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Abstract

Cameras have become commonplace in phones, laptops,
music-players and handheld games. Similarly, light emit-
ting displays are prevalent in the form of electronic bill-
boards, televisions, computer monitors, and hand-held de-
vices. The prevalence of cameras and displays in our soci-
ety creates a novel opportunity to build camera-based op-
tical wireless communication systems based on a concept
called visual MIMO. We extend the common term MIMO
from the field of communications (“multiple-input multiple-
output”) that is typically used to describe multiple antenna,
multiple transmitter radio frequency communications chan-
nel. In the visual MIMO communications paradigm, the
transmitters are light-emitting devices such as electronic
displays and cameras are the receivers. In this paper we
discuss and address several challenges in creating a visual
MIMO channel. These challenges include: (1) electronic
display detection, (2) embedding the transmission signal in
the display video, and (3) system characterization for elec-
tronic display appearance.

1. Introduction
In recent years, the presence of cameras and light emit-

ting devices has become pervasive in our indoor and out-
door environment. Integrated cameras are prevalent on
phones, laptops, e-readers, music-players and many hand-
held games. Light emitting displays, signage and moni-
tors are prevalent in the form on electronic billboards, com-
puter monitors, information kiosks, mobile displays and in
smaller dimensions on hand-held devices. The widespread
cameras and displays in our society creates an exciting
and novel opportunity to build camera-based optical wire-
less communication systems based on a concept called vi-
sual MIMO [3, 2]. In all communications frameworks, the
key components are transmitters (e.g. RF, radio frequency)
and receivers (antennas). In the the visual MIMO commu-
nications paradigm, transmitters are light-emitting devices

such as electronic displays and cameras are the receivers.
Given the spatial arrangement of pixels on a display and
the array of light sensing elements in a camera, the MIMO
“multiple-input multiple-output” description is clearly ap-
plicable. This paradigm is a unique intersection of the field
of computer vision and communications.

As discussed in [3], the approach has several distinct
properties that can present advantages over RF based wire-
less communications. It allows highly directional transmis-
sion and reception, rendering it virtually interference-free
and attractive for very dense congested environments. Also,
such transmissions are hard to detect and intercept, which
is beneficial for security applications. Furthermore, visual
MIMO is a low-cost alternative to RF because it takes ad-
vantage of existing cameras and electronic displays.

Diverse applications of technology using cameras and
displays for communications are identifiable especially if
the transmission signals are embedded in the existing dis-
play image or video. This signal embedding enables dual
use of electronic displays so that visual observation for hu-
man observers coexists with a visual MIMO wireless com-
munications channel. This approach would enable novel
advertising applications such as smartphone users pointing
cell phone cameras at an electronic billboards to receive fur-
ther information such as a purchase URL. Also, consider
applications where exhibit information from a kiosk display
is transferred to cameras on ipods in order to obtain cus-
tomized audio museum tours. Localization in the event of
an emergency is another potential application. A cell phone
display held up to an existing surveillance camera/receiver
could transmit the precise location of a person within a
high-rise building to assist emergency first-responders.

In this paper we discuss and address several computer vi-
sion challenges in creating a visual MIMO channel. These
challenges include: (1) electronic display detection, (2) sig-
nal embedding, (3) characterization of electronic display
appearance. Electronic display detection is an important
challenge because the camera or display is mobile and the
scene is dynamic in real world applications. When com-
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municating with RF, signals are detected at particular fre-
quencies in the transmission bandwidth. But with a visual
channel, finding the transmitter in the image of the scene
requires the type of processing that is the domain of com-
puter vision: recognizing a particular object or pattern in
a scene. We present methods for detecting the transmis-
sion pattern (i.e. randomized checkerboard) under changes
in camera pose. When the transmission pattern is to go
unnoticed, i.e. when the monitor is to be used for signal
transmission as well as for displaying an unrelated video
of image to a human observer, signal embedding is needed.
Signal embedding is close to the area of watermarking and
steganography. However, we have the additional challenge
that the digital image is transmitted on an electronic display
and then observed by a camera. Therefore the digital sig-
nal is converted to the analog signal (visible light) and un-
dergoes scene-dependent photometric and geometric trans-
formations before being observed by the camera and con-
verted back to a digital signal. As such, simple traditional
methods for signal embedding are not applicable. In this
paper we discuss an intensity modulation method to han-
dle signal embedding in a visual MIMO channel. Another
interesting issue to consider is the appearance of the trans-
mission pattern in the electronic display as a function of
camera pose. In this paper, we consider the case of an LCD
electronic display and measure its appearance change with
viewing angle. While the computer vision literature has
concentrated on reflective objects, a light-emitting display
cannot be characterized (even approximately) by lamber-
tian and specular shading models. The angular dependence
of light intensity is fundamentally different. Our measure-
ments provide a useful system characterization metric by
showing the strong dependence of LCD light intensity with
viewing angle. This quantification will be essential for de-
termining thresholds for identifying the on-off state in the
transmission pattern in order to interpret the transmission at
the receiver. Finally, we perform an initial system test by
sending signals using an LCD monitor, detecting the trans-
mission pattern and computing the error rate as a function
of camera pose. Our initial results indicate the viability of
the visual MIMO framework.

