Status Updating Systems and Networks

Roy Yates
ECE/WINLAB, Rutgers

WINLAB Research Review
December 12, 2014

joint work with
Sanjit Kaul, Marco Gruteser & Jing Zhong

IIIT-Delhi Rutgers WINLAB
V2V Safety Messaging

Large Networks (Hundreds of cars)

Frequent Updates (1 – 10Hz/ car)

Reliability and Timeliness are required
V2V Safety Messaging

- DSRC standard MAC protocol
 - Message Scheduling, Forwarding/Piggybacking
 - Power/rate adaptation, coverage ...
- Performance Metrics?
The DSRC Network

On-road DSRC infrastructure
Wi-Fi like (802.11p CSMA) radios @ 5.9GHz
• Car u sends updates to car v
• Updates pass through network/service system
• Car v wants latest state information.

• **Metric:** Age of the latest update
Simple Analytic Models

- Service system = Queue
- Sender u offers updates
 - without knowledge of the queue state
More Status Updates

• How often is too often?
Google Reader

- Idiosyncratic Service Discipline/Model
Performance Metric

Status Update Age

• Latest update i sent at time t_i
• Reaches subscriber at time t'_i
• At time t'_i: Status Age $= t'_i - t_i$
• At time $t > t'_i$: Status Age $= t - t_i$

Age grows in absence of new updates
Update Age

$\Delta(t)$

t_1 t_1' t_2 t_2'

Update
Arrival (sent)

Departure (rec'd)
Geometry of Triangles

$\Delta(t)$

$\Delta(\text{arrival})$

$\Delta(\text{departure})$

$\Delta(t)$

Update
 Arrival
 Departure

t_1

t_1'
Geometry

$\Delta(t)$

t_1 t_1'

Δ
Update Age

- Low Update Rate
 \[\Rightarrow \text{Age gets large between updates} \]
Update Age

\[\Delta(t) \]

- High Update Rate \(\Rightarrow\) Queueing Delay
Average Update Age

\[\Delta(t) \]

- **Update Rate:**
 - High \(\Rightarrow \) Queuing delays
 - Low \(\Rightarrow \) Infrequent updates

\[\Delta_\tau = \frac{1}{\tau} \int_0^\tau \Delta(t) \, dt \]

High Average Age
FCFS Average Update Age

\[\Delta(t) \]

\[\frac{1}{2} [(X+T)^2 - T^2] = \frac{1}{2} X^2 + XT \]

- \(X \): Interarrival Time
- \(T \): System Time

\[\Delta = \lim_{\tau \to \infty} \Delta_{\tau} = \lambda \left(\frac{1}{2} \mathbb{E} \left[X^2 \right] + \mathbb{E} \left[XT \right] \right) \]
FCFS Average Update Age

\[\Delta(t) \]

\[\Delta = \lambda \left(\frac{1}{2} E[X^2] + E[XT] \right) \]

- \(X = \) Interarrival Time
- \(T = \) System Time

- Weak ergodicity requirements is tricky!
- \(X \) and \(T \) negatively correlated
M/M/1 FCFS

Average Age

- Arrival Rate λ, Service Rate μ
- Load $\rho = \frac{\lambda}{\mu}$

$$\Delta = \frac{1}{\mu} \left[1 + \frac{1}{\rho} + \frac{\rho^2}{1 - \rho} \right]$$
M/M/1 FCFS
Average Age

• Load $\rho = \frac{\lambda}{\mu}$

$\rho^* = 0.53$
D/M/1 FCFS

Service Rate μ, Load $\rho = \frac{\lambda}{\mu}$

$$\Delta = \frac{1}{\mu} \left[\frac{1}{2\rho} + \frac{1}{1 - \beta} \right]$$

$$\beta = -\rho \mathcal{W} \left(-\frac{e^{-1/\rho}}{\rho} \right)$$

Optimal Load $\rho^* = 0.515$
M/M/1 FCFS

Average Age

- **Load** $\rho = \frac{\lambda}{\mu}$
Update Age: Lower Bound

• Sender
 – sees queue state
 – Schedules **just-in-time updates**

\[\Delta^* = \frac{1}{\mathbb{E}[S]} \left[\frac{\mathbb{E}[S^2]}{2} + (\mathbb{E}[S])^2 \right] \]

– Service Time S
Age Lower Bounds
(Just-in-time updates)

• Exponential Service $E[S] = \frac{1}{\mu}$

$$\Delta^* = 2 \left(\frac{1}{\mu} \right)$$

• Deterministic Service $S = \frac{1}{\mu}$

$$\Delta^* = 1.5 \left(\frac{1}{\mu} \right)$$
Average Age

- **M/M/1**
- **M/D/1**
- **D/M/1**

Age Δ vs. Server Utilization ρ
Average Age

- M/M/1 FCFS
- M/D/1 FCFS
- D/M/1 FCFS
- M/M/1 LCFS w/o preemption

Age Δ

Server Utilization ρ
LCFS w/o pre-emption

Pre-emption of waiting packet
(1 packet waiting room)
Competing Updates

• How often is too often?
Multiple Sources
Multiple Sources

Models for Source 2:
- Competing status updater
- Other traffic
Average Update Age

$$\Delta(t)$$

$$\Delta = \lambda \left[\frac{E[X^2]}{2} + E[XT] \right]$$

- $X = \text{Interarrival Time}$
- $T = \text{System Time}$

- $X, T = \text{interarrival and system time for source 1}$
- T depends on interfering traffic
Multiple Sources

\[\Delta_1 = \frac{1}{\mu} \left[\frac{\rho_1^2(1 - \rho \rho_2)}{(1 - \rho)(1 - \rho_2)^3} + \frac{1}{1 - \rho_2} + \frac{1}{\rho_1} \right] \]
Multiple Sources
FCFS Status Age Region
Multiple Sources

FCFS Trunking Efficiency

\[\Delta_2 \]

Optimal Partitioning

Optimal Sharing

\[\Delta_1 \]
FCFS Competing Updaters

Nash Equilibrium
• Queueing delays increases status age
• Reduce/Eliminate the queues?
LCFS
Pre-emption & Discarding
(No Queueing)

Source 1

\[\lambda_1 \]

Source 2

\[\lambda_2 \]

\[\mu \]

Monitor
V2V Safety Messaging

Sources (sensors in a car)

- Tire pressure
- Velocity
- Brake Light

To other cars via Network

- Multiple Sources
- Fast local server interface
- Slow Server
Multiple Sources

FCFS/LCFS Age

\[\Delta_2 \]

\[\Delta_1 \]

\[\lambda = 0 \]

\[\lambda = 0.6 \]

\[\lambda = 1 \]

\[\lambda = 2 \]
Timely Compression
A Status Updating Problem

- Encoder input symbol = status update
- Block coding ➔ Bursty bit arrivals at FIFO buffer
 Bit pipe queueing delay
 Decoding delay

Encoder ➔ FIFO buffer ➔ Rate R bit pipe ➔ Decoder

\(a_1a_2a_3...\) \(01\ 110\ 11...\) \(a_1a_2a_3...\)
Timely Compression
A Status Updating Problem

\[a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ldots \]

\[01 \ 110 \ 11\ldots \]

\[a_1 \ a_2 \ a_3a_4 \ldots \]
Time Compression

Huffman Coding Example

Channel Rate R

High rate pipe: use small blocks

Low rate pipe: use large blocks
Summary

• New **status age** performance metric

• Status Age Minimization Principles
 – Match the load to the network/system
 – Redesign the system
 • Give priority to timely updates
 • Discard stale updates

• Many applications