
Analyzing Multiple Flows in a Wireless Network
with Differential Equations and Differential

Inclusions
Dan Zhang and Narayan Mandayam

WINLAB, Rutgers University
671 Route 1 South, North Brunswick, NJ 08902

{bacholic, narayan}@winlab.rutgers.edu

Abstract—A framework based on differential equations and
differential inclusions (DEDI) for analyzing the throughput of
random network coding in a wireless network has been proposed
in [1]. In this paper, we extend this framework to further address
the throughput when multiple multicast flows are simultaneously
launched using an intersession coding scheme. The handiness,
accuracy and power of the DEDI framework are demonstrated
through its use in theoretical analysis and simulations.

I. INTRODUCTION

Analyzing information flows with network coding was pio-
neered by Ahlswede et al. in [2], where the throughput of a
single multicast flow in a wired network using deterministic
network coding was analyzed. They showed for the first
time that with proper coding, the throughput of a multicast
is tightly upper bounded by the throughput of individual
unicasts. Similar results for random network coding (RNC)
were reported in [3], [4] using queueing theoretic methods.
Since then, analyzing throughput of information flows in a
wired or wireless network has been extensively studied and
many methods have been proposed. However, these methods,
mostly based on information theory or queueing theory, are not
readily amenable to use in networking practice, due to the lack
of either generality or simplicity. In our recent work [1], we
have presented a new framework (DEDI) based on differential
equations (DE) and differential inclusions (DI) for analyzing
the dynamics of network coding, namely the evolution of rank
in a wireless network with RNC. Specifically, this frame-
work can be applied to study network information flows and
throughput with RNC via a dynamical systems approach. We
used this approach to reprove one of the fundamental theorems
of a single network flow in [1], first proved in [3], thereby
demonstrating the versatility of the DEDI framework in theory
and design. In this paper, we will use the DEDI framework to
further extend the results from a single flow to multiple flows
starting simultaneously. We will characterize the throughput,
and demonstrate the use of the DEDI framework to network
practitioners.

In what follows, Section II provides a brief review of
wireless network hypergraph and RNC basics; Section III
presents an abbreviated description of the setup of DEDI
from [1]; Section IV discusses its application in characterizing
the throughput of multiple RNC flows, proving a few useful

theorems; Section V presents simulations to illustrate the
accuracy of DEDI. We conclude in Section VI.

II. HYPERGRAPH AND RANDOM NETWORK CODING

A generic wireless network is modeled as a hypergraph
𝐺 = (𝒩 , ℰ) consisting of 𝑁 nodes 𝒩 = {1, 2, . . . , 𝑁}
and hyperarcs ℰ = {(𝑖,𝒦)∣𝑖 ∈ 𝒩 ,𝒦 ⊂ 𝒩}. Each hyperarc
captures the fact that wireless transmission is naturally broad-
casting. This idea is shown in Fig. 1 where the hypergraph of a
four-node network is shown. It can be conveniently represented
with arrows to indicate reachability. One should not, however,
confuse the arrow representation with the digraph of a wired
network. Assume some underlying MAC is operating in its
steady state such that each node 𝑖 is transmitting at 𝜆𝑖 packets
per second. We say that a packet is successfully received by
a set 𝒦 of nodes if the packet is successfully received by at
least one node in 𝒦, which happens with a probability 𝑃𝑖,𝒦.
We define the transmit rate 𝑧𝑖,𝒦 for (𝑖,𝒦) (i.e., from 𝑖 to 𝒦)
as

𝑧𝑖,𝒦 = 𝜆𝑖𝑃𝑖,𝒦. (1)

For 𝒦 ⊂ 𝒯 ⊂ 𝒩 , we must have

𝑧𝑖,𝒦 ≤ 𝑧𝑖,𝒯 (2)

because 𝑃𝑖,𝒦 ≤ 𝑃𝑖,𝒯 . Suppose 𝒮,𝒦 ⊂ 𝒩 and 𝒮 ∩ 𝒦 = ∅.
Define a cut for the pair (𝒮,𝒦) as a set 𝒯 satisfying 𝒦 ⊂
𝒯 ⊂ 𝒮𝑐. Let 𝐶(𝒮,𝒦) denote the collection of all cuts for
(𝒮,𝒦). The size of 𝒯 is defined as 𝑐(𝒯 ) =

∑
𝑖∈𝒯 𝑐 𝑧𝑖,𝒯 . The

min cut 𝒯min for (𝒮,𝒦), whose size is denoted as 𝑐min(𝒮,𝒦)
is a cut satisfying

𝑐(𝒯min) = min
𝒯 ′∈𝐶(𝒮,𝒦)

𝑐(𝒯 ′). (3)

We denote 𝑇min as 𝐶min(𝒮,𝒦). Finally, we say 𝐺 is connected
if, for any ∅ ∕= 𝒯 ⊊ 𝒩 , 𝑐(𝒯 ) > 0.