2. Related work
The concept of using cameras as receivers in a commu-

nication paradigm is novel and the literature on the topic is
sparse. In our prior work [3, 2], we have characterized the
potential capacity and effective bandwidth of this system
with application in inter-vehicle communication (cameras
in cars receiving signals from LED’s in taillights). Other
related work are for inter-vehicle communications [11] and
traffic light to vehicle communications [13]. Other work
has investigated channel modeling [9] and multiplexing [1].
More recently, researchers of the MIT Bokode project [10]

have applied computational photography to camera based
communications. The goals of this work are fundamentally
interdisciplinary and visual MIMO requires rethinking the
physical layer when compared to traditional baseband sig-
nal processing. In the computer vision community, the con-
cept of using vision algorithms in the physical layer of a
communications channel is novel.

3. Electronic Display Detection
In this work, we assume that the transmission pattern is

an array of ones and zeros transmitted as black and white
squares with the appearance of a randomized checkerboard
to represent the transmitted data. There are two important
steps in detecting the pattern. First, the checkerboard re-
gion is localized from the received images using the cues
of lines and corners. Second, each detected block with the
pattern must be assigned with a black or white label (Sec-
tion 3.2). For locating the region two novel methods are
proposed in Section 3.1. One method is based on a single
image, and the other uses two temporally sequential frames.
An alternative method using polarization is also presented
in Section 3.3 that takes advantage of an LCD monitor’s po-
larization property and is relevant when specialized cameras
with polarization filters can be employed.

3.1. Random Checkerboard Localization

3.1.1 Single Frame Detection

Lines and corners are key cues to detect random checker-
boards. Our goal is to obtain four borders of the random
checkerboard or directly detect the four corners. However,
unlike a true checkerboard pattern with pre-defined varia-
tion, in the random pattern of the transmitted message, for
example, if many neighboring blocks are of the same inten-
sity, fewer edges exist for block localization. To circumvent
this situation, we fix four known intensity anchor blocks at
the four corners as shown in Figure 1(a).

The detection procedure is listed in Table 1. In order to
remove noise from the environment, we dilate the binary
image as in Figure 1(b). Then the Hough transformation is
used to detect line segments (Figure 1(c)). The ends of these
line segments are corner candidates, which encode both line
and corner information. The corners from the dilated image
are then refined to the sub-pixel level. Harris corner detec-
tion further selects good corners from these refined candi-
dates (Figure 1(d)). The results of processing one frame are
illustrated in Figure 1.

Line segments are detected by connecting any pair of
these good corners (Figure 1(e)). The vertical and hori-
zontal lines could be detected based on the orientation of
line segments. In Figure 1(f), the horizontal lines are in red
and the vertical ones are in blue. Based on four outermost
borders from two directions, four outermost corners of the
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(a) Original image (b) Dilated image (c) Line segments (d) Refine corners (e) Edge detection (f) Bi-direction

(g) Four corners (h) Affine rectification (i) Metric rectification (j) Angle adjustment (k) Localize blocks (l) Assign labels

Figure 1. The procedure and experiment results for single-frame random checkerboard detection. Anchor blocks are all set as black,
locating at four corners. The random checkerboard is displayed on an LCD monitor.

Input: the processed frame ik, the number of blocks in rows
and columns: nBlkPerRow and nBlkPerCol.

Output: the black or white assignment for each block on ik.

1. Dilate the binary image of ik.
2. Obtain candidate corners by line segment detection algo-

rithm based on Hough transformation.
3. Select good corners with Harris corner detection method.
4. Find vertical and horizontal line segments based on the

corners selected from the last step.
5. Find four outermost corners of the random checkerboard.
6. Make affine/metric rectification and rotation adjustment.
7. Localize all blocks from the random checkerboard.
8. Block intensity detection.

