Adaptive Wireless Networks Using Cognitive Radios as a Building Block

MobiCom 2004 Keynote Speech
Sept 29, Philadelphia

D. Raychaudhuri
Professor ECE Dept & Director, WINLAB
Rutgers University
ray@winlab.rutgers.edu
www.winlab.rutgers.edu
Talk Outline

- Introduction: the future wireless network and related R&D challenges
- Dynamic spectrum management & cognitive radio concepts
- Cognitive radio technologies: selected results
 - Coexistence of 802.11 and 802.16 in unlicensed bands
 - CSCC spectrum etiquette
 - Adaptive networks and ad-hoc self-organization
 - Cognitive radio hardware
- Concluding remarks
Introduction
Introduction:
Future Wireless Network Scenario

Growing role for fast, low-cost short-range radios
Heterogeneous systems with multiple radio standards (3G, 4G, WLAN, UWB,..)
Self-organizing ad-hoc access networks
Increasing use of unlicensed spectrum and dynamic sharing methods
Uniform IP core network
Wide range of applications (→ “ubiquitous wireless services”)
Introduction: Wireless Technology Trends

Primary Applications

- **Telephony; PC/LAN**
 - VOIP, H264, HTTP, etc.
 - Location-aware services

- **Cellular networks**
 - Ethernet + WLAN
 - Mobile IPv6, etc.

- **IP-based networks**
 - for both Cellular & WLAN
 - Beyond IP networks (e.g. content aware routing)
 - Cross-layer techniques

- **Sensor nets**
 - Applications: Embedded wireless devices
 - Self-organizing multi-hop

- **Beyond IP networks**
 - Infrastructure net;
 - Ad-hoc low-tier networks

Network Architecture

- **Radio Technology**
 - 2G/CDMA & TDMA
 - ~1 Mbps WLAN
 - ~1995-2000
 - Higher speed, OFDM

- **IP-based networks**
 - ~1 Mbps 3G/WCDMA
 - ~10-54 Mbps WLAN
 - ~2000-2005
 - New spectrum policies
 - Cognitive radio

Adaptive Radio Networks

- **~100 Mbps+**
 - 4G/OFDM, 802.16 & WLAN;
 - ~500 Mbps UWB, etc.
 - ~2010+
Introduction: Key Technologies for Future Wireless Systems

- New radios for heterogeneous access
 - Low-power sensor radios
 - High-speed WLAN and 4G/802.16
 - Faster 4G cellular, 802.16, etc.

- Spectrum-sharing for dense networks
 - Dynamic spectrum/cognitive radio for frequency coordination
 - Spectrum etiquette protocols

- Ad-hoc wireless networks
 - Self-organizing networks capable of scaling organically
 - Discovery, MAC and routing protocols for reliable ad-hoc services

- Pervasive computing software
 - Dynamic binding of application agents and sensors
 - Real-time orchestration of sensors and actuators

Focus of this talk
Dynamic Spectrum Management & Cognitive Radio
Motivation for Dynamic Spectrum and Cognitive Radio Techniques:

- Static allocation of spectrum is inefficient
 - Slow, expensive process that cannot keep up with technology
- Spectrum allocation rules that encourage innovation & efficiency
 - Free markets for spectrum, more unlicensed bands, new services, etc.
- Anecdotal evidence of WLAN spectrum congestion
 - Unlicensed systems need to scale and manage user “QoS”
- Density of wireless devices will continue to increase
 - ~10x with home gadgets, ~100x with sensors/pervasive computing
- Interoperability between proliferating radio standards
 - Programmable radios that can form cooperating networks across multiple PHY’s
Spectrum Management: Frequency allocation today ...
Spectrum Management: Policy Concepts

- Unlicensed bands with spectrum etiquette
 - More ISM/U-NII bands with simple coordination rules

- Property Rights
 - Fee simple ownership with non-interference easements

- Spectrum clearinghouse
 - Packets are sent with access tokens with pricing determined by congestion

- Open access
 - No coordination rules, technology expected to evolve towards co-existence

- Cognitive radio bands
 - Agile/smart radios capable of adaptive strategies for interference avoidance
Spectrum Management: Problem Scope

- Dense deployment of wireless devices, both wide-area and short-range
- Proliferation of multiple radio technologies, e.g. 802.11a,b,g, UWB, 802.16, 4G, etc.
- How should spectrum allocation rules evolve to achieve high efficiency?
- Available options include:
 - Agile radios (interference avoidance)
 - Dynamic centralized allocation methods
 - Distributed spectrum coordination (etiquette)
 - Collaborative ad-hoc networks
Cognitive Radio: Definitions