For the basic operation of RNC, we refer the unfamiliar
readers to the original paper [4] and we only make a few
notions here for the development of DEDI. The number of
innovative packets at node 𝑖 (including the source packets if 𝑖
is a source node) is denoted as 𝑉𝑖. Note 𝑉𝑖 is also the number
of linearly independent global coefficient vectors [5]. Let 𝑆𝑖

be the vector space spanned by those global coefficient vectors
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Fig. 1. Hypergraph model of a wireless network of four nodes and its arrow-
dot representation.

over the underlying field GF(𝑞), then 𝑉𝑖 = dim𝑆𝑖, which we
call the rank of node 𝑖. 𝑆𝑖 and 𝑉𝑖 are time dependent as the
coded transmissions continues. Further, for any set 𝒦 ⊂ 𝒩 ,
define

𝑆𝒦 =
∑
𝑖∈𝒦

𝑆𝑖, 𝑉𝒦 = dim𝑆𝒦, (4)

and call 𝑉𝒦 the rank of 𝒦. The question we are interested in
answering is how the rank 𝑉𝒦 or 𝑉𝑖 evolves over time.

III. THE DEDI FRAMEWORK

A. Rank Evolution Modeled with DE

Under the fluid approximation [6] 𝑉𝑖(𝑡) can be closely
represented by its mean 𝐸[𝑉𝑖(𝑡)]. The DEDI framework
models 𝐸[𝑉𝑖(𝑡)] with a set of DE’s with which all kinds
of analysis can be carried out easily. Thus in what follows,
we drop the notation 𝐸[⋅] and use 𝑉𝑖(𝑡) or 𝑉𝒦(𝑡) to denote
their average values, respectively, as functions of 𝑡. Since 𝑉𝑖

has been turned from a discrete incremental process into a
deterministic smooth function under the fluid approximation,
we may consider the differential of 𝑉𝒦. For the moment,
assume all nodes in the network participate in carrying the
flow with RNC, i.e., they constantly form a coded packet
and broadcast it out as scheduled by their MAC’s. During
a diminishing time interval Δ𝑡, an average of

Δ𝑡
∑
𝑗 ∕∈𝒦

𝜆𝑗 ≪ 1

(fractional) packet originating from some node of 𝒦𝑐. If this
packet comes from 𝑖 ∕∈ 𝒦 (with probability 𝜆𝑖/

∑
𝑗 ∕∈𝒦 𝜆𝑗), it is

successfully received by 𝒦 with probability 𝑃𝑖,𝒦 by definition.
This packet then increases 𝑉𝒦 by 1 if and only if its associated
global coefficient vector comes from 𝑆𝑖 ∖ (𝑆𝑖 ∩ 𝑆𝒦). Since

∣𝑆𝑖 ∩ 𝑆𝒦∣ = 𝑞dim𝑆𝑖∩𝑆𝒦 = 𝑞𝑉𝑖+𝑉𝒦−𝑉𝒦∪{𝑖} , (5)

and ∣𝑆𝑖∣ = 𝑞dim𝑆𝑖 = 𝑞𝑉𝑖 , (6)

it happens with probability

(∣𝑆𝑖∣ − ∣𝑆𝑖 ∩ 𝑆𝒦∣)/∣𝑆𝑖∣ = 1− 𝑞𝑉𝒦−𝑉𝒦∪{𝑖} . (7)

Consequently in Δ𝑡, 𝑉𝒦 is incremented by⎛⎝Δ𝑡
∑
𝑗 ∕∈𝒦

𝜆𝑗

⎞⎠∑
𝑖 ∕∈𝒦

𝜆𝑖∑
𝑗 ∕∈𝒦 𝜆𝑗

𝑃𝑖,𝒦(1− 𝑞𝑉𝒦−𝑉𝒦∪{𝑖})

=Δ𝑡
∑
𝑖 ∕∈𝒦

𝜆𝑖𝑃𝑖,𝒦(1− 𝑞𝑉𝒦−𝑉𝒦∪{𝑖}), (8)

i.e.,

𝑉𝒦(𝑡+Δ𝑡)− 𝑉𝐾(𝑡) = Δ𝑡
∑
𝑖 ∕∈𝒦

𝜆𝑖𝑃𝑖,𝒦(1− 𝑞𝑉𝒦−𝑉𝒦∪{𝑖}).

Using 𝑧𝑖𝒦 = 𝜆𝑖𝑃𝑖,𝒦 and equation (5), we write ∀𝒦 ⊂ 𝒩

𝑉̇𝒦 = lim
Δ𝑡→0

𝑉𝒦(𝑡+Δ𝑡)− 𝑉𝒦(𝑡)
Δ𝑡

=
∑
𝑖 ∕∈𝒦

𝑧𝑖𝒦(1− 𝑞𝑉𝒦−𝑉𝒦∪{𝑖}). (9)