Table 1. Method I: single-frame random checkerboard detection.
In this algorithm, four black corner blocks are anchors. Metric rec-
tification is used for the random checkerboard with square blocks.

random checkerboard can be localized (Figure 1(g)).

With four outermost corners of the random checker-
board and two parameters nBlkPerRow, nBlkPerCol
(i.e. the number of blocks in rows in columns), we can
identify the location of each block. We know each block
is square, so the perspective distortion can be overcome
by affine rectification (Figure 1(h)) and metric rectification
(Figure 1(i)) [6]. After rotation adjustment (Figure 1(j)),
locations of blocks can be identified in the rectified image
(Figure 1(k)). Then we may classify each block as black
or white corresponding to a transmission of ‘0’ or ‘1’. Be-
cause of the intensity dependence with angle in LCD mon-
itors (Section 5.1) and surface reflectance, the intensity of
white and black from the received image is not an ideal 255
and 0. A discussion on the classification of a block as black
or white is given in Section 3.2.

3.1.2 Two-frame Method

Differences between two temporally sequential image
frames are useful in localizing the transmission pattern (ran-
domized checkerboard). To ensure the identification of four
outermost corners, we set four anchor blocks at corners of
the random checkerboard. The anchor blocks are set in a
slightly different way for the two-frame method. All anchor
blocks from odd temporal index frames are black, and from
all even-index frames are white.

The procedure is listed in Table 2 and the processing re-
sults of the kth frame are illustrated in Figure 2. The frame
ik+1 (Figure 2(b)) serves as a reference frame for ik. We get
the absolute difference image between ik and ik+1 in Fig-
ure 2(c). Auto-contrast is applied (Figure 2(d)) and then the
method proceeds as in the single frame method of Section
3.1.1: get the line segments (Figure 2(e)), refine corners
with Harris corner detection (Figure 2(f)), take vertical and
horizontal line segments (Figure 2(g)), and finally localize
the random checkerboard by getting four outermost corners
(Figure 2(h)). The image is then adjusted with affine rectifi-
cation (Figure 2(i)) and metric rectification (Figure 2(j)) [6].
The final detection result is illustrated in Figure 2(l).

Compared with the method based on a single frame in
Section 3.1.1, the two-frame method is more robust. The
price paid is the cost of frame-to-frame alignment that is
needed when the camera and/or display is mobile.

3.2. Black and White Classification

After localizing the transmission pattern, the next step is
to assign black or white label to each block. However, the
intensity of received images changes with viewing angles
(as discussed further in Section 5.1).

To show the change in intensity with angles, we select
nine viewing angles ranging from 0 to 80 degrees and six
out of these nine angles are listed in Figure 8. The defini-
tion of the viewing angle is illustrated in Figure 7. We can
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(a) ik (b) ik+1 (c) Difference (d) Auto-contrast (e) Line segments (f) Corner refinement

(g) Bi-direction (h) Four corners (i) Affine rectification (j) Metric rectification (k) Locations of blocks (l) Label assignments

Figure 2. The procedure and experiment results with random checkerboard detection based on two temporally sequential frames displayed
on an LCD monitor. All the anchor blocks are at four corners. From odd temporal index frames like Figure 2(a), all anchor blocks are
black, while they are all white from odd temporal index frames like Figure 2(b).

observe that larger viewing angles correspond the darker
screens. More specific results are presented in Figure 3.

For interpreting the transmission pattern, we use aver-
age intensity to represent each block. For each angle, the
average intensities of all blocks from the first 20 frames are
collected. For the white blocks, we compute the mean, min-
imal and maximal intensity and represent the results with a
solid line in Figure 3: points indicate means of all white
blocks at a particular angle; ranges are labeled between
minimal and maximal values. Similarly, we describe the
results for black blocks with a dash-dotted line.

We observe that the average intensity for white blocks
changes greatly with angles. When angles close to 90 de-
gree, i.e. the screen plane is near parallel to the line between

Input: two neighboring frames ik and ik+1, number of blocks
in rows and columns nBlkPerRow, and nBlkPerCol.

Output: the black or white assignment for each block on ik.

1. Get the absolute difference between ik and ik+1.
2. Rescale the difference with auto-contrast algorithm.
3. Obtain candidate corners by line segment detection algo-

rithm based on Hough transformation.
4. Select good corners with Harris corner detection method.
5. Find vertical and horizontal line segments based on the

corners selected from the last step.
6. Find four outermost corners of the random checkerboard.
7. Make affine/metric rectification and rotation adjustment.
8. Localize all blocks.
9. Block intensity detection.

