Naming and Routing in MobilityFirst Future Internet Architecture

Rutgers, The State University of New Jersey

WINLAB

Kiran Nagaraja
Contact: nkiran (at) winlab (dot) rutgers (dot) edu
MobilityFirst: Layered Names and Rich Delivery Services

- Current Internet supports only 1 level of name resolution (DNS) - Hostname → IP address
 - Relegates other objects (service, content, context) to indirect naming
 - Moreover, no support for fine-grain mobility

- Thin in network delivery services
 - End hosts do the heavy-lifting for intermittent problems en-route
 - Pre-eminence of overlay services

- MobilityFirst Proposal
 - Layered naming, and direct address for hosts, services, content, context...
 - Inherent support for mobility
 - Rich in-network services: multicast, multipath, multihoming, anycast
Layered Naming

User-level descriptors
E.g., Joe’s car

Network-level identifier
GUID: public key

 Routable Topological Address
(Network assigned)

Resolution Path

GUID Resolution Service
(Network-level multi-entity cooperative)

Name Certification and Resolution Service
E.g., Toyota Motor Corp.

<table>
<thead>
<tr>
<th>SID</th>
<th>GUID</th>
<th>NA</th>
<th>Payload</th>
</tr>
</thead>
</table>

User-level descriptors

E.g., Joe’s car

Network-level identifier
GUID: public key

Routable Topological Address
(Network assigned)

GUID Resolution Service
(Network-level multi-entity cooperative)

Name Certification and Resolution Service
E.g., Toyota Motor Corp.

<table>
<thead>
<tr>
<th>SID</th>
<th>GUID</th>
<th>NA</th>
<th>Payload</th>
</tr>
</thead>
</table>
GUID Naming for Groups and Abstract Entities

- Aggregate objects under single GUID
 - Reference or Indirection GUID: GUID \(\rightarrow\) GUID-set
 - Example: All cabs of Yellow Taxi Cab company
 - Advantages: efficient group delivery, policy aggregation
 - Challenges: Efficient topological aggregation

- GUID for Services or Context
 - Resolver Services ‘manage’ mappings: user level \(\rightarrow\) network-level (GUID)
 - GUID mapped to end points
 - “Connect me to a taxi service in New Brunswick” (Endpoint = a Taxi Dispatcher Service)
 - “Hail a taxi cab within 5 miles of here“ (Endpoint = Taxi)
Dynamic Resolution of GUID to Network Address: Global Name Resolution Service (GNRS)

- Secure and policy-driven access
- Requirements: Low latency (< 100ms) to support mobile CBR apps
- GNRS operations: INSERT, UPDATE, LOOKUP

Diagram:
- **GNRS**
 - Distribution Layer: Load Distribution, Replication
 - Locality Layer: Caching
 - Security Layer: Authentication, Access Control, Encryption

- **Insertion** (INSERT)
- **Update** (UPDATE)
- **Lookup** (LOOKUP)

End hosts
- Name Certification Service
 - E.g., Toyota Motor Corp.

Network
- Distribution
- Load Distribution
- Replication
- Caching
- Authentication
- Access Control
- Encryption
Progressive GUID-to-Address Resolution:
Global/Local Resolution Services

- Addresses resolved incrementally to progress the packet towards destination network
 - Limits granularity of location at GNRS with finer details at local resolvers
 - Direct binding is optional, but is less desirable for mobile scenarios
- Late binding or re-resolution upon failures

```
<table>
<thead>
<tr>
<th>SID</th>
<th>GUID</th>
<th>NA</th>
<th>Payload</th>
</tr>
</thead>
</table>
```

![Diagram showing the process of progressive GUID-to-address resolution with GNRS, Local NRS, and Destination Network.]
Routing: Flat Names, Edge-Aware, Service-Rich

- Network Topology
 - Minimally hierarchical, flat names for networks
 - Aggregate topological constructs to expose finer topology within a network
 - Dynamic attachments of ad hoc and transient networks

Aggregation Nodes:
Represent aggregate information of sub-graph

Dynamic attachment of ad hoc networks to global network. Reachability may be announced through GNRS
Edge-Aware Inter-Domain Routing

- Approach under consideration is to enhance BGP-like protocols with summary node/link info (aggregate node)
 - Summary knowledge of access net properties (Mbps, % avail, etc.), ingress/egress points and alternate paths exchanged between networks/ASs
 - Network topology information for identifying multiple paths, storage points ...
- Inspired by “Vnode” concept in “Pathlet” routing (Godfrey, 2008)
- Support for multicast, anycast, multihoming and multipath

Example of dual-homing route Supported by routing protocol
Storage-Aware, Disruption-Tolerant Local Routing

- Storage aware (CNF, generalized DTN) routing exploits in-network storage to deal with varying link quality and disconnection.
- Routing algorithm adapts seamlessly from switching (good path) to store-and-forward (poor link BW/short disconnection) to DTN (longer disconnections).
Extensible, End-User Requested Delivery Services

- Compute plane services for in-network packet processing
 - ISP infrastructure services: DDoS prevention, content caching
 - Cloud-computing for end-user services

- Architecture allows for new services to be incrementally added
Summary of Naming and Routing in MobilityFirst

- Architecture embraces layered and direct naming for clean separation of identity and location
 - Mobility

- Groups and contexts named similarly as individual objects
 - Support for references and indirection

- Edge-aware routing to support efficient and flexible delivery options for mobile and multi-homed end points

- Extensible, service-oriented network