The nonlinear DE in (9) forms the basis for the DEDI
framework. It actually stands for a system of 2𝑁−1 equations,
each for an nonempty 𝒦 ⊂ 𝒩 . They collectively give a
complete description of rank evolution in the system. Note
𝑉𝒦 is solely determined by {𝑉𝒦∪{𝑖}}𝑖 ∕∈𝒦. This dependency
can be explored to arrange (9) into a partial order “≲” such
that 𝑉𝒦 ≲ 𝑉ℒ if and only if 𝒦 ⊂ ℒ. This partial order can
be pictorially represented as a layered structure, for which an
example is shown in Fig. 2 for ∣𝒩 ∣ = 3. To determined a
quantity on any particular layer, one only needs to know the
the quantities on the layer immediately above indicated by
arrows.
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Fig. 2. Layered structure for the rank evolution of a 3-node network

Theoretically, with appropriate boundary condition, (9) can
be solved. The instantaneous throughput is then obtained as
𝑉̇𝒦 or 𝑉̇𝑖. For example, assuming node 1 is the unique source
with 𝑚 packets to deliver, the boundary conditions (B.C.) for
this systems of DE’s are

𝑉𝒦(0) =

{
𝑚, 1 ∈ 𝒦,

0, o.w.
(10)

If only part of the nodes, say ℒ ⊂ 𝒩 , participate in carrying
the flow, (9) still holds, except that we should replace 𝒦 with
𝒦 ∩ ℒ and the top layer in the layered structure consists of
𝑉ℒ alone.

The size 𝑞 (usually an integral power of 2) of the under-
lying field GF(𝑞) allows simplification of (9) by making the
following approximation

𝑞𝑉𝒦−𝑉𝒦∪{𝑖} =

{
0, 𝑉𝒦 < 𝑉𝒦∪{𝑖},
1, 𝑉𝒦 = 𝑉𝒦∪{𝑖},

(11)

Then we may rewrite (9) as

𝑉̇𝒦=
∑
𝑖 ∕∈𝒦

𝑧𝑖𝒦(𝑉𝒦∪{𝑖}⊖𝑉𝒦), ∀𝒦 ⊂ 𝒩 (12)



with the same boundary conditions as in (10). The binary
operation ⊖ is defined as

𝑥⊖ 𝑦 =

{
1, 𝑥 > 𝑦,

0, o.w.
(13)

B. Rank Evolution Modeled with DI

While (12) is appropriate for numerical evaluation, it is
difficult for analysis due to the discontinuous right-hand side.
Instead of going back to (9), which is smooth though neither
suitable for numerical evaluation nor analysis, we modify the
right-hand sides to incorporate semicontinuity. Specifically, we
define an upper semicontinuous function Sgn+ : ℝ → 2ℝ

Sgn+(𝑥) =

⎧⎨⎩
{0}, 𝑥 < 0

[0, 1], 𝑥 = 0

{1}, 𝑥 > 0

(14)

to replace the “⊖” operation:

𝑉̇𝒦∈
∑
𝑖 ∕∈𝒦

𝑧𝑖𝒦Sgn+(𝑉𝒦∪{𝑖}−𝑉𝒦), ∀𝒦 ⊂ 𝒩 . (15)

The same boundary condition in (10) still holds. To be
compatible with (12), when 𝒦 = 𝒩 , we define the right-hand
side of (15) to be {0} instead of ∅. In mathematical literature,
(15) plus (10) is called a system of differential inclusions (DI)
[7], which is an important extension to regular DE’s to allow
jump discontinuities. For this paper, solutions to the DI’s as
in (15) are defined to be all the continuous functions that
satisfy (15) and are differentiable almost everywhere. Under
mild assumptions, the DI’s admit a unique solution that also
satisfies the associated DE’s with discontinuities.

IV. ANALYZING MULTIPLE FLOWS WITH DEDI

In [2], the throughput for deterministic network coding in
a wired network was established. The result states that, for a
single multicast flow with a single source node, a multicast rate
of 𝑅 can be achieved if a unicast at rate 𝑅 can be achieved for
each destination separately. In fact, since it is well known that
the unicast throughput is determined by the min cut between
the source and the destination, the result essentially states that
the multicast throughput is determined by the smallest min
cut between the source and each destination. This result is
astonishing in that one cannot achieve the throughput simply
by routing in a store-and-forward fashion. Similar results for
RNC in a wired or wireless network were established in [3]
with the hypergraph model and the min cut concept defined as
in (3). In [1], the authors proved a slightly stronger statement
by solving (15). They showed that for any 𝒦 ⊂ 𝒩 that
does not include the source (assumed as node 1), its rank
increases at the min cut size, i.e., 𝑉̇𝒦 = 𝑐min(1,𝒦). The
original statement in [3] is then recovered by specializing 𝒦
to a single node 𝑖.