Table 2. Method II: random checkerboard detection with differ-
ence between two neighboring frames. In this algorithm, four cor-
ner blocks are set as anchors. From all the odd frames, anchor
blocks are black; while from even frames, they are white. Met-
ric rectification is used for the random checkerboard with square
blocks.

the camera and the screen center, the intensities of black and
white blocks approach to each other. However, their inten-
sities are still separable. We employ the unsupervised clus-
tering method agglomerative hierarchical clustering [5] to
group the average intensities for all blocks at certain angle
into two groups labeled as white and black.

Figure 3. Changes of black/white intensities with viewing angles.

3.3. Polarization-based Detection

Another method for detecting the electronic display does
not use any property of the transmission pattern. Instead,
the polarization property of the electronic display is used.
We assume that the light from the display is polarized (such
as an LCD display). For example, most computer monitors
and cell phone displays are polarized. For visual MIMO,
the transmission pattern is displayed on the electronic dis-
play or the embedded signal is displayed on the display.
The camera views both the electronic display and the back-
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ground. However, light from the background is not typi-
cally polarized. Therefore, to detect the display within the
scene image, the light modulation that occurs with a rotat-
ing polarizer can be employed. Specifically, as shown in
Figure 4, pixels in the LCD display region will undergo a
change in intensity when the polarizer is rotated or when
the camera with a lens-mounted polarizer is rotated. This
intensity change is sinusoidal and can typically be detected
using two or more orientations of the polarizer or camera.

4. Signal Embedding
In order to simultaneously use a display for its original

purpose and as a communication channel, we need the abil-
ity to embed the transmission signal in the display video.
This goal is related to the field of steganography. How-
ever unlike steganography or watermarking in the digital
domain [8, 7], our camera-display system displays and then
observes the image. This pipeline includes a conversion
from a digital signal i[x, y] to the analog signal i(x, y) rep-
resenting the light transmitted by the display. The camera
observing the display has a light sensing array (e.g. CCD)
that converts the received signal and creates the digital sig-
nal ĩ. Clearly, i[x, y] is not equal to ĩ[x, y] because of the
photometric and geometric transformations in image forma-
tion. Consequently, some standard techniques in steganog-
raphy will not work for signal embedding in this paradigm.
For example, LSB embedding uses the least significant bit
for signal hiding. This approach clearly would not work
because of the differences in the received and transmitted
signal. We use the term photographic steganography for
the approach of hiding signals in observed imagery to dis-
tinguish it from methods where the image to be transmitted
and received are both digital signals.

We present a novel approach for photographic steganog-
raphy that employs intensity modulation. The concept of in-
tensity modulation has had various applications in computer
vision including illumination multiplexing [12] and polar-
ization multiplexing [4] for parsing the single-illuminant
from multi-illuminant images. In the application of pho-
tographic steganography, intensity modulation can be used
to hide and embed a signal s by transmitting two perturbed
signals i1 and i2 that are defined as follows

i1 = i− αs, (1)
i2 = i+ αs, (2)

which can be expressed in terms of a modulation matrixM :[
i1
i2

]
=M

[
i
s

]
. (3)

The modulation maxtrix M is given by

M =

[
1 α
1 −α

]
. (4)

Figure 5. The original signal i (left) and the signal to be transmitted
s (right). Here s is a binary signal corresponding to on-off keying
in a communications channel.

Figure 6. Separation of the embedded signal. Two frames used for
embedding the signal i1 (left) and i2 (right) as given by Equation 3.
The separated signal s (right) as given by Equation 5.

Note that x, y dependence for i, s, i1, and i2 has been
omitted for notational simplicity. Since M is invertible for
α 6= 0, the original signal i and the transmission signal s
can be obtained with[

i
s

]
=M−1

[
i1
i2

]
. (5)

The frame rate is reduced by a factor of 2 in this approach.
We assume that a higher frame rate camera can be employed
so that recording at twice the desired transmission rate can
be achieved. Additionally, we assume that an image stabi-
lization algorithm can be employed to account for frame-
to-frame camera motion. Demonstration of this approach is
illustrated in Figure 5 and Figure 6.

5. Electronic Display Appearance
Characterization of the the electronic display appearance

largely influences the accuracy of the data received by the
camera. In this section, we investigate three factors: angle,
distance, and block size in pixels. In the experiment, we use
a transmission pattern (random checkerboard) video with
200 frames. For each frame, the signal is transmitted from
an LCD screen to a camera. After comparing the recovered
and the transmitted data, we compute the error rate by a
ratio by dividing the number of incorrectly-detected blocks
by the total number of the blocks in the video.

