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Abstract—We develop a framework called DEDI based on or all the nodes in a s6€ C A/. Assume some underlying
differential equations (DE) and differential inclusions (DI) to  MAC protocol is already operating in its steady state suel th
describe the rank evolution of random network coding (RNC). each node is transmitting at\; packets per second. We say
The DEDI serves as a powerful numerical and analytical tool @ Ct -
study RNC and we demonstrate this via humerical examples as thata pack(_at sent from nodes successfully r_ecelved by a set
well as an alternate proof of a well known result on RNC — a K of nodes if the packet is successfully received by at least on
multicast at rate R exists if and only if a unicast at rate R exéts node inXC. We assume this happens with a probabiliyi
separately for each destination. _ S and call it the reception probability dfi, ), which allows

Index Terms—Random network coding, rank evolution, differ- o possibility of correlated receptions. Givenand P; x, we

ntial ion, differential inclusion . . .
ential equation, differential inclusio may define the transmission ratgx for (i, K) as
I. INTRODUCTION zik = NPk 1)

Since the pioneering work by Ahlsweda al. [1] that g\ yefinition we have, folC ¢ 7 C N, Pix < P,.r, hence
established the benefits of coding in routers and provideg T

theoretical bounds on the capacity of such networks, the zix < 27T (2)

breadth of areas that have been touched by network COd?@pposeS‘,lC C N andSN K = 0. Define a cut for the pair

is vast and includes not only the traditional disciplines @ . :
: : . . S, K) as a sef satisfyingk ¢ T C §¢. LetC(S, K) denote
information theory, coding theory and networking, but als e collection of all cuts foS, K). The size ofT is defined

topics such as routing algorithms [2], distributed stor§gje .
[4]p, network monitorin%, cgntent del[iv]ery [5]. [6], and m{%iy as C(.T) =D ieTe %7 The min CUtTmi“.for. (S, k), whose
[7]. Among other variants, random network coding (RNC) [8]S,Ize Is denoted asmin (5, K) is a cut satisfying
[9] has received extensive interest in particular. By ailayv (Tmin) = _min _ ¢(T7). 3)
routers to perform random linear operations, RNC is shown T'eC(S,K)
to be capacity achieving and fault tolerant at the price @f lo We briefly describe RNC for a single multicast session
operational complexity. In spite of all the excellent preg8 with node 1 being the unique source trying to deliver
previous studies have made in the area of RNC, what is sphckets. Each packet is a row vector fromFL where F
missing is a simple framework that can be used to describe {gea given finite field of size; and L is a positive constant
evolution of rank/state in a wireless network where RNC igat denotes the length of packet. Every node maintains a
employed. In this paper we present a framework DEDI baseskervoir consisting of all the packets the node holds as a
on differential equations (DE) and differential inclusiofDI), source plus all the packets received thus far during a coded
which are a generalization of DEs to allow for discontinuousession. The reservoir is ever growing and purged only after
right hand sides. The DEDI serves as a powerful numeriadle associated session is completed. Whenever a node gets to
and analytical tool to study RNC and we demonstrate thigansmit, a coded packet is formed and sent out as follows.
via numerical examples as well as an alternate proof of a wgllippose at time node i needs to form a coded packet
known result on RNC — a multicast at rate R exists if and only from its reservoirRsv(i,t) = {wi 1, W 95 W} v
if a unicast at rate R exists separately for each destinationtakes the formv = 1w, | + aow; o + - - + anw; ,,, where
[a1,...,a,] € F" is randomly generated. Since the coding
operation is entirely linear, we havwe = b; jw; + b; 2wy +

A generic wireless network is modeled as a hypergraph-+b; ,,w,, wherew,, ..., w,, are them source packets and
G = (N,€) consisting of N nodesN = {1,2,...,N} [bi1,bi2,...,bim] € F™is called the global coefficient vector
and hyperarcg = {(i,K)|: € N,K C N}. Each hyperarc associated withv. Each node sends the global coefficient
captures the fact that, as any wireless transmission isentlg vector along with its associated coded packet in order to
a broadcast, a packet sent from nedan be received by someenable the receiving nodes to calculate the global coditicie
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vectors for their own coded packets. L%tbe the vector space with m packets to deliver, the boundary conditions (B.C.) for
spanned by the global coefficient vectors associated weh tthis systems of DEs are

packets inRsv(i,t) and defineV; = dim .S;, which we call
the rank of node:. ThenS; andV; are time dependent as the Vic(0) = m, lek, (8)
coded transmissions evolve and orige= m, decoding can 0, o.w.

be carried out with a linear inverse operation. Furthergioy Equation (7) is defined for every nonempty c A" and it

setlC C N, defineSi =3,k Si andVic = dim Sk. We call ;g out thel's are interdependent in a layered structure.