It would be interesting to see how DEDI could be applied to
the more complicated scenario of multiple flows. This can be
done, as always, by solving (15) that describes this scenario.
In general, suppose we have a wireless network 𝐺 = (𝒩 , ℰ)

and 𝐽 independent multicast flows and flow 𝑗 originates from
a set of source nodes

𝒮𝑗 = {𝑠𝑗,1, 𝑠𝑗,2, . . . , 𝑠𝑗,𝑛𝑗}, 𝑗 = 1, 2, . . . , 𝐽, (16)

where each node in 𝒮𝑗 contains the same set of 𝑚𝑗 packets
to be delivered to the rest of the network or part of it. Note it
is possible that a node serves more than one multicast flows
and it contains as many sets of packets. To identify the source
for any nonempty 𝒦 ⊂ 𝒩 , define

Src(𝒦) = {𝑗∣𝒮𝑗 ∩ 𝒦 = ∅, 𝑗 = 1, 2, . . . , 𝐽}. (17)

For the coding scheme, we let each node generate a coded
packet by randomly linearly mixing all the packets it holds,
regardless which multicast flow these packets belong to. Sup-
pose all the multicast flows start synchronously from time 0.
This scenario is captured by the following system of DI’s:

𝑉̇𝒦 ∈
∑
𝑖 ∕∈𝒦

𝑧𝑖,𝒦Sgn+(𝑉{𝑖}∪𝒦 − 𝑉𝒦),

B.C. 𝑉𝒦(0) =
∑

1≤𝑗≤𝐽
𝑗 ∕∈Src(𝒦)

𝑚𝑗 .
(18)

We now state the following theorem which provides an explicit
solution to (18):

Theorem 1: The solution to (18) is given recursively as

𝑉𝒦(𝑡) = min{𝑉𝒦(0) + 𝑐(𝒦)𝑡,min
ℓ∕∈𝒦

{𝑉{ℓ}∪𝒦(𝑡)}}, (19)

= min{𝑉𝒦(0) + 𝑐(𝒦)𝑡, min
𝒦′⊃𝒦

{𝑉𝒦′(𝑡)}}, (20)

= min
𝒦′⊃𝒦

{𝑉 ′
𝒦(0) + 𝑐(𝒦′)𝑡} (21)

and

𝑉𝒩 (𝑡) =

𝐽∑
𝑗=1

𝑚𝑗 . (22)

Besides, for each 𝒦, there is a sequence

0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛𝒦−1 < 𝑡𝑛𝒦 = ∞ (23)

such that over [𝑡𝑝, 𝑡𝑝+1), 𝑝 = 0, 1, . . . , 𝑛𝒦 − 1, 𝑉𝒦 is affine:

𝑉𝒦(𝑡) = 𝑉𝒦′(0) + 𝑐(𝒦′)𝑡, 𝑡 ∈ [𝑡𝑝, 𝑡𝑝+1), (24)

where 𝒦′ satisfies

𝒦′ = 𝐶min(∪𝑗∈Src(𝒦′)𝒮𝑗 ,𝒦). (25)

We need a few preliminaries for the proof of Theorem 1.
We begin with Lemma 1 which gives a solution to (18) on an
interval.

Lemma 1: Suppose 𝑉𝒦(𝑡1) is known, (18) has a solution
on [𝑡1, 𝑡2) given as

𝑉𝒦(𝑡) = 𝑉𝒦(𝑡1) + 𝑧(𝑡− 𝑡1) (26)

if there is a set of nodes 𝒫 such that 𝒫 ∩ 𝒦 = ∅ and 𝑧 ≥ 0
satisfying

1) 𝑉{𝑖}∪𝒦(𝑡) = 𝑉𝒦(𝑡1) + 𝑧(𝑡− 𝑡1), ∀𝑡 ∈ [𝑡1, 𝑡2), ∀𝑖 ∈ 𝒫;
2) 𝑉{𝑗}∪𝒦 ≥ 𝑉𝒦(𝑡1)+ 𝑧(𝑡− 𝑡1), ∀𝑡 ∈ [𝑡1, 𝑡2), ∀𝑗 ∕∈ 𝒦∪𝒫;



3)
∑

𝑗 ∕∈𝒦∪𝒫 𝑧𝑗,𝒦 ≤ 𝑧 ≤ ∑
𝑖 ∕∈𝒦 𝑧𝑖,𝒦.

Proof: Suppose this is not true, there is 𝑡′′ ∈ [𝑡1, 𝑡2) such
that

𝑉𝒦(𝑡′′) ∕= 𝑉𝒦(𝑡1) + 𝑧(𝑡− 𝑡1).

Let

𝑡′ = sup
𝑡1≤𝑡≤𝑡′′

{𝑉𝒦(𝑡) = 𝑉𝒦(𝑡1) + 𝑧(𝑡− 𝑡1)}, (27)

then 𝑡′ exists, 𝑡1 ≤ 𝑡′ < 𝑡′′ < 𝑡2 and 𝑉𝒦(𝑡) ∕= 𝑉𝒦(𝑡1)+𝑧(𝑡−𝑡1)
∀𝑡 ∈ (𝑡′, 𝑡′′] by definition. Because 𝑉𝒦(𝑡) is continuous, it is
either

𝑉𝒦(𝑡) > 𝑉𝒦(𝑡1) + 𝑧(𝑡− 𝑡1), ∀𝑡 ∈ (𝑡′, 𝑡′′], (28)

or

𝑉𝒦(𝑡) < 𝑉𝒦(𝑡1) + 𝑧(𝑡− 𝑡1), ∀𝑡 ∈ (𝑡′, 𝑡′′]. (29)

