-
mission leakage. The latter problem is much less studied. The
best result to the authors’ knowledge was presented in [1]
where an SINR of−28dBm is required to achieve an error
rate of 0.01. Rest of the current literature on WM detection
mainly focuses on reliably detecting WM at the designated
Rx power of−114dBm in the background of white noise.
While some of the detectors manage to handle such low Rx
power, they do not handle interference equally well. Readers
may refer to [2], [3] for a literature review of these detectors.

In principle, WM detection is a binary hypothesis test with
N observations of the received signal{yn}N−1

n=0 uniformly
sampled atFs:

{
H0 : yn = �n + in

H1 : yn = sn + �n + in
, n = 0, 1, . . . , N − 1, (1)

wheresn represents the WM signal,�n represents the noise
andin represents the interference.sn, �n andin are assumed
to have zero mean. The statistics of�n and in are unknown
but we usually assume they are wide sense stationary for the
duration of sensing. Current treatments of this problem canbe
summarized as follows.

∙ Energy Detector H1 is claimed if
∑N

i=1 ∣yn∣2 is above
a threshold. This method is very unreliable at low SNR.

∙ Spectral Detector This method estimates the power
spectral density (PSD) or the autocovariance function
(ACF) of yn. H1 is claimed if a high peak on the
PSD or resonance between the ACF and certain sinusoid
is observed [1] [4]. A variant works with the cyclic
spectrum [5] instead of PSD.

∙ Eigenvalue Detector This method tries to separate the
signal subspace from the noise subspace by exploring the
eigenvalue patterns of the covariance matrix [6]. A variant
works with singular values. They provide high spectral
resolution, but they do not address the interference issue.

∙ Filter Bank Detector A filter bank detector divides the
spectrum into subbands, after which detection is carried
out in each subband where SNR has been improved [7].
Depending on the type of the filter bank employed, this
method is either equivalent to the spectral detector, or the
wavelet detector.

∙ Wavelet Detector A proper choice of wavelets can
possibly reveal the feature of the WM signal [8]. The
major challenge is to design the best wavelet for this job.
Since WM signal is sinusoid-like, it is naturally difficult
to match it with any temporally localized wavelets.

In this paper we present a novel WM detector based on the
ESPRIT algorithm [9] along with an auxiliary prewhitening
filter that meets the stringent low SNR requirement and also
mitigates adjacent channel interference.

II. SYSTEM MODEL AND METHODOLOGY

A. Wireless Microphone Signals

A WM signal y(t) is typically frequency modulated

y(t) = Ac cos

(
2�fct+ 2�Δf

∫ t

0

m(�)d�

)
(2)

whereAc, fc, Δf andm(t) represent the carrier magnitude,
carrier frequency, frequency deviation and message (voiceor
audio) signals, respectively. According to [10], WM basically
operates in three profiles which can be modeled as:

∙ Silent Mode System user is silent.m(t) is a 32KHz
sinusoid andΔf = 5KHz.

∙ Soft Mode System user is a soft speaker.m(t) is a
3.9KHz sinusoid andΔf = 15KHz.



∙ Loud Mode System user is a loud speaker.m(t) is a
13.4KHz sinusoid andΔf = 32.6KHz.

It can be seen from these models that WM signals have a
very narrow bandwidth, resembling a pure sinusoid at low
SNR. This observation is the starting point for practically
all WM detectors. The problem then boils down to detecting
low power (−114dBm) sinusoids in a6MHz DTV channel
containing strong noise and interference. One should note that
the sinusoid resemblance is strong only when the SNR or
SINR is fairly low. Limitations of this approximation can be
discovered from simulations and will be discussed in Section
III-D. Among the three profiles, the loud mode is the most
difficult to detect because its large frequency deviation makes
it least resemble a sinusoid.

B. Detecting WM Signals in White Noise with ESPRIT

To detect WM at low SNR with the sinusoid approximation
assumption, we apply the ESPRIT [9] algorithm which is
widely used in array processing as the core block of the
detector. As a subspace method that works with eigenvalues
of covariance matrices, ESPRIT has a lot in common with the
algorithm proposed in [6]. However, one often cannot extract
sufficient information by only looking at eigenvalues, which
is in principle a refined energy detector that measures energy
in the signal and noise subspaces separately. ESPRIT, on the
contrary, simultaneously measures the frequency and powerof
the buried sinusoids, a crucial augmentation compared to pure
eigenvalue detectors, especially when interference enters the
picture. We briefly review ESPRIT in the following.