_V,C the rank offC. The question we are m_terested in answe”ngpecifically, to determind/k(¢), one only needs to know

is how the rank¥; of a non-source nodeincreases from to v, . (1) for everyi ¢ K and this hierarchical structure can

m over time, i.e., how does the rank evolve. be used to prove general theorems on RNC by induction. For
I1l. THE DEDI FRAMEWORK gxample, the layered structure of a 3-node network_is s_hown

A Rank Evolution Modeled with DE in Fig. 1 where a quantity depends solely on quantities in the

. ) ) ) . immediate upper layer indicated by arrows.
While V;(t) is a complicated incremental stochastic process,

under a fluid approximation [10V;(¢), as represented by Vi1.2.3)

E[Vi(t)], can be modeled by a set of differential equations.
Thus we drop the notatio?[-] and useV;(t) or Vic(¢) to / l \

denote their average values, respectively, as functions of Va2 V1,3 Vi2,3}
Consider a general s& and a time intervalA¢ such that l >< >< l

At Z Aj=1, (4) Viny Vigy Visy
JgK
i.e., there is one packet that is sent from some nodg¢irn

the intervalAt¢. We wish to calculate the average increase of practical choices aof (usually an integral power of 2) allows

Vi caused by this packet. We begin by observing that 4 fyrther simplication of the system of DEs. Specifically, we
1) This packet is actually from node with probability may approximatd — ¢"<—Vcutis by

Fig. 1. Layered structure for the rank evolution of a 3-nodémork

Ai/ ng_!lc Aj-
2) This packet fromi is successfully received by with 1 — gVk—Veutr x L Vie < Vieugsys 9)
probability P; k. 0, Vi =Vkugy,
3) The global coefficient vector associated with this packwh A L .
: ; A ere the approximation gets better with increasjn
increases the rank & by 1 if and only if it comes from Conseque?ﬁly )\;I/e mlay rgew?ite 7) aV;” ! ng
Si \ (S; N Sk). Since _
1S, 1 S| = glimSinSk — QVitVe—Veug | (5) V/C%;CZi,ic(Vzcu{i}eVic% VKN (10)
it follows that the probability is given by with the same boundary conditions as in (8), where we define
(1S:] — 1S: N Skc|)/1Si] = 1 — g =Veotr,  (8) the binary operatiorm> as (see Fig. 3(a))
Therefore, in At a packet from node increasesVi by TOy = L x>y, (11)
AiPi c(1—g"%~Veutir) /3 A; on average. Collectively, in 0, O.W.

At the packets fromV '\ K increaselx by ZiglC NiPic(1—
gV Vet )/ 3 gk Ay and

Vic(t + At) = Vie(t) = Y NPyl — ¢ Vo) /3

iZIC JEK
Using z; x = A\ P; x and equation (4), we can now make al
approximation thaviC c N/

. Vic(t+At) — Vie(t - ;
Vi~ il A)t K():Zzi,ic(l—qv’c Vewtin), - (7)

gk

We now illustrate the power of the DEDI framework by

4
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which is accurate under the fluid model assumption whe.c Seconds

At is usually much smaller than the total transmission tinmy. 2. Simulation and DE based solution for a 4-node wiseR2P network

and forms the basis for the DEDI framework. Note that (7) is

the rank evolution equation for an arbitrary $étc A and considering an example of RNC in the wireless P2P network
there are2V — 1 such DEs that completely describe the rankhown in Fig. 2 where the source node 1 has 100 packets to
evolution of the system. Assuming node 1 is the unique sourtansmit to nodes 2, 3, and 4. Suppose each node transmits



at 1 packet/second uniformly, but node 1's transmission i3 = 1. We wish to know at what rate®>(t) and V()
successfully received by node 2 and node 3 with probabililycrease by solving the corresponding DEs as given in (10):
0.2 and 0.4, respectively. The transmission of node 2 and nod .