If (28) holds, by assumption 1, 𝑉{𝑖}∪𝒦(𝑡) < 𝑉𝐾(𝑡), ∀𝑡 ∈
(𝑡′, 𝑡′′], ∀𝑖 ∈ 𝒫 . So, with assumption 2,

𝑉̇𝒦(𝑡) =
∑
𝑖 ∕∈𝒦

𝑧𝑖,𝒦Sgn+(𝑉{𝑖}∪𝒦 − 𝑉𝒦) ≤
∑

𝑗 ∕∈𝒦∪𝒫
𝑧𝑗,𝒦, (30)

thus

𝑉𝒦(𝑡′′) = 𝑉𝒦(𝑡′) +
∫ 𝑡′′

𝑡′
𝑉̇𝒦(𝑡)𝑑𝑡

= 𝑉𝒦(𝑡1) + 𝑧(𝑡′ − 𝑡1) +

∫ 𝑡′′

𝑡′
𝑉̇𝒦(𝑡)𝑑𝑡

≤ 𝑉𝒦(𝑡1) + (𝑡′ − 𝑡1) +
∑

𝑗 ∕∈𝒦∪𝒫
𝑧𝑗,𝒦(𝑡′′ − 𝑡′)

≤ 𝑉𝒦(𝑡1) + 𝑧(𝑡′ − 𝑡1) + 𝑧(𝑡′′ − 𝑡′) (assumption 3)
= 𝑉𝒦(𝑡1) + 𝑧(𝑡′′ − 𝑡1), (31)

which is a contradiction to (28). If (29) holds, by assumption
1 and 2,

𝑉̇𝒦 =
∑
𝑖 ∕∈𝒦

𝑧𝑖,𝒦Sgn+(𝑉{𝑖}∪𝒦 − 𝑉𝒦) =
∑
𝑖 ∕∈𝒦

𝑧𝑖,𝒦. (32)

Then by assumption 3,

𝑉𝒦(𝑡′′) = 𝑉𝒦(𝑡1) + 𝑧(𝑡′ − 𝑡1) +

∫ 𝑡′′

𝑡′
𝑉̇𝒦(𝑡)𝑑𝑡

= 𝑉𝒦(𝑡1) + 𝑧(𝑡′ − 𝑡1) +
∑
𝑖 ∕∈𝒦

𝑧𝑖,𝒦(𝑡′′ − 𝑡′)

≥ 𝑉𝒦(𝑡1) + 𝑧(𝑡′ − 𝑡1) + 𝑧(𝑡′′ − 𝑡′) (assumption 3)
= 𝑉𝒦(𝑡1) + 𝑧(𝑡′′ − 𝑡1), (33)

which is a contradiction to (29).
Now we can give

Proof to Theorem 1: We prove this via induction on
∣𝒩 ∖ 𝒦∣. When ∣𝒩 ∖ 𝒦∣ = 0, 𝒦 = 𝒩 , 𝑉𝒩 (0) =

∑𝐽
𝑗=1 𝑚𝑗 ,

∀𝑡 ≥ 0. (19)–(21) are trivially true. Assume it is true when
∣𝒩 ∖𝒦∣ ≤ 𝑘− 1, we prove it is also true for ∣𝒩 ∖𝒦∣ = 𝑘. Let

𝑈𝒦(𝑡) = min
𝒦′⊃𝒦

{𝑉𝒦′(0) + 𝑐(𝒦′)𝑡, (34)

then 𝑈𝒦(𝑡) is piecewise linear (since it is the minimum of a
finitely many affine functions) and there is a sequence

0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛𝒦−1 < 𝑡𝑛𝒦 = ∞ (35)

such that for each 𝑝 = 0, 1, . . . , 𝑛𝒦 − 1,

𝑈𝒦(𝑡) = 𝑉𝒦′(0) + 𝑐(𝒦′)𝑡, 𝑡 ∈ [𝑡𝑝, 𝑡𝑝+1), (36)

for some 𝒦′. We claim 𝒦′ = 𝐶min(∪𝑗∈Src(𝒦′)𝒮𝑗 ,𝒦). Oth-
erwise, let 𝒦′′ = 𝐶min(∪𝑗∈Src(𝒦′)𝒮𝑗 ,𝒦) but 𝒦′′ ∕= 𝒦. By
definition of min cut for the hypergraph model, we have

𝑐(𝒦′′) < 𝑐(𝒦′). (37)

Since (∪𝑗∈Src(𝒦′)𝒮𝑗) ∩ 𝒦′′ = ∅, Src(𝒦′) ⊂ Src(𝒦′′), so

𝑉𝒦′′(0) ≤ 𝑉𝒦′(0). (38)