- The term “cognitive radio” used to denote new generation of adaptive wireless devices capable of dynamic spectrum coordination
 - Baseline capability includes spectrum scanning and frequency agility
 - Fast adaptation of transmitted signal to fit into changing radio environment
 - Capable of higher-layer spectrum etiquette or negotiation protocols
 - May also participate in ad-hoc networks formed with other cognitive radios
 - Interoperability with multiple radio technologies based on SDR capabilities
Cognitive Radio: R&D Status

- Policy and technology R&D on cognitive radio still at an early stage. Recent activities include:
 - FCC notice of rulemaking for specific “underlay” data services in UHF TV bands
 - More general notice of proposed rulemaking on new unlicensed cognitive bands
 - Software defined cognitive radios developed at Vanu Inc., GNU/Utah
 - XG policy framework being developed by DARPA
 - System studies and prototyping at Mitre, Rutgers/WINLAB, Stevens, others....
 - New National Science Foundation research initiative (“NeTS ProWIN”), 2004

- Cognitive radio has the potential for significant improvements in spectrum efficiency, performance and interoperability between unlicensed band services
Cognitive Radio: Design Space

- Broad range of technology & related policy options for spectrum
- Need to determine performance (e.g. bps/Hz or bps/sq-m/Hz) of different technologies taking into account economic factors such as static efficiency, dynamic efficiency & innovation premium

Protocol Complexity (degree of coordination)

Hardware Complexity

Unlicensed Band + simple coord protocols

Internet Server-based Spectrum Etiquette

Unlicensed Band with DCA (e.g. 802.11x)

Internet Spectrum Leasing

Static Assignment

Radio-level Spectrum Etiquette Protocol

Ad-hoc, Multi-hop Collaboration

“cognitive radio” schemes

“Open Access” + smart radios

UWB, Spread Spectrum

UWB, Spread Spectrum

Agile Wideband Radios

Ad-hoc, Multi-hop Collaboration

Internet Spectrum Leasing

Unlicensed Band with DCA (e.g. 802.11x)
Cognitive Radio: Reactive Algorithms

- Reactive (autonomous) methods may be used to avoid interference via:
 - **Frequency agility**: dynamic channel allocation by scanning
 - **Power control**: power control by interference detection and scanning
 - **Time scheduling**: MAC packet re-scheduling based on observed activity

![Diagram showing Cognitive Radio concepts including frequency agility, power control, and time scheduling.](image-url)
Cognitive Radio: Limitations of Reactive Schemes

- Reactive schemes (without explicit coordination protocols) suffer from certain limitations:
 - Near-far problems possible at the receiver
 - Inability to predict future behavior of other nodes
 - Only detects transmitters, not receivers, but interference is a receiver property

![Diagram showing coverage areas and hidden terminal problem]
Cognitive Radio: Spectrum Policy Server

- Internet-based Spectrum Policy Server can help to coordinate wireless networks
 - Needs connection to Internet even under congested conditions (...low bit-rate OK)
 - Some level of position determination needed (..coarse location OK?)
 - Spectrum coordination achieved via etiquette protocol centralized at server

- Internet
- Access Point
- WLAN operator A
- WLAN operator B
- Master Node
- Ad-hoc Bluetooth Piconet
- Wide-area Cellular data service

Spectrum Policy Server
www.spectrum.net

AP1: type, loc, freq, pwr
AP2: type, loc, freq, pwr
BT MN: type, loc, freq, pwr

Etiquette Protocol
Common spectrum coordination channel (CSCC) can be used to coordinate radios with different PHY

- Requires a standardized out-of-band etiquette channel & protocol
- Periodic tx of radio parameters on CSCC, higher power to reach hidden nodes
- Local contentions resolved via etiquette policies (independent of protocol)
- Also supports ad-hoc multi-hop routing associations
Adaptive Wireless Networks: Ad-Hoc Collaboration

- Cognitive radios can organize themselves into a multi-hop adaptive network in order to achieve better system performance
 - Multi-hop collaboration can increase spectrum efficiency, reduce power consumption and potentially also improve throughput
 - Cognitive radio scans for active nodes and executes discovery algorithm
 - Bootstrapped PHY to selected nodes adapts to high bit-rate, low power/range
 - Control protocol between nodes used to negotiate ad-hoc network parameters and to exchange routing tables

Adaptive Wireless Network Node
(…functionality can be quite challenging!)
Adaptive Wireless Network: Simple cellular/WLAN example

- Multi-mode (cellular, WLAN) or cognitive radio capable of ad-hoc association can be used to improve cellular services
- System may also include provisioned “radio forwarding nodes”
- Radio paths (single or multi-hop) selected adaptively based on current cellular radio link quality and proximity to other nodes
Cognitive Radio Techniques: Selected Research Results
Reactive Schemes: Case study of 802.11 & 16 in shared unlicensed band

- 802.11b (~500m) and 802.16a (~10Km) coexist by applying reactive schemes to avoid interference

