Adversarial-resilient Machine Learning for the Internet-of-Things

Zhixiong Yang and Waheed U. Bajwa
Department of Electrical and Computer Engineering
Rutgers University–New Brunswick

http://www.inspirelab.us
Mathematically, machine learning is stochastic optimization:

\[w^* = \arg \min_w \mathbb{E}_z[f(w, z)] \]

- SVM (supervised learning)

 \[z = (x, y) \text{ and } f = \max(0, 1 - y(w^T x + b)) + \lambda \|w\|_2^2 \]

- K-means clustering (unsupervised learning)

 \[z = x \text{ and } f = \sum_{i=1}^{K} \sum_{x \in S_i} d(x, \mu_i) \]

Challenge: Distribution of data ‘\(z \)’ is unknown

Empirical Risk Minimization (ERM)

- Use training data \(\mathcal{Z} = \{z_n\}_{n=1}^{N} \)
- Minimize the empirical risk:

 \[\hat{w}_N = \arg \min_w \frac{1}{N} \sum_{n=1}^{N} f(w, z_n) \]

- Main result:

 \[\mathbb{E}_z[f(\hat{w}_N, z)] \rightarrow \mathbb{E}_z[f(w^*, z)] \] (Vapnik’92)
What is decentralized machine learning?

Training data is geographically distributed across an interconnected set of devices, nodes, servers, data centers, etc.
But ... the world is a dangerous place for decentralized systems.

How to train decentralized machine learning models in the presence of malicious actors lurking within the network?
A node is said to have Byzantine failure if it *arbitrarily* deviates from its intended behavior within the network.

What can a Byzantine node do?
- Send out “bogus” data
- Collude with other Byzantine nodes
- Start acting normal under scrutiny
- and so much more …

But ... traditional decentralized optimization methods fail under Byzantine failures!
- An important (paraphrased) lesson from Su-Vaidya’15: Distributed empirical risk cannot exactly be minimized in the presence of even a single Byzantine node

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Classifier</th>
<th>Optimization</th>
<th>Nodes</th>
<th>Byzantine nodes</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>SVM</td>
<td>DGD</td>
<td>100</td>
<td>1</td>
<td>9.8%</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>SVM</td>
<td>D-ADMM</td>
<td>100</td>
<td>10</td>
<td>10%</td>
</tr>
</tbody>
</table>
Byzantine-resilient decentralized machine learning

Network model
- A directed graph G comprises M nodes, out of which a maximum of b can be Byzantine
- Each node has access to a local training set of cardinality N (total # of samples = NM)

Basic setup
- Nodes cannot share raw data among themselves
- Node j needs to learn a local model w_j
- Set of “good” nodes in the network is J
- Neighborhood of node j in the network is \mathcal{N}_j
- $g_j(w, Z_j) = \frac{1}{N} \sum_{n=1}^{N} f(w, z_{jn})$

Goal: Develop a decentralized optimization method that ensures
- Closeness to $w^* = \arg \min_w \mathbb{E}_z[f(w, z)]$
- “Consensus” among nodes

$w_1 = w_2 = \cdots = w_M$
Algorithmic ingredient #1: Scalar-valued Byzantine-resilient decentralized optimization (Su-Vaidya’15)

Classic Distributed Gradient Descent (DGD) iteration (Nedic-Ozdaglar’09)

\[
w_{j}^{t+1} = \sum_{i \in \mathcal{N}_j \cup j} a_{ij} w_{i}^{t} - \rho^{t} \nabla_{w} g_{j}(w_{j}^{t}, \mathcal{Z}_{j})
\]

Su-Vaidya’15 robustifies DGD in the scalar case by using a “screening” idea similar to that of “trimmed mean” in robust statistics

Screening for Byzantine resilience

1. Sort the received (scalar) iterates at node \(j \)
2. Eliminate the top and the bottom \(b \) iterates
3. Take a mean of the rest of the iterates

\[
w_{j}^{t+1} = \frac{1}{|\mathcal{N}_j - 2b + 1|} \sum_{i \in \mathcal{N}_j^*} w_{i}^{t} - \rho^{t} \nabla_{w} g_{j}(w_{j}^{t}, \mathcal{Z}_{j})
\]

Main result:

\[
\forall j \in J', w_{j}^{t} \xrightarrow{t} \tilde{w}_{dis} = \arg \min_{\tilde{w}} \sum_{j \in J'} \alpha_{j} g_{j}(w, \mathcal{Z}_{j})
\]
Algorithmic ingredient #2: Coordinate descent

A P-dimensional optimization problem can be solved by solving P scalar-valued subproblems, with convergence guarantees under various cases (Wright’15).