Therefore ∀𝑡 ∈ (𝑡𝑝, 𝑡𝑝+1),

𝑉𝒦′′(0) + 𝑐(𝒦′′)𝑡 < 𝑉𝒦′(0) + 𝑐(𝒦′)𝑡, (39)

which is a contradiction to (34).
We want to show that 𝑉𝒦(𝑡) = 𝑈𝒦(𝑡), ∀𝑡 ∈ [𝑡𝑝, 𝑡𝑝+1),

using Lemma 1, which amounts to checking three conditions.
Let 𝒫 = 𝒦′ ∖ 𝒦, 𝑧 =

∑
𝑖 ∕∈𝒦′ 𝑧𝑖,𝒦′ = 𝑐(𝒦′). First note

𝑉{𝑖}∪𝒦(𝑡) = 𝑈𝒦(𝑡), ∀𝑖 ∈ 𝒫,∀𝑡 ∈ [𝑡𝑝, 𝑡𝑝+1). (40)

This is because, on one hand, 𝑉{𝑖}∪𝒦(𝑡) ≥ 𝑈𝒦(𝑡) by (34),
while on the other hand, by induction assumption (∣𝒩 ∖ ({𝑖}∪
𝒦)∣ = 𝑘 − 1)

𝑉{𝑖}∪𝒦(𝑡) = min
({𝑖}∪𝒦)⊂𝒦′′

{𝑉𝒦′′(0) + 𝑐(𝒦′′)𝑡}
≤ 𝑉𝒦′(0) + 𝑐(𝒦′)𝑡 (since {𝑖} ∪ 𝒦 ⊂ 𝒦′)
= 𝑈𝒦(𝑡). (41)

Meanwhile, by (34) we have

𝑉{𝑗}∪𝒦(𝑡) ≥ 𝑈𝒦(𝑡), ∀𝑡 ∈ [𝑡𝑝, 𝑡𝑝+1),∀𝑗 ∕∈ 𝒦 ∪ 𝒫. (42)

Because 𝒦′ = 𝐶min(∪𝑗∈Src(𝒦′)𝒮𝑗 ,𝒦), 𝑧 ≤ ∑
𝑖 ∕∈𝒦 𝑧𝑖,𝒦.

Because 𝒦 ⊂ 𝒦′, ∑
𝑖 ∕∈𝒦′

𝑧𝑖,𝒦 ≤
∑
𝑖∕∈𝒦′

𝑧𝑖,𝒦′ = 𝑧. (43)

Thus assumption 3 of Lemma 1 is checked for all 𝑡. We then
check assumption 1 and 2 piecewise. When 𝑝 = 0,

𝑈𝒦(𝑡0) = 𝑈𝒦(0) = min
𝒦′⊃𝒦

{𝑉𝒦′(0)} = 𝑉𝒦(0) (44)

because for any 𝒦′ ⊃ 𝒦,

𝑉𝒦′(0) =
𝐽∑

𝑗=1

𝐼(𝒮𝑗 ∩ 𝒦′ ∕= ∅)𝑚𝑗

≥
𝐽∑

𝑗=1

𝐼(𝒮𝑗 ∩ 𝒦 ∕= ∅)𝑚𝑗 = 𝑉𝒦(0). (45)

From (40) and (45),

𝑉{𝑖}∪𝒦(𝑡) = 𝑉𝒦′(0) + 𝑐(𝒦′)𝑡
= 𝑉𝒦(0) + 𝑐(𝒦′)𝑡, ∀𝑡 ∈ [𝑡0, 𝑡1),∀𝑖 ∈ 𝒫, (46)



Hence assumption 1 is checked for [𝑡0, 𝑡1). From (42) and
(45),

𝑉{𝑗}∪𝒦(𝑡) ≥ 𝑉𝒦′(0) + 𝑐(𝒦′)𝑡
= 𝑉𝒦(0) + 𝑐(𝒦′)𝑡,∀𝑡 ∈ [𝑡0, 𝑡1),∀𝑗 ∕∈ 𝒦 ∪ 𝒫. (47)

Hence assumption 2 is checked for [𝑡0, 𝑡1). Therefore 𝑉𝒦(𝑡) =
𝑈𝒦(𝑡), ∀𝑡 ∈ [𝑡0, 𝑡1). But this in turn implies that 𝑉𝒦(𝑡1) =
𝑈𝒦(𝑡1) by continuity (cf. the definition of solution to DI in
Section III-B), which implies that assumption 1 and 2 are also
checked for [𝑡1, 𝑡2) (same argument as for [𝑡0, 𝑡1)). Therefore
𝑉𝒦(𝑡) = 𝑈𝒦(𝑡), ∀𝑡 ∈ [𝑡1, 𝑡2). Repeat this argument 𝑛𝒦 times,
we conclude that 𝑉𝒦(𝑡) = 𝑈𝒦(𝑡), ∀𝑡 ≥ 0. This shows the
validity of (21) for ∣𝒩 ∖ 𝒦∣ = 𝑘.