5.1. Error rate by angles

Light emitting devices do not radiate light in all direc-
tions with the same power as is illustrated in Figure 3 for the
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Figure 4. The polarized property of screens: screens emit light in a polarized beam way. A grid-wire polarized sheet is attached to the
camera. When the orientation of the emitting beam is vertical to that of the wire from the polarizer, no light goes through the polarized
sheet and the screen turns to be dark. This property of polarization can be used for detecting the screen region.

LCD monitor. When the angle increases, less light is emit-
ted per unit area and the received image darkens. The inten-
sity of the white blocks changes significantly more than the
black intensity. When the viewing angle defined in Figure 7
is close to 90 degree, it becomes difficult to discern between
black and white.

Figure 7. The model to test white and black intensities changing
with angle α. When α = 0, the LCD plane faces directly to the
camera.

(a) 85 degree (b) 75 degree (c) 65 degree

(d) 50 degree (e) 30 degree (f) 0 degree

Figure 8. An LCD monitor for displaying random checkerboards
with different angles.

The measured error rates in angles are listed in Table 3.
We can observe that error rates are zero from 0 to 60 de-
grees, indicating the black/white classification was success-
ful. The corresponding images are shown in Figure 8 and
it’s clear that there is a large enough contrast to label the

angles(◦) 0 30 40 50 60 70 75
error rate (%) 0 0 0 0 0 29.33 44.47

Table 3. Error rate over angles. The angle is denoted as α in Fig-
ure 7. When α = 0, the LCD plane faces directly to the camera.
When α increases, the system suffers more perspective distortion
and pixel blurring and the system has a higher error rate.

white and black blocks. When the angle α increases past
60◦, the contrast decreases and corners are smoothed by the
effect of lens blurring. As expected, this leads to corre-
spondingly larger error rates.

5.2. Error rate by distances

(a) 100cm (b) 200cm (c) 300cm

(d) 400cm (e) 500cm

Figure 9. An LCD monitor for displaying random checkerboards
with different distances.

distances(cm) 100 200 300 400 500
error rate (%) 0 0 0 0 1.15

Table 4. Error rate in distances between the camera and LCD.
The system suffers more blurring effects in the detected random
checkerboard, because of larger distances. Thus the error rate in-
creases when the distance turns larger. In this experiment, no effect
of angles or block sizes is considered.

In this experiment, the distance from camera to monitor
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is measured in centimeters. Five values of distances are se-
lected as in Figure 9. From Table 4, we can observe that
the error rates remains at zero from 100 to 400 centimeters.
When the distance increases to 500 centimeters, the error
rate increases to 1.15%. As expected, a further distance
results in degradation in the ability to spatially resolve the
blocks due to blurring and perspective effects.

5.3. Error rate by block sizes

(a) 100 pixels/block (b) 50 pixels/block (c) 20 pixels/block

(d) 10 pixels/block (e) 5 pixels/block

Figure 10. An LCD monitor for displaying random checkerboards
with different number of pixels per block.

block sizes(pixels) 5 10 20 50 100
error rate (%) 54.15 20.36 5.47 0.42 0

Table 5. Error rate as a function of block size from the ran-
dom checkerboard. The block size is the number of pixels in
rows/columns of a square block. When block size is smaller, blur-
ring is more apparent and the error rate goes higher.

Higher data rate with a fixed bandwidth is a desired tar-
get in communication system design. Within limits, data
rate can be increased in a visual MIMO system by decreas-
ing the block size. When the block size approaches the size
of a pixel, the difficulty in detecting neighboring black of
white pixels increases. We investigate the error rate as a
function of block size using square pixels where the size in-
dicates either the width or height of the block in pixels. We
select five size values as shown in Figure 10(e). The results
are listed in Table 5. When the sizes of blocks are reduced,
the corresponding error rate goes up. As expected, we ob-
serve that data rate can be improved by decreasing block
size. For our system, a block size less than 20 pixels has an
associated error rate higher than a 5%.

6. Conclusion and Summary

Visual MIMO communication with cameras and dis-
plays provides an interdisciplinary challenge for the fields
of wireless communications and computer vision. We have
approached the problem from a computer vision perspec-
tive and addressed several key issues in developing these

methods. We have proposed algorithms and presented ini-
tial results for : (1) electronic display detection (2) signal
embedding, (3) characterization of electronic display ap-
pearance. Future work includes building a robust commu-
nications link between display and camera for various mes-
saging tasks in real world scenes.
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