But ... we cannot solve the scalar-valued subproblems exactly in the presence of Byzantine nodes.
1. Start with the coordinate descent loop
2. In each iteration r of CD, solve for the k-th subproblem using Byzantine-resilient scalar-valued DGD

\[w^{t+1}_j(k) = \sum_{i \in \mathcal{N}_j^*} \frac{w^t_i(k)}{|\mathcal{N}_j^*|} - \rho^t \nabla w(k) g_j(w^t_j(k), \mathcal{Z}_j) \]

\[\forall j \in J', w^t_j(k) \xrightarrow{t} \tilde{w}_{dis} = \arg \min_w \sum_{j \in J'} \alpha_j(r, k) g_j(w, \mathcal{Z}_j) \]

Does ByRDiE converge to something useful?
Convergence guarantee of ByRDiE

Reduced graph

- A subgraph of a graph is called a reduced graph if it is generated by:
 1. Removing all Byzantine nodes along with their incoming and outgoing edges
 2. Additionally, removing up to \(b \) incoming edges from each non-Byzantine node

Source component

- A source component of a graph is a collection of nodes in which each node in the collection has a directed path to every other node in the graph

Theorem (Convergence of ByRDiE) [Yang-Bajwa’18]

Suppose the candidate models \(w \) belong to a closed, compact set and the function \(f(w, z) \) is strictly convex and Lipschitz continuous. Then, as long as all reduced graphs generated from \(G' \) contain a source component of size at least \((b + 1) \) and the training data are IID, ByRDiE guarantees with high probability that

\[
\forall j \in J', \mathbb{E}_z[f(w_j, z)] \xrightarrow{N, \bar{r}} \mathbb{E}_z[f(w^*, z)].
\]
Binary classification on MNIST dataset with linear classifier

- Strictly convex loss function, all assumptions fully satisfied
- DGD fails in the presence of Byzantine failures
- ByRDIE has better accuracy than training with only local data
- Trade-off between performance and robustness
Conclusion

- Technologies like IoT require decentralized machine learning
- Malicious actors cannot be ignored in decentralized machine learning

Byzantine-resilient decentralized learning
- Guarantees training of machine learning models from distributed data in the presence of Byzantine failures

Open problems
- Byzantine-resilient dual / second-order methods
- Non-smooth convex objective functions
- Nonconvex objective functions
- New screening methods

Preprints at http://www.inspirelab.us
Experimental setup

Network model
- Erdős–Rényi graph with 800 nodes and parameter $p = 0.5$, $b = 20$
- Each Byzantine node broadcasts a random scalar in each iteration

MNIST8M dataset
- Binary SVM on the most inseparable case of ‘5’ and ‘8’
- Training data: 250 images of each digit at each node
- Test data: 40,000 images

Performance metrics
- Learning: Average accuracy on the test set
- Consensus: 2-norm of pairwise differences

Methods
- Train an SVM at each node using ByRDiE / DGD
- Train an SVM at each node using only local data
- Centralized SVM on all 200,000 training samples (baseline)
Byzantine-resilient distributed gradient descent (BRIDGE)

Gradient descent

- Can be applied to nonconvex loss functions
- No need for dimension synchronization
- Cannot define “large” and “small” for vectors

BRIDGE

- Use dimension-wise trimmed mean as screening
- Update (simultaneously at dimension k):

\[
[w_{j}^{t+1}]_{k} = \frac{1}{|\mathcal{N}_{j} - 2b + 1|} \sum_{i \in \mathcal{N}_{j}^{*}(t, k)} [w_{i}^{t}]_{k} - \rho^{t}[\nabla_{w}g_{j}(w_{j}^{t}, \mathcal{Z}_{j})]_{k}
\]
Convergence guarantee of BRIDGE

Challenge in analysis

- The vectors “break” after screening
- Can no longer be expressed as a convex combination of neighbors

Theorem (Convergence of BRIDGE) [Yang-Bajwa’19]

Suppose the candidate models w belong to a closed, compact set and the function $f(w, z)$ is strongly convex with Lipschitz gradient. Then, as long as all reduced graphs generated from G contain a source component of size at least $(b + 1)$ and the training data are IID, ByRDiE guarantees with high probability that

$$\forall j \in J', w_j \xrightarrow{N,t} w^*.$$
Numerical results