To complete the induction step, we need to show the
equivalence between (19)–(21). First note (21) is simply the
expansion of (20) by induction. For the equivalence of (19)
and (20), we have by induction

(19) = min{𝑉𝒦(0)+ 𝑐(𝒦)𝑡,min
ℓ ∕∈𝒦

{𝑉{ℓ}∪𝒦(0)+ 𝑐({ℓ} ∪𝒦)𝑡,

min
𝒦′′⊃{ℓ}∪𝒦

{𝑉𝒦′′(𝑡)}} = (21) = (20). (48)

Essentially, Theorem 1 (cf. (21)) states that 𝑉𝒦(𝑡) is the
min-envelop of 2∣𝒩∖𝒦∣ affine functions corresponding to so
many subsets of nodes that contain 𝒦. The partial order “≲”
illustrated by the layered structure also implies the usual linear
order “≤”, i.e.,

𝒦 ≲ 𝒦′ ⇒ 𝑉𝒦(𝑡) ≤ 𝑉 ′
𝒦(𝑡), ∀𝑡 ≥ 0. (49)

Therefore it is always true

𝑉𝒦 ≤ 𝑉𝒩 =
𝐽∑

𝑗=1

𝑚𝑗 . (50)

A stronger statement than (50) can be made when 𝐺 is
connected, i.e.,

Corollary 1: If 𝐺 = (𝒩 , ℰ) is connected, then ∀𝒦 ∕= ∅

𝑉𝒦(𝑡) =
𝐽∑

𝑗=1

𝑚𝑗 , 𝑡 ∈ [𝑡𝑛𝒦−1,∞). (51)

Proof: Because 𝐺 is connected, ∀𝒦 ⊂ 𝒦′ ⊊ 𝒩 , 𝑐(𝒦′) >
0. Therefore when 𝑡 is sufficiently large,

𝑉 ′
𝒦(0) + 𝑐(𝒦′)𝑡 >

𝐽∑
𝑗=1

𝑚𝑗 = 𝑉𝒩 (𝑡).

Hence we have the conclusion from (21) of Theorem 1.
Corollary 1 implies that with the RNC scheme for multiple
flows as described here, a node may have to wait until its
rank reaches

∑𝐽
𝑗=1 𝑚𝑗 to start decoding. This time is denoted

as 𝑇 total
𝒦 . Though there could be fairly large decoding delay for

nodes only interested in one or few sessions, the intersession
coding is optimal in the sense of min cut bound. Apply (24) in
Theorem 1 to [𝑡𝑛𝒦−1, 𝑡𝑛𝒦), it is clear that 𝑇 total

𝒦 is determined
by one of the min cut bounds that 𝒦 has to respect. The min

cut that determines the finish time can be regarded as the worst
bottleneck for 𝒦. More precisely, we have

Theorem 2: If 𝐺 = (𝒩 , ℰ) is connected, then

𝑇 total
𝒦 = max

𝑆⊂Src(𝒦)
{
∑
𝑗∈𝑆

𝑚𝑗/𝑐min(∪𝑖∈𝑆𝒮𝑖,𝒦))}. (52)

Proof: Clearly 𝑇 total
𝒦 = 𝑡𝑛𝒦−1. By Theorem 1, there is

𝒦′ ⊃ 𝒦 such that ∀𝑡 ∈ [𝑡𝑛𝒦−2, 𝑡𝑛𝒦−1),

𝑉𝒦(𝑡) = 𝑉𝒦′(0) + 𝑐(𝒦′)𝑡

=
∑

𝑗 ∕∈Src(𝒦′)

𝑚𝑗 + 𝑐min(∪𝑖∈Src(𝒦′)𝒮𝑖,𝒦)𝑡, (53)

and by setting 𝑉𝒦(𝑡𝑛𝒦−1) =
∑𝐽

𝑗=1 𝑚𝑗 , we get

𝑇 total
𝒦 = 𝑡𝑛𝒦−1

=

⎛⎜⎜⎝ 𝐽∑
𝑗=1

𝑚𝑗 −
∑

1≤𝑗′≤𝐽
𝑗′ ∕∈Src(𝒦′)

𝑚𝑗′

⎞⎟⎟⎠ /𝑐min(∪𝑖∈Src(𝒦′)𝒮𝑖,𝒦)

=
∑

𝑗∈Src(𝒦′)

𝑚𝑗/𝑐min(∪𝑖∈Src(𝒦′)𝒮𝑖,𝒦)

≤ max
𝑆⊂Src(𝒦)

{
∑
𝑗∈𝑆

𝑚𝑗/𝑐min(∪𝑖∈𝑆𝒮𝑖,𝒦))}, (54)

where the last inequality holds because 𝒦′ ⊃ 𝒦, hence
Src(𝒦′) ⊂ Src(𝒦). However, if there is 𝑆′ ⊂ Src(𝒦), such
that ∑