With ESPRIT one assumesyn = sn + �n with �n being
wide sense stationary white noise with power of�2 and sn
a sum of sinusoidssn =

∑L
ℓ=1Aℓe

j!ℓn, each with power
Pℓ = ∣Aℓ∣2, ℓ = 1, 2, . . . , L. ESPRIT starts with the estimated
order–M autocovariance matrix and delayed cross covariance
matrix,

C =
1

N−M−1

N−2∑

n=M

yny
T
n , C1 =

1

N−M−1

N−2∑

n=M

yny
T
n+1, (3)

where yn = [yn, yn−1, . . . , yn−M ]T . Estimate of the noise
power �̂2 is identified as the smallest eigenvalue ofC. Next
ESPRIT calculates the roots of the matrix pencil

(C − �̂2I)− �(C1 − �̂2I1) (4)

whereI is the identity matrix andI1 is the zero matrix with the
first upper diagonal filled with ones. Among theM + 1 roots
{zm}M+1

m=1 , L of them, sayz1, z2, . . . , zL, give the estimates of
ej!1 , ej!2 , . . . , ej!L . The rest are spurious roots. The estimates
of P1, P2, . . . , PL are calculated as diag[S†(C − �̂2I)(SH)†]
where

S =

⎡
⎢⎢⎣

1 1 ⋅ ⋅ ⋅ 1
z1 z2 ⋅ ⋅ ⋅ zL
. . . . . . . . . . . . . . . . . . .
zM1 zM2 ⋅ ⋅ ⋅ zML

⎤
⎥⎥⎦ (5)

is the (estimated) steering matrix. The constantM needs to
be carefully chosen – largerM generally better separates the
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Fig. 1. (a)FCC DTV emission mask (based on measurement bandwidth
of 500 kHz).(b)PSD of a6MHz DTV channel with WM signal at500KHz
from the lower band edge and lower adjacent channel interference, SINR=
−20dB.(c)The same signal prewhitened.(d)The magnitude response of the
prewhitening filter.

signal subspace from the noise subspace, yet at the same time
adds to the computational cost.

Thermal noise generated in the receiver antenna within
the 6MHz channel assumes a power of−106dBm at room
temperature. With a10dB detector noise figure, the noise has
a power of−96dBm which is18dB higher than the minimum
detectable WM signal power as required by FCC.

C. Interference and Prewhitening

A major source of interference is the spectral leakage from
the adjacent digital television (DTV) channel which carries
ATSC (Advanced Television Systems Committee) transmis-
sion. High power DTV signal is measured at−28dBm [11], in
which case the interference produced in the adjacent channel
can be as high as−86dBm [1], equivalent to an SINR of
−28dB for WM. This phenomenon is reflected in the DTV
spectral mask shown in Fig. 1(a) (excerpted from [12]). In this
paper, we mainly address how to mitigate the adverse effects
of adjacent channel interference due to DTV transmission.

The consequence of adjacent channel interference is that
strong colored noise will be present in the channel to be sensed
as illustrated in Fig. 1(b). With−20dB SINR, it is possible
that the interference almost completely masks out the WM
signal. ESPRIT cannot directly handle such difficulty since
the interference could induce too many spurious (and strong)
harmonics, making identification of the true signal impossible.

To solve this problem, we adopt the strategy proposed in
[13] and [14]: before the execution of ESPRIT, a prewhitening
filter estimated from an auto-regressive (AR) model is applied
to the signal to obtain a flat noise spectrum. Specifically,
we may use the Yule-Walker method to extract the filter



coefficients fromyn. Let p denote the filter order anda =
[1, a1, a2, . . . ap]

T be the coefficients, thena (as well as the
prediction error power̂�2

� ) is obtained by solving

R̂a =
[
�̂2
� 0 ⋅ ⋅ ⋅ 0

]T
(6)

where R̂ is the estimated order-p autocovariance matrix (cf.
(3)). Fig. 1(c) shows the same signal after prewhitening. Al-
though the magnitude of the WM signal is equally suppressed
with the interference, it now stands out spectrally and can
be easily picked up by ESPRIT. Another problem with the
prewhitening approach is that when WM is fairly strong,
its presence can noticeably mislead the Yule-Walker method
such that a spectral notch is created where WM signal sits.
However, in this case prewhitening is most likely unnecessary
and ESPRIT can be applied directly.

III. WM D ETECTORDESIGN WITH ESPRIT

With the building blocks of ESPRIT and the prewhitening
filter, we can now design a complete WM detector whose
structure is shown in Fig. 2.