3 are successfully received by node 4 with probability 0.6 Va= 212(m © Va), (14)
and 0.7, respectively. Fig. 2 shows a good match between V3 = 223(Vi23y © V3), (15)

the sir_nulated rar_1k increase at each node as well as the rank 1’/{23} = 21 {23 (M © Via3y), (16)
evolution by solving the corresponding system of DEs. _ N )

with boundary conditiondz = V3 = Vi3, = 0, for which
B. Rank Evolution Modeled with DI the solutions obtained by a numerical DE solver are shown in

I@'\g. 4. In fact, Fig. 4 show¥5(t) = Viasy(t) = V3(t), vVt > 0

While we have shown the power of the DE approach, o . : X
of the challenges that needs to be addressed is the possil§ V2(t) = Viesy () = Va(t) = 0.5, vt € [0,200). However,
lug the solution back into (15), we gé&g(t) = 0,

discontinuous right-hand sides (due to theoperation) that T We P

make the system of DEs in (10) difficult to handle. Considéf € [0;200). This discrepancy arises due to the discontinuous
Fig. 3(a) wherer & is shown as a function af — y, Fig 3(b) right-hand sides of the system of DEs in (14)—(16). If we stca

shows an approximation to it using the upper semicontinuo{i¢h—(16) into DIs as follows.

function Sgn™ : R — 2% defined as Vs € 2128gn™ (m — Va) = 0.58gn ™ (100 — Va),
{0}, z<0 Vs € z038gn™ (Viasy — Vi) = Sgnt (Viasy — V3),
Sen™(z) =<10,1], =0, (12) Vi) € 21, (2338enT (m — Vizgy) = 0.5Sgn™ (100 — Via3),
{1}, «>0 with the same boundary conditions, it is trivial to see that

Va(t) = Va3 (t) = V3(t) = 0.5t is a solution for the system

Oy Sen™ (z — y) of DlIs for t € [0,200). Thus, as illustrated in this example,
— — the Dls offer a way to handle the anomalies that arise in DEs
0 T—y 0 T —y  due to discontinuities.
(@) (b) IV. DEDI FRAMEWORK AS AN ANALYTICAL TooL
Fig. 3. (a) Plot ofz © y as a function ofr — y. (b) Plot of Sgnt as a We will use the system of Dls in (13) to give an alternate
set-valued function of — y. and simpler proof to a well known result on RNC which states
that a multicast session at rafe exists in an arbitrary and
We may rewrite (10) in a new form possibly lossy wireless network if and only if a unicast &&ss

) at rate R exists to each destination separately. This statement
Vi€ zixSent (Vicun—Vi), VK CN  (13) was proved in [1] for deterministic network coding in a wired
iZK network and in [8] for RNC in lossy wireless networks.
with the same boundary conditions shown in (8). To be Note that the highest unicast rate is known to be determined

compatible with (10), wheiC — A/, we define the right-hand by the size of the min cut [12], [13] that separates the source

side of (13) to be(0} instead off). In mathematical literature, and _the_ destination. If a unicast at rafe exists for each

(13) plus (8) is called a system of differential inclusiomd)( d€stinationd, we must havenin (1, d) > R. Using the DEDI

[11]. Any solutions to (10) are necessarily solutions to)(13 framework we show a slightly stronger statement that also
The generalization from (10) to (13) allows an interpretati provides insights into the operation of RNC:

of the solution to (10) without any discrepancy, as illusica Theorem L: In a wireless networkr = (A, &) where node

by the next example. Suppose we use RNC in the netwo]rlis the source node of a multicast session trying to defiver
' packets to some destinations and each node carries out RNC,

the solution to the associated system of Dls (13) is given as

1) VK C N and1 € K, Vi (t) = m,Vt € [0, 0);
) 2) VK c N and1 ¢ K,
@ - ® : @ é‘n \ 1 min 1 min 1
) A= Vi = Vs Ve(t) = cmin(1,K0)t, Vte[0,m/cmin(1,K)), (17)
] m, Yt € [m/emin(1, K), 00).
T Theorem 1 (see Appendix for proof) states that the rank of

Fig. 4. A 3-node network where node 1 tries to deliver 100 ptko node increases until it reaches at the rate allowed by the min cut
2 and node 3 that separate&” from the source.

Corollary 1: For1 ¢ K, Vi = cmin(1,K), When Vi < m.
shown in Fig. 4 to deliven00 packets from node 1 to nodeSpecializing Corollary 1 to an arbitrary destination nageve
2 and 3. Each node transmits htpacket/second uniformly. obtain the same result shown in [8]:
Supposel’ 2 = 0.5 and P 3 = 1, thenziy = 21 (233 = 0.5, Corollary 2: Ford # 1, V= emin(1, {d}), whenVy < m.