𝑗∈𝑆′
𝑚𝑗/𝑐min(∪𝑖∈𝑆′𝒮𝑖,𝒦) > 𝑇 total

𝒦 , (55)

let 𝒦′′ = 𝐶min(∪𝑖∈𝑆′𝒮𝑖,𝒦), then we have

𝑉𝒦′′(0) ≤
∑

1≤𝑗′′≤𝐽
𝑗′′ ∕∈𝑆′

𝑚𝑗′′ (56)

because 𝑆′ ⊂ Src(𝒦′′), and

𝑉𝒦′′(0) + 𝑐(𝒦′′)𝑇 total
𝒦 = 𝑉𝒦′′(0) + 𝑐min(∪𝑖∈𝑆′𝒮𝑖,𝒦)𝑇 total

𝒦

<
∑

1≤𝑗′′≤𝐽
𝑗′′ ∕∈𝑆′

𝑚𝑗′′ +
∑
𝑗∈𝑆′

𝑚𝑗 =
𝐽∑

𝑗=1

𝑚𝑗 = 𝑉𝒦(𝑇 total
𝒦 ), (57)

which contradicts (49). So

𝑇 total
𝒦 ≥ max

𝑆⊂Src(𝒦)
{
∑
𝑗∈𝑆

𝑚𝑗/𝑐min(∪𝑖∈𝑆𝒮𝑖,𝒦))}. (58)

Combine (54) with (58), we get (52).
With Theorem 2, we can finally characterize the average

throughput of multiple flows with RNC. For any set 𝒦
subscribing to the same set of flows 𝐹𝒦 ⊂ {1, 2, . . . , 𝐽},
the average throughput is defined as

∑
𝑗∈𝐹𝒦 𝑚𝑗/𝑇

total
𝒦 . Ap-

parently, we have
Corollary 2: In a connected wireless network 𝐺, if there

are 𝐽 flows originating from 𝒮𝑗 , 𝑗 = 1, 2, . . . , 𝐽 , each with
𝑚𝑗 packets to deliver, and we use the intersession RNC as
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Fig. 3. A three node wireless network.

described here for delivery, the average throughput 𝑅𝒦 of a
set 𝒦 subscribing to the same set of flows 𝐹𝒦 is given as

𝑅𝒦 =

∑
𝑗∈𝐹𝒦 𝑚𝑗∑𝐽
𝑗=1 𝑚𝑗

min
𝑆⊂Src(𝒦)

𝑐min(∪𝑖∈𝑆𝒮𝑖,𝒦). (59)

In particular, if 𝐹𝒦 = {1, 2, . . . , 𝐽},

𝑅𝒦 = min
𝑆⊂Src(𝒦)

𝑐min(∪𝑖∈𝑆𝒮𝑖,𝒦). (60)

V. SIMULATION

Consider a three node wireless network shown in Fig. 3.
Assume, based on the underlying MAC, they have the same
transmission rate rate of 1 sec−1. The reachability of trans-
missions is shown by arrows. The labels attached to arrows
show the independent reception probabilities. For example,
whenever node 2 sends a packet, node 1 and 3 successfully
receive it with probability 0.5 and 0.7, respectively. With this
information, we may calculate 𝑧𝑖,𝒦 for an arbitrary hyperarc
(𝑖,𝒦). Assume there are two multicast flows originating from
node 1 and node 3, respectively. Node 1 has 200 packets to
deliver to node 2 and 3, while node 3 has 300 packets to deliver
to node 1 and 2. We use the RNC scheme for multiple flows
described in this paper, for which we may write the associated
DI’s:

𝑉̇𝒦 ∈
∑
𝑖∕∈𝒦

𝑧𝑖,𝒦Sgn+(𝑉{𝑖}∪𝒦 − 𝑉𝒦), (61)

B.C. 𝑉𝒦(0) =

⎧⎨⎩
300, 1 ∈ 𝒦, 3 ∕∈ 𝒦,

200, 3 ∈ 𝒦, 1 ∕∈ 𝒦,

500, {1, 3} ⊂ 𝒦,

0, o.w..

(62)

Fig. 4 shows the analytical solution to (61) as well as
the simulation results. The analysis matches the simulations
closely. Clearly the rank increase at node 1 should be subject
to its min cut bound 𝑐min(3, 1) = 0.5 sec−1 and node 3 subject
to 𝑐min(1, 3) = 0.7 sec−1. Consequently, 𝑇 total

1 = 300/0.5 =
600 (sec) and 𝑇 total

3 = 200/.7 = 285.7 (sec). For node 2, the
flow from node 1 cannot exceed 𝑐min(1, 2); the flow from node
3 cannot exceed 𝑐min(3, 2); and the flow from the ensemble
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Fig. 4. Two multicast sessions with two sources.

of node 1, 3 cannot exceed 𝑐min({1, 3}, 2). Therefore,

𝑇 total
2 = max{𝑚1/𝑐min(1, 2),𝑚2/𝑐min(3, 2),

(𝑚1 +𝑚2)/𝑐min({1, 3}, 2)} = 500 (sec).

These calculations are readily verified in Fig. 4.

VI. CONCLUDING REMARKS

We presented the DEDI framework, based on DE’s and/or
DI’s, for analyzing the throughput of RNC in a wireless
network. The throughput of an intersession coding scheme for
multiple information flows was then analyzed by solving the
associated DI’s. We gave a numerical example to demonstrate
the accuracy of the DEDI framework and the validity of
the theoretical results we obtained. Compared with existing
analytical tools, DEDI is much easier to manipulate and
applicable to very general settings. We expect that the DEDI
framework will be helpful for the advancement of network
coding research and network design practice.
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