Dynamic Frequency Selection (DFS):
- Radio Scans each channel and calculates interference power level
- Typical scanning interval is averaged 100ms
- Choose the channel with least interference for communication

Power Control (PC):
- The receiver senses interference power level and calculates the minimum required transmit power and feedback to the transmitter
- The transmitter uses minimum transmit power for communication
802.11 & 16 Co-Existence: Simulation Parameters

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>802.16a: UBR (Poisson arrival), UDP packet, 512 Bytes datagram</th>
<th>802.11b: IEEE 802.11 BSS mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC protocol</td>
<td>TDMA</td>
<td>IEEE 802.11 BSS mode</td>
</tr>
<tr>
<td>Channel Model</td>
<td>AWGN, two ray ground propagation model, no fading</td>
<td></td>
</tr>
<tr>
<td>Bandwidth/channels</td>
<td>20 MHz / 4 non-overlapping chs</td>
<td>22MHz / 11 overlapping chs</td>
</tr>
<tr>
<td>Bit Rate</td>
<td>13Mbps</td>
<td>2Mbps</td>
</tr>
<tr>
<td>Radio parameters</td>
<td>OFDM (256-FFT, QPSK)</td>
<td>DSSS (QPSK)</td>
</tr>
<tr>
<td>Background Noise</td>
<td></td>
<td>-174 dBm/Hz</td>
</tr>
<tr>
<td>Rx Noise Figure</td>
<td>9 dB</td>
<td>9 dB</td>
</tr>
<tr>
<td>Receiver Sensitivity</td>
<td>-80dBm (@BER 10^-6)</td>
<td>-82dBm (@BER 10^-5)</td>
</tr>
<tr>
<td>Antenna Height</td>
<td>BS 15m, SS 1.5m</td>
<td>1.5m</td>
</tr>
<tr>
<td>Tx Power/Max range</td>
<td>33dBm / 3.2Km</td>
<td>20dBm / 500m</td>
</tr>
<tr>
<td>Default channel</td>
<td>Channel 1: centered at 2412GHz</td>
<td>Channel 1: centered at 2412GHz</td>
</tr>
<tr>
<td>Available channels</td>
<td>4 (non-overlap)</td>
<td>12 (overlapping)</td>
</tr>
</tbody>
</table>
802.11 & 16 Co-Existence: Power Control Results

- Observations:
 - 802.16 throughput can improve up to 3 times at the expense of 802.11 throughput degradation < 10% (e.g. at D=2.5Km)
 - If two systems are too near to each other, power control may not work

4 links for 802.11 hotspot, each has Poisson arrival with mean 3ms
802.11 hotspot is 3Km away from 802.16 BS
CSCC Spectrum Etiquette Protocol

- CSCC (Common Spectrum Coordination Channel) can enable mutual observation between neighboring radio devices by periodically broadcasting spectrum usage information.

Service channels

Edge-of-band coordination channel

Periodic Announcements: User ID (MAC Address), Frequency Band, Power Level, Service Type, Technologies used, Priority, Cost/Price Bids, Multi-hop Forwarding capabilities, etc.
CSCC: Protocol Stack

CSCC-PHY: 1Mbps 802.11b with 10 mW power (~100 m range)
CSCC-MAC: Simple periodic broadcast with randomization (100ms~seconds) to eliminate repeated collisions
CSCC: Packet Format

CSCC radio (802.11) MAC Address (48bits)

... MAC Address

... Device Name and Description (64bits)

... and Description

Priority (8b) | Price_bid(8b)

... Duration (32b)

CSCC packet used in WLAN-Bluetooth prototype at WINLAB
CSCC: Proof-of-Concept Experiments

- Different devices with dual mode radios running CSCC
- $d=4$ meters are kept constant
- Priority-based etiquette policy
CSCC: Experimental Parameters

<table>
<thead>
<tr>
<th></th>
<th>WLAN nodes</th>
<th>Bluetooth nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility</td>
<td>Static without mobility</td>
<td>BT1 static, BT2 position varies</td>
</tr>
<tr>
<td>Traffic Model</td>
<td>100M bytes data by TCP</td>
<td>1.5M bytes data using Stop-and-wait scheme</td>
</tr>
<tr>
<td>MAC protocol</td>
<td>IEEE 802.11b at 11Mbps</td>
<td>Bluetooth ACL data link</td>
</tr>
<tr>
<td>Data card</td>
<td>Cisco Aironet 350 series DS (at channel #1)</td>
<td>Ericsson BT w/ USB (hopping over whole band)</td>
</tr>
<tr>
<td>CSCC MAC</td>
<td>IEEE 802.11 & periodic announcements at 1Mbps</td>
<td></td>
</tr>
<tr>
<td>CSCC card</td>
<td>Cisco Aironet 350 series DS (at channel #11)</td>
<td></td>
</tr>
</tbody>
</table>
CSCC Results: Throughput Traces