SPECTRUM

CONDENSING

PEAK

DETECTION
ESPRIT

PRE-

WHITENING

YULE

WALKER

RATE

CONVERSION

Fig. 2. Structure of the WM detector.

A. Rate Conversion

In practice, the typical sampling rate and IF com-
binations for DTV tuners are33.333MHz/8MHz or
21.52MHz/5.38MHz. To fully explore the ability of ESPRIT
and to gain maximum frequency resolution, it is advisable to
further down shift the IF signal to the baseband and convert
the sampling rate to the Nyquist limit, i.e., we assume in this
paper that eventually the TV channel signal is centered at
3MHz with a sampling frequency of12MHz. Practically this
is not absolutely necessary but it is helpful in demonstrating
the design in this paper.

B. Yule-Walker Estimation

This module estimates the prewhitening filter coefficients
with (6). The only parameter we need to choose for this
function is the filter orderp, which can be determined by
the Minimum Description Length (MDL) [15] criterion or by
simply picking the smallestp that yields satisfactory results.

C. Prewhitening and ESPRIT

With the estimated filtera, we obtain the whitened signal
xn = an ∗ yn to which we apply ESPRIT. In practice, the
sensing time is usually5ms for signals buried in thermal noise
only and 50ms when interference is present. We therefore
assume a sensing time of50ms corresponding toN = 60000.
With this choice, we can determine the parameterM for
ESPRIT. To have a satisfactory performance, we generally
requireM ≪ N/100 so that the estimation in (3) is reliable.
On the contrary,M must be sufficiently large (e.g., larger than
the signal subspace dimension). Although in Section IV we
verify the detector’s performance with a single potential WM
user in the whole channel, it is well possible that multiple WM
users exist in a practical scenario. Besides, a real harmonic will
be detected as two conjugate harmonics.M should be greater
than the largest possible number of true harmonics. However,
largerM also implies higher computational complexity. Trade-
off has to be made when selecting properM .

The ESPRIT algorithm yieldsM +1 harmonicsej!ℓn with
powerPℓ, ℓ = 1, 2, . . . ,M + 1 (typically all the roots of (4)
are close to the unit circle). We will use all the estimated
harmonics to form a pseudo-spectrum for detection.

D. Pseudo-Spectrum Condensing

Subspace methods for harmonics estimation often make use
pseudo-spectrum (e.g., the MUSIC, Eigenvector and Minimum
Norm methods, cf. [16]) which is a function defined on the
spectrum where harmonics are shown as peaks. For the WM
detector, we form a pseudo-spectrum with ESPRIT, where the
peaks represent the power of the harmonics. We define the
function Φ̂ : {fℓ}fℓ≥0 → ℝ

+ as the pseudo-spectrum by
combining the conjugate harmonics:

Φ̂(fℓ) = 2Φ(fℓ), fℓ > 0,

Φ̂(0) =
∑

ℓ
fℓ=0

Φ(fℓ). (7)

When WM signal is present in a band where interference
is weak, the sinusoid approximation may no longer hold.
Especially with loud mode, ESPRIT may produce multiple
harmonics to represent the WM signal with the actual signal
power distributed among them. On the pseudo-spectrum, this
is shown as multiple dwarfed adjacent peaks as illustrated
in Fig. 3(a). Spectral splitting severely degrades the perfor-
mance of the detector based on scanning the peaks of the
pseudo-spectrum. To remedy this problem, one may perform
spectrum condensing to recombine the signal power. The first
approach is to use the ESPRIT outcome to form a refined
pseudo-spectrum. Specifically, for each rootzℓ of (4) and the
associated powerPℓ, a signal model of the formsℓn =

√
Pℓz

n
ℓ ,

n = 0, 1, 2, . . . is assumed, which has a spectrum of

Sℓ(f) =

√
Pℓ

∣1 − zℓe−j2�f/Fs ∣ . (8)
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Fig. 3. (a)Pseudo-spectrum with spectral splitting at4.6MHz causing a miss
detection.(b)Condensed pseudo-spectrum and successful detection.