Corollary 2 shows that if a unicast at rafe exists for

each destinationd separately, i.e.cmin(1,d) > R, then 2)

the proposed coding scheme is sufficient to implement a
multicast at rateR. Theorem 1 is a little more general than
the statements made in [8] and [14] since it reveals that, not
only the rank at a single node, but also the rank at any subset
K C N increases at its min cut sizg,;,(1, ).

It should be pointed out that in the proof to Theorem 1,
typical difficulties with cycles in the network topology dotn
arise due to the layered structure of the Dls that includes al
topological information.

V. CONCLUDING REMARKS

We presented a framework called DEDI, based on differ-
ential equations and/or differential inclusions, whiclowabk
prediction of the rank/state evolution in an arbitrary wire
less network where RNC is employed. We gave numerical
examples and an alternate proof to a well known result on
RNC with a single multicast to demonstrate the capability
of DEDI — results on multiple multicast sessions will be
presented in an upcoming submission [15]. We believe that
the DEDI framework has wide ranging applications from
studying network dynamics to cross-layer design to noaline

and hybrid network coding schemes. Further, numerical DE3)

solvers allow network practitioners to follow the dynamafs
network coding, thereby impacting real network design.

APPENDIX
PROOF OFTHEOREM 1

We begin with the following lemma:
Lemma 1: In a hypergraplt = (N, &), if 1 ¢ K Cc A and
T D K is a min cut for(1, K), then
a) Vie T\ K, T is amin cut for(1, {i} U K);
b) Vj e T\ {1}, emin(1, {7} UK) > cmin(1,K).
Proof:

a) If it is not true, sinceT € C(1,{:i} U K), we must
havecmin(1, {i} UK) < cmin(1, ). But the min cut for
(1,{i} UK) is also a cut for(1, ), SO cnin(1,K) <
emin(1, {2} U K), a contradiction.

b) Since a min cut fof1, {j} UK) is also a cut for(1, ),
the conclusion follows.

[
Proof of Theorem 1: The proof to Theorem 1 is by
induction on|A \ K|, i.e., the cardinality of\ \ K. Recall
that a solutionVi(¢) to (13) is a continuous function for

each nonempty subsét C N. From the right-hand side of 4)

(13) and the definition oBgn™ in (12), we knowVi(t) is
increasing, which implies thatc(t) has bounded variation
and differentiablea.e. Therefore, for arbitrary,, t2, we have

tr
Vic(t2) = Vic(t1) +/ Vicdt. (18)

t1
1) Case 1 € K, base step [V \ K| = 0: SinceK = N, it
follows from (8) and our remark after (13) that

Vi € {0}, B.C. Vi(0)=m. (19)

Clearly the solution i/ (t) = m,t > 0.
Case 1 € K, induction step [N\ K| = k—1to [N\K| =
k: From (13) and (8), we have
VKezzi,KSgn+(V{i}uK_VK), B.C. VK(O):m. (20)
iZK

Sincel € {i} UK and |V \ {i} UK)| = k -1, by
induction hypothesis, (20) can be rewritten as

Vic € Zzi7;CSgn+(m — Vk).

iZK

Supposedt; > 0 such thatlk (t2) # m. SinceVi(0) =
m, by monotonicity, we havé/c(t2) > m. Let

t1 = sup{t > 0|V(K) = m}, (22)
thent; exists because the set on the right hand side of
(22) is nonempty and; < t2. By continuity of Vi,

Vic(t1) = m. By definition of t1, Vic(t) > m,Vt €
(t1,t2]. So (21) reduces to,

Vic(t) € {0}, Vit e (t1,ta], (23)

which is equivalent toVic(t) = 0,Vt € (t1,ts]. With
Vi (t1) = m, we haveVi(t2) = m, a contradiction.
Case 1 ¢ K, base step [V \ K| = 1: From (13) and the
case we have proved fare K, we have

V;C S 217KSgn+(VN — V]c)
=21 xSgn™ (m — Vic) = emin(1,K) - {1} (24)
whenVi () < m (Recall Vi (t) is a continuous increas-
ing function starting fromV.(0) = 0 according to (8)),
which is equivalent td/kc = ¢min(1, K). Therefore
Vic(t) = cmin (1, K)t, ¥Vt € [0,m/cmin(1,K)). (25)

By continuity, Vic (m/cmin (1, K)) = m. By Monotonic-
ity, Vic(t) > mfort > m/cmin(1, K). To showVi (t) =
m,Vt € [m/emin(1,K),00), argue by contradiction.
Supposedts > m/cmin(1,K) such thatVi (t2) # m,
then we must hav&(t2) > m. Let

t = {Vik(t) <m},

(21)

(26)

sup
t>m/cmin(1,K)
thent; < to andVic(t1) = m/cmin(1, K) by continuity.
By definition of t1, Vic(t) > m,Vt € (t1,t2]. By
induction hypothesisy;;ux < m. So (13) reduces to
Vic € {0},¥t € (t1,t5]. It then follows from (18) that
Vi (t2) = m, a contradiction.

