Neighborhood Watch: Security and Privacy Analysis of Automatic Meter Reading Systems

Presenter: Rob Miller

Ishtiaq Rouf, Hossen Mustafa, Miao Xu, Wenyuan Xu,
Dept. of CSE, University of South Carolina

Rob Miller, Applied Communication Sciences

Marco Gruteser, WINLAB, Rutgers University
Electric Meters

- Smart meters
 - Demand-response
 - Time of day use
- Automatic meter reading (AMR)
 - Gas, water, electricity
 - 47 million installed (2010)
AMR — Overview

• Communication protocols
 – Telephone line
 – Power line
 – Wireless communication

• Transmission methods
 – Electric meters: Bubble-up once every 30s

• Our focus
 – Wireless communication with drive-by trucks

• Meter IDs are linked with accounts
Misuse 1: Privacy

Eavesdropper monitors consumption

Empty House? Time to visit.
Misuse 2: Spoofing

Selfish

“I want to pay less…”

Bad neighbor

“I don’t like my neighbor…”

Sending spoofed packets
AMR — To Be Discovered

• **Reverse engineer** the communication protocol?
 – Messages encrypted? Authenticated?

• **How easy to spoof** AMR communication?
 – Drive-by trucks reject suspicious packets?

• **Privacy risks**?
 – How much information can be inferred?

• **How to protect** AMR communication?
Q1: Reverse-Engineering Wireless Communication

- Proprietary protocols — Patent
 - Manchester encoding
 - Multiple Channels
 - Message formats

- To be discovered
 - Modulation schemes?
 - Baud rate, channel information?
 - Message encrypted?

- Equipment
 - An electric meter
 - A gas meter
 - Universal Software Radio Peripheral (USRP)
 - Sentry 900
Q1: Reverse-Engineering Walk-Through

An AMR meter transmits at 902~928 Mhz

Determine Modulation
OOK

An AMR meter transmits at 902~928 Mhz

Scan at 902~928 Mhz for activity

Verify Message Format

Determine Baud rate 16kBd

Encoding Scheme Manchester

Determine Modulation OOK
Q1: Reverse-Engineering Results

• Observations
 – Reverse engineering possible
 – No encryption
 – Meter ID transmitted in plaintext
 – Simple frequency hopping → pre-determined channels

![Signal strength vs Channel diagram]

<table>
<thead>
<tr>
<th>Preamble</th>
<th>ID</th>
<th>Spare</th>
<th>Type</th>
<th>Data</th>
<th>Tamper</th>
<th>ID</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 bits</td>
<td>2 bits</td>
<td>3 bits</td>
<td>4 bits</td>
<td>22 bits</td>
<td>4 bits</td>
<td>24 bits</td>
<td>16 bits</td>
</tr>
</tbody>
</table>
Q2: Packet Spoofing

• How likely to spoof AMR communication?
 – Security mechanisms in receiver?
 – Override real meter transmission?

• Spoofing System
 – Developed a packet generator
 • Include a proper checksum
 • Contain arbitrary ID, usage data, etc.

• Tested on a few instruments:
 – Sentry 900 validates packet structure
 – Drive-by truck validates....

Select meter ID, tamper field and reading
Modulate (ASK) Encode (Manchester) Transmit at 916Mhz
Q2: Spoofing Validation

AMR Meter

Demonstration of Packet Spoofing Attack
Q3: Privacy Risks via Eavesdropping

- Eavesdropping System
 - Gas meters and electric meters
 - Developed a live eavesdropper

- How likely to eavesdrop?
 - How far away?
 - How many observable meters?
 - How much information?
Q2: How to link a meter ID with a house?
Eavesdropping range can be significantly boosted by a low-noise amplifier
Privacy Risks from Traditional Methods

- Privacy Risks from
 - IR flash
 - LCD display
- Which one is the worst?

Infrared LED, flash once per watt-hour usage

IR flash detection circuit

ERT (Encoder, Receiver, Transmitter) module

Digitized display

Dot on-off display
Privacy Breach Comparison

Time of day use

<table>
<thead>
<tr>
<th>Power (kW)</th>
<th>12pm</th>
<th>3pm</th>
<th>6pm</th>
<th>5pm</th>
<th>12am</th>
<th>3am</th>
<th>6am</th>
<th>5am</th>
<th>12pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR/Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF (120pph)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF (25pph)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF (6pph)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

of step changes

- IR/Image: 50
- RF (120pph): 17
- RF (25pph): 15
- RF (6pph): 11

pph ➔ packets per hour
Neighborhood Watch Via Eavesdropping

- Wednesday
- Thursday
- Friday
- Saturday
- Sunday

Days of a week

KW

3am 6am 9am 12pm 3pm 6pm 9pm 12am
Defense - Legacy meters

- **Cryptographic mechanisms**
 - Transmit on-demand
 - Reinstall new meter or upgrade firmware?

- **Spoofing**
 - Radio Fingerprint
 - Anomaly detection at data center
 - In-person visual inspect

- **Eavesdropping** → Jammer Add-on
 - A jamming signal to mask data packets
 - Work with drive-by
 - Narrowband jammer → 1 AMR meter
 - Wideband jammer → multiple AMR meters
Conclusions

- Privacy risks
 - AMR messages are transmitted in plaintext → Anyone can eavesdrop
 - Able to eavesdrop on 500 electric meters using USRP with cheap antennas
 - Eavesdropping range of about 300 meters

- Spoofing risks
 - Spoofing attacks are possible

- Raise awareness before more serious security and privacy vulnerabilities emerge

- Jamming-based protection

Thank you & Questions?

- University of South Carolina
 - Ishtiaq Rouf (Itron)
 - Hossen Mustafa
 - Miao Xu
 - Wenyuan Xu (wyxu@cse.sc.edu)

- Applied Communication Sciences
 - Rob Miller (rmiller@appcomsci.com)

- Rutgers University
 - Marco Gruteser (gruteser@winlab.rutgers.edu)