A condensed (refined) pseudo-spectrum is then obtained as

Φ(f) =

L∑

ℓ=1

Sℓ(f). (9)

Not only this method recovers the true WM power as the
height of the peak, the location of the peak also serves as an
estimate of the center frequency of WM. This method works
well especially whenM is small. If the precise center fre-
quency of the WM signal is not the primary concern, a simpler
condensed pseudo-spectrum can be computed instead. As a
prior knowledge, we know that WM signal has a bandwidth
of no more than200KHz, therefore, for each harmonic with
a frequency offℓ in the pseudo-spectrum, we can recalculate
its power as the sum of all harmonics within±100KHz as
identified by ESPRIT,

Φ(fℓ) =
∑

1≤j≤M+1
∣fj−fℓ∣<100KHz

Pj . (10)

It turns out that the simplified method delivers quite good
performance whenM is large and it is used for the simulation
presented in this paper. Fig. 3(b) shows the pseudo-spectrum
condensed from Fig. 3(a).

E. Peak Detection and Thresholding

The condensed pseudo-spectrum’s peak value� = maxΦ
serves as the decision statistic. The decision rule is

�
H1

≷
H0

�th. (11)

Usually �th is set to produce the desired miss detection
probability PMD . As the distribution of� is unknown, we
can either determine�th by generating a large sample of�
and set�th to yield PMD × 100% miss rate for the sample
[1], or we can assume an approximate distribution (e.g. by
checking the histogram of�) and determine the distribution
parameters with the Maximum-Likelihood Estimator (MLE).
The latter approach is adopted in this paper because, if the
distribution is chosen properly, it requires only a small sample
size and exhibits little variance. Fig. 4(a) shows the histogram
of a sample of� with a size of50, from which we make the
following observations:

∙ The support of the distribution of� is approximately
[0,∞);

∙ The distribution is unimodal, i.e., it has a single local
maximum on the support.

There are many distributions sharing the same properties,
among which the Gamma distribution is the simplest one.
For this reason, we assume the distribution functionq(�∣k, �)
to be Gamma, specified byk (shape parameter) and� (scale
parameter):

q(�∣k, �) = �k−1e−�/�

Γ(k)�k
. (12)

However, since we applied the prewhitening filter whose
magnitude response is not flat (cf. Fig. 1(d)),�th must be
frequency dependent, i.e., we need to set�th(f) for all f
between0 and 6MHz. Similarly, parameterk and � are also
frequency dependent. The only practical way to evaluate�th(f)
is by interpolation: we first evaluate�th(fi) with MLE for a
selected collection of{fi}, then additional�th(f) is obtained
by linear interpolation or extrapolation.

The MLE ofk and� (i.e., k̂(fi) and�̂(fi)) can be obtained,
assuming we have formed a sample{�j(fi)}Jj=1 at frequency
fi, by solving the following equations

J∑

j=1

log �j(fi)− J 0(k̂(fi))− J log �̂(fi) = 0,

∑J
j=1 �j(fi)

�̂(fi)
− Jk̂(fi) = 0,

(13)

where 0 is the digamma function defined as

 0(k) =
d

dk
log Γ(k). (14)

Finally, the threshold is determined by
∫ �th(fi)

0

q(�(fi)∣k̂(fi), �̂(fi))d�(fi) = PMD . (15)

Fig. 4(b) shows the frequency dependency of thresholds at
different SINR’s, assuming lower adjacent channel interfer-
ence exists. We can observe that near the lower boundary
where the interference is strong, the threshold is smaller as
the prewhitening filter has more suppression in this region.
As SINR goes up, the interference becomes weaker since we
fix the noise power at−96dBm, hence the curve levels off.
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Fig. 4. With noise and lower adjacent channel interference:(a)histogram of�
at f = 800KHz; (b)threshold–frequency curves, set to achievePMD = 0.01.
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IV. SIMULATION

Since the loud mode of WM presents the biggest chal-
lenge to any detector that uses the sinusoid approximations.
Simulation in this section will be carried out solely with
the loud mode. We choosep = 29 and M = 51 based
on numerical experiments. They can be set to (moderately)
different values without much impact on the results. Sensing
time is fixed to50ms. To evaluate error rate, we fix the signal
power at−114dBm and noise power at−96dBm and vary
the interference power. WM signal is randomly superimposed
on the noise plus interference and the center frequency is
also randomly chosen in the6MHz bandwidth. During the
training phase, the threshold is set to achievePMD = 0.01,
while we count both misses and false alarms in the testing
phase. Fig. 5 shows the error rates against different SINR’s,
which clearly shows impressive performance of the ESPRIT
detector. Even when adjacent channel carries strong DTV
signal (SINR= −28dB), the error rate is as low as0.17.
It achieves0.01 error rate at the SINR of−21dB.

