VOR Base Stations for Indoor 802.11 Positioning

Dragoș Niculescu and Badri Nath

{dnicules, badri}@cs.rutgers.edu
existing systems require either:

- **extra infrastructure**
 + good accuracy
 - instrumentation
 - specialized beacons, badges
 - LOS

- **signal strength (SS) map**
 + existing 802.11 base stations
 - map depends on people, furniture, ...
 - centralized database
1. **build SS map:**
 - for each point, measure SS to all 5 BS

2. **query:**
 - measure SS to 5 BS \Rightarrow best match in the map
goals:

- no signal strength map
- less infrastructure
- move complexity to the 802.11 base station

use:

- angles
- ranges
- angles and ranges
VORBA prototype

IR receiver
IR sender
antenna
802.11 card

prototype base station
directional antenna pattern

Dragoș Niculescu – VOR Base Stations for Indoor 802.11 Positioning
basic idea

signal strength variation = $SS(\alpha)$

1. $SS(\alpha)$
2. \begin{align*} &\text{peak} \rightarrow \text{angle} \\
&\text{mean} \rightarrow \text{range} \end{align*}
3. \begin{align*} &\text{angle and/or} \\
&\text{range} \rightarrow \text{position} \end{align*}
experiments

- 32 measurement points
- 5 + 2 base stations
- N/E/S/W measurements of 3-4 revolutions each
angles **only** positioning

- **3.5m** median position error
- **3m** if we knew the best peak
quantized angles

- measurements rounded to the nearest 45°
- simulation
- little degradation for 45° and 22.5° quantizations
○ **angle error** $\sigma_a = 0.4 \text{ radians} \approx 21^\circ$

○ **range error** $\sigma_r = 0.2r$

○ **approximate uncertainty as an ellipse**

○ **error ellipse increases with distance**
how to combine several readings? Kalman filter.
angles & ranges positioning

- **more base stations** ⇒ better positions
- 2.1m median position error (all 7 BS)
summary

- VORBA = VOR base station
- complexity into the base station
 - less infrastructure
 - no SS map
- revolving base station measures $SS(\alpha)$ to derive
 - discrete angles
 - angle distributions
 - ranges
- works with quantized angles as well
- can achieve 2.1m - 4m median error
index

○ indoor positioning
 - angulation/lateration
 - SS map example

○ VOR BAse station
 - prototype
 - basic idea
 - experiment setup

○ angles only positioning
 - discrete angles
 - quantized angles

○ angles and ranges
 - uncertainty
 - performance

○ summary
trilateration

\[(x_M - x_A)^2 + (y_M - y_A)^2 = M A^2 \]
\[(x_M - x_B)^2 + (y_M - y_B)^2 = M B^2 \]
\[(x_M - x_C)^2 + (y_M - y_C)^2 = M C^2 \]

- \(MA, MB, MC \) are affected by errors
- several methods available

solve for \((x_M, y_M)\)
(x_M - x_A) \sin \alpha = (y_M - y_A) \cos \alpha
(x_M - x_B) \sin \beta = (y_M - y_B) \cos \beta
(x_M - x_C) \sin \gamma = (y_M - y_C) \cos \gamma

solve for \((x_M, y_M)\)

- \(\alpha, \beta, \gamma\) affected by errors (Gaussian)
- several methods available
ranges and angles

\[x_M = x_A + MA \cos \alpha = x_B + MB \cos \beta = x_C + MC \cos \gamma \]
\[y_M = y_A + MA \sin \alpha = y_B + MB \sin \beta = y_C + MC \sin \gamma \]

- one base station is theoretically enough
- \(\alpha, \beta, \gamma, MA, MB, MC \) - affected by errors
best peak distribution

- 4.5 peaks on average
- best peak is first/second 90% of the time
other peak distribution

○ other peaks point away from true direction
triangulation analysis

\[
\text{Var}[x] > \frac{\sigma_a^2}{\lambda \pi \ln \frac{R}{R_m}}
\]

- \(\text{Var}[x] \) - standard dev. of positioning error
- \(\lambda \) - density of basestations / \(m^2 \)
- to improve positioning:
 1. decrease measurement error \(\sigma_a \)
 2. use more basestations
angle distribution
quantized angles

![Graph showing cumulative probability vs error in meters for different quantization levels: best angle (non quantized), quantization 45, quantization 22.5, quantization 90.]

- little degradation for
 - 16 directions (22.5°)
 - 8 directions (45°)
range inference

○ open space attenuation:

\[SS[dBm] = SS_0[dBm] - \log_{10}(\frac{d}{d_0})^n \]

○ \(d(SS) \)
 - obtained through fitting
 - known to be unreliable

○ we obtain it from integration of \(SS(\alpha) \)

○ 5-fold cross validation
 - corridor basestations - waveguide effect
 - median range error 2.8m
trilateration 5 base stations

median position error 4.5m
discussion

- triangulation with large outliers
- use more than two angles?
- no correlation between
 - angle error and distance
 - angle error and SS
- corridors \(\Rightarrow \) waveguides
- revolving signal at the mobile?
- data performance?