Case 1 ¢ K, induction step |IM\K| = k—1to [N\K| =

k for ¢t € [0,m/emin(1, K)): Without loss of generality,
assume

TC={1,2,...,0}, T={+1,0+2,....,k} UK. (27)

Then cuin(1,K) = >, c7e zi,7. To show Vic(t) =
emin(1, K)E, ¥t € [0,m/cmin(1,K)), argue by con-
tradiction. Suppose this is not true, theftys €
(0, m/emin(1, K)) such thatVk:(t2) # cmin(1, K)t2. Let

t1 = sup{0 <t < t2|Vic(t) = cmin(1, K)t}.  (28)



5) Case 1 ¢ K, induction step [NV \ K|

Because the set on the right-hand side of (28) is not
empty and upper bounded by, ¢; exists and

V]c(tl) = Cmin(l, ’C)tl (29)
by continuity. There are two possibilities:
Vic(t2) > cmin(1, K)t2: Then
V)C(t) > Cmin(]-; IC)t,Vt S (tl, t2]. (30)

Otherwise, sinc&/ic(t2) > cmin(l, K)o, there ists €
(t1,t2) such thatVic(ts) = cmin(1, K)ts, contradicting
(28). By Lemma 1(a)Vj =¢+1,...,k, cmin(1,{j} U
K) = emin(1, K) and by by induction hypothesis

V{j}UK(t> = Cmin(]-; ’C)t, Vit € [0, m/cmin(l,lC)). (31)
Inserting (30), (31) into (13), we géftt € (t1,t2],

1
Vic :Z Zi,KSgn+(V{i}UIC - Vi)

i=1

14 4
< Zzi,lC < Zzi,T = Cmin(la K:)v (33)
=1 i=1

(32)

where the last inequality follows from (2). Inserting (29)
and (33) into (18), we geVi(t2) < cmin(1,K)t2, a
contradiction.

Vic(t2) < cmin(1, K)t: Arguing similarly with above, we
get

(1]

(2]

Vi (t) < Cmin(]-; IC)t,Vt € (tl, t2]. (34) [3]
Inserting (34), (31) into (13), we géftt € (t1,t2], ”
¢ k
Vic(t) = Zzi,KSgn+(V{i}UI€ - Vk) +ZZjJC- (35) -
i=1 j=0+1
We claim
[6]
Viguk (t) > Vie(t),  Vt € (t1,ta]. (36)

In fact, by induction hypothesis, for any, either
‘/{'L}U’C(t) = Cmin(17{i} U IC)t or ‘/{'L}ukj(t) = m. If
V{z‘}um(t) = m, we certainly have thati € 7¢,Vt €
(t17t2]1

(8]

Viyuk () > emin(1, )t > Vie(t); (9]

if Visux(t) = cmin(1, {7} UK)t, we have that foli €
T\ {1}, Vt € (t1, ta],

Vt{i}uK(t) = Cmin(lv {Z} U K)t > Cmin(lvlc>t > VIC(t>a

where the first inequality follows from Lemma 1(b).
Inserting (36) into (35), we get

(20]

[11]

[12]

(13]

k
> zik = cmin(1,K).  (37)

‘
Vielt) =) zix+ [14]
=1 j=0+1

Inserting (29), (37) into (18), we geVi(t2)
emin (1, K)t2, @ contradiction.

[15]

E—1to
IN\ K| = k for t € [m/cmin(1,K),00): We already

know, by continuity,Vic(m/cmin(1,K)) = m and, by
monotonicity, Vic(t) > m for ¢ > m/cmin(1,K). We
only need to show thafty > m/cmin(1,K) such that

Vi (t2) > m. Suppose this is not true, let
t1 = sup{t > m/cmin(1, K)|Vic (t) = m} (38)

since the set ont the right-hand side of (38) is nonempty
and upper bounded by, t; exists. By continuity,

(39)

By monotonicity, Vi (t) > m, Vt € (t1,t2]. By induction
hypothesis,

V]c(tl) =m.

Viguc(t) <m, Vig K. (40)
Inserting (40) into (13), we get
Vic € {0}, Vt€ (t1,ta]. (41)

Inserting (39), (41) into (18), we gtk (t2) = m, a
contradiction.
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