The receiver operating characteristics (ROC) of the ESPRIT
detector are illustrated in Fig. 6. Since the detector threshold is
frequency dependent, the ROC have to be drawn with regard
to a single frequency. We fix the WM signal500KHz from
the lower band edge where interference is moderately strong
and show the ROC for different SINR’s. It can be seen that,
impressively, the detector becomes very reliable as soon as
SINR is above−21.5dB.

For comparative evaluation, in Fig. 7 we show the miss
detection probabilityPMD of our detector along with a de-
tector recently proposed in [1] where a different colored noise
model is assumed for the WM source. As in [1] which uses a
spectral analysis based technique, the results are shown for a
fixed interference level of−86dBm, noise level of−96dBm
and false alarm probability of0.01. The results are shown as
a function of the SNR obtained by varying the signal power
and it can be seen that our detector outperforms that in [1]
even at very low SNR’s.

V. CONCLUSION

In this paper, we presented a novel WM detector based
on the ESPRIT algorithm and auxiliary prewhitening, which
shows impressive performance even in the case of strong
adjacent channel DTV interference, achieving an error rate
of 0.01 at −21dB SINR. We also introduced the concept of
spectral condensation to improve the performance when we
have a medium detector SINR.

REFERENCES

[1] H. C. Chen and W. Gao, “Spectrum sensing for FM wireless microphone
signals,” in IEEE DySPAN 2010, Singapore, April 2010.

[2] S. J. Shellhammer, “Spectrum sensing in IEEE 802.22,” inCIP 2008,
2008.

[3] Y. H. Zeng, Y. C. Liang, A. Hoang, and R. Zhang, “A review onspec-
trum sensing for cognitive radio: Challenges and solutions,” EURASIP
Journal on Advances in Signal Processing, vol. 2010, 2010.

[4] H. S. Chen, W. Gao, and D. Daut, “Spectrum sensing for wireless
microphone signals,” inSECON Workshops ’08, San Francesco, CA,
July 2008.

[5] A. M. Mossa and V. Jeoti, “Cyclostationarity-based spectrum sensing
for analog TV and wireless microphone signals,” inFirst International
Conference on Computational Intelligence, Communication Systems and
Networks, 2009, pp. 380–385.

[6] Y. H. Zeng and Y. C. Liang, “Eigenvalue-based spectrum sensing
algorithms for cognitive radio,”IEEE Trans. Commun., vol. 57, no. 6,
pp. 1784–1793, June 2009.

[7] B. Farhang-Boroujeny, “Filter bank spectrum sensing for cognitive
radios,” IEEE Trans. Signal Processing, vol. 56, no. 5, pp. 1801–1811,
April 2008.

[8] Z. Tian, “A wavelet approach to wideband spectrum sensing for cognitive
radios,” in CROWNCOM, 2006.

[9] R. Roy and T. Kailath, “ESPRIT – estimation of signal parameters via
rotational invariance techniques,”IEEE Trans. Acoustics, Speech and
Signal Processing, vol. 37, no. 7, pp. 984–995, July 1989.

[10] C. Clanton, M. Kenkel, and Y. Tang, “Wireless microphone signal
simulation method,” IEEE 802.22-07/0124r0, March 2007.

[11] FCC, “Evaluation of the performance of prototype TV-band white space
devices phase II,” OET 08-TR-1005, October 2008.

[12] A. T. S. Committee, “ATSC recommended practice: Transmission mea-
surement and compliance for digital television,” DocumentA/64B, May
2008.

[13] S. Kay and S. Salisbury, “Improved active sonar detection using au-
toregressive prewhiteners,”J. Acoust. Soc. Am., vol. 87, pp. 1603–1611,
1990.

[14] V. Carmillet, P.-O. Amblard, and G. Jourdain, “Detection of phase- or
frequency-modulated signals in reverberation noise,”J. Acoust. Soc. Am.,
vol. 105, no. 6, pp. 3375–3389, June 1999.

[15] J. Rissanen, “Modeling by shortest data description,”Automatica,
vol. 14, pp. 465–471, 1978.

[16] S. Orfanidis, “Optimum signal processing,” http://www.ece.rutgers.edu/
∼orfanidi/osp2e/osp2e.pdf, 2007.


	Introduction
	System Model and Methodology
	Wireless Microphone Signals
	Detecting WM Signals in White Noise with ESPRIT
	Interference and Prewhitening

	WM Detector Design with ESPRIT
	Rate Conversion
	Yule-Walker Estimation
	Prewhitening and ESPRIT
	Pseudo-Spectrum Condensing
	Peak Detection and Thresholding

	Simulation
	Conclusion
	References