- **Observations:**
 - WLAN session throughput can improve ~35% by CSCC coordination
 - BT session throughput can improve ~25% by CSCC coordination

WLAN = high priority

- WLAN session with BT2 in initial position

Bluetooth = high priority

- BT session with BT2 in initial position
Adaptive Wireless Networks: Ad-hoc Discovery and Self-Organization

- Spectrum etiquette channel used to initiate discovery and network bootstrap
- Expanded beacon signals transmitted by each radio in CSCC
- Note that each link may use a different PHY/MAC -> cognitive radio switches between links dynamically, while using mutually agreed routing protocol

Example of Beacon Payload
Adaptive Networks: Ad-hoc Discovery Protocol Implementation

WINLAB’s “SOHAN” 802.11-based ad-hoc prototype demonstrates aspects of self-organization that can be extended to cognitive radio.
Adaptive Networks: Discovery Algorithm

Performance Results

- NS-2 extended to support
 - Hierarchical net with APs, FNs, MNs
 - Multiple interfaces
 - Multiple 802.11 channels

- Distributed and optimal centralized algorithms
 - 2 APs, 4 FNs, 10 SNs
 - CBR traffic of 64 byte packets
 - 1000 m x 1000 m area
 - 1 Mbps 802.11 radios

...significant reductions in routing overhead & energy used
Adaptive Networks: Ad-Hoc Routing/Discovery Implementation
Adaptive Networks: “SOHAN”

Experimental Results

Experimental Setup

Packet delivery ratio

Gains in system capacity and per-user throughput achievable relative to WLAN BSS mode or comparable “flat” ad-hoc mesh, particularly when FN’s use multiple radio channels...
Cognitive Radio: Hardware Platforms

- Next-generation software-defined radio supporting fast spectrum scanning, adaptive control of modulation waveforms and collaborative network processing
- Facilitates efficient unlicensed band coordination and multi-standard compatibility between radio devices
Cognitive Radio: Hardware Platforms

- Vanu Inc. SDR programmable radio based on commodity processors. Supports multiple standards on handheld device.

Vanu Inc. Software Defined Radio
Source: http://www.vanu.com/products.html
Requirements include:

- ~Ghz spectrum scanning,
- Etiquette policy processing
- PHY layer adaptation (per pkt)
- Ad-hoc network discovery
- Multi-hop routing ~100 Mbps+

WINLAB’s “network centric” concept for cognitive radio prototype
(under development in collaboration with GA Tech & Lucent Bell Labs)
Concluding Remarks
Concluding Remarks: ORBIT Testbed

- Open-access next-generation wireless network testbed being developed at Rutgers for NSF network research testbeds (NRT) program
- Large scale “radio grid emulator” for evaluating new concepts for future wireless networks, e.g. ad-hoc networks, cognitive radio protocols, ...
- Also, outdoor “field trial network” with open-interface 3G & WLAN for real-world application work
Concluding Remarks: ORBIT Radio Grid
ORBIT: Field Trial System

3G Base Station
3G Coverage Area

3G Base Station
3G Coverage Area

802.11x Access Points/ Radio Routers

802.11x Access Points/ Radio Routers

“Open API” 802.11a,b,g ORBIT radio node

Lucent “Base Station Router” with IP interface
Concluding Remarks

- Future wireless networks need ~100-1000x increases in density and bit-rate of radios → motivates better spectrum coordination methods
- Spot shortages of spectrum will occur if present static allocation is continued → significant improvement achieved with dynamic allocation
- Cognitive radio technologies can be characterized in terms of the combination of hardware complexity and level of protocol coordination
- Possible cognitive radio schemes include
 - Agile radio with interference avoidance
 - Spectrum etiquette protocols: spectrum server, CSCC...
 - Adaptive networks via ad-hoc collaboration
- Early technical results now available for some of these methods, but very different complexity factors and market implications…
Concluding Remarks

- Future research areas in cognitive radio include:
 - New concepts and algorithms for agile radio and spectrum etiquette protocols
 - Architecture and design of adaptive wireless networks based on cognitive radios
 - Detailed evaluation of large-scale cognitive radio systems using alternative methods
 - Spectrum measurement and field validation of proposed methods
 - Cognitive radio hardware and software platforms

- User-level field trials of emerging cognitive radios and related algorithms/protocols may also be useful to gain experience
 - Controlled testbed experiments comparing different co-existence methods
 - Large-scale “spectrum server” trial for 802.11x coordination
 - Experimental deployments in proposed US FCC cognitive radio band

- Success with cognitive radio technologies should lead to major improvements in spectrum efficiency, performance and interoperability