A Value Aware Approach for Wireless Media Delivery

Sayandeep Sen
Neel Kamal Madabhushi
Suman Banerjee

University of Wisconsin-Madison
Outline

• Motivation
• Case Study: Value aware MAC
• Value aware MAC design and evaluation
• Conclusion
• Demo
A quantity associated with each packet signifying the “worth” of this packet for “overall performance”
Value (in)sensitivity

File transfer

Video streaming

MPEG-4 encoded video

I Frame -> 1 packet (for this talk)

I > P > B

All packets necessary

All packets equal

1 Frame -> 1 packet

File transfer

Video streaming
Value (in)sensitivity

File transfer

Video streaming

No deadlines

< 5 msec

< 105 msec

Nearer the deadline ... more important packet
<table>
<thead>
<tr>
<th>File transfer</th>
<th>Video streaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>All packets equal</td>
<td>Some more important</td>
</tr>
<tr>
<td>Error intolerant</td>
<td>Tolerates errors</td>
</tr>
<tr>
<td>No deadlines</td>
<td>Deadlines</td>
</tr>
</tbody>
</table>

Implications of value (in)sensitivity
Implications of value (in)sensitivity

File transfer
- All packets equal
- Error intolerant
- No deadlines
- Throughput matters

Video streaming
- Some more important
- Tolerates errors
- Deadlines
- Quality matters
Implications of value (in)sensitivity

File transfer
- All packets equal
- Error intolerant
- No deadlines
- Throughput matters

Video streaming
- Some more important
- Tolerates errors
- Deadlines
- Quality matters
Motivation

Protocols designed for throughput optimality
- Transport: TCP, UDP
- Network: BGP, OSPF, RED
- MAC: 802.11, 802.16
Protocols designed for throughput optimality
- Transport: TCP, UDP
- Network: BGP, OSPF, RED
- MAC: 802.11, 802.16

Sub-optimal for media delivery
Problem Statement

How to make protocol decisions value aware?
Problem Statement

How to make protocol decisions value aware?

Only changing already present mechanisms
Problem Statement

How to make protocol decisions value aware?

- Only changing already present mechanisms
- Without introducing any extra traffic
Outline

• Motivation
• Case Study: Value aware MAC
• Value aware MAC design and evaluation
• Conclusion
• Demo
Value Aware MAC

How to make MAC decisions value aware?

- Rate assignment
- Packet ordering
- Retransmission
Value Aware MAC: rate

How to make rate assignment value aware?
Traditional rate assignment

A B C D E

Lowest Value

Highest Value
Traditional rate assignment

<table>
<thead>
<tr>
<th>Rate</th>
<th>Trpt.</th>
<th>Er. Prb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4.5</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>28</td>
<td>1%</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>15.1%</td>
</tr>
<tr>
<td>54</td>
<td>31</td>
<td>19.2%</td>
</tr>
</tbody>
</table>
Traditional rate assignment

<table>
<thead>
<tr>
<th>Rate</th>
<th>Trpt.</th>
<th>Er. Prb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4.5</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>28</td>
<td>1%</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>15.1%</td>
</tr>
<tr>
<td>54</td>
<td>31</td>
<td>19.2%</td>
</tr>
</tbody>
</table>

Max. Trpt.
Traditional rate assignment

All packets go out at 48 mbps

<table>
<thead>
<tr>
<th>Rate</th>
<th>Trpt.</th>
<th>Er. Prb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4.5</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>28</td>
<td>1%</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>15.1%</td>
</tr>
<tr>
<td>54</td>
<td>31</td>
<td>19.2%</td>
</tr>
</tbody>
</table>
Traditional rate assignment

<table>
<thead>
<tr>
<th>Rate</th>
<th>Trpt.</th>
<th>Er. Prb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4.5</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>28</td>
<td>1%</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>15.1%</td>
</tr>
<tr>
<td>54</td>
<td>31</td>
<td>19.2%</td>
</tr>
</tbody>
</table>

All packets have equal probability of errors
Value Aware MAC: rate

How to make rate assignment value aware?

Assign rate to maximize quality (not throughput)
Traditional rate assignment

<table>
<thead>
<tr>
<th>Rate</th>
<th>Trpt.</th>
<th>Er. Prb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4.5</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>28</td>
<td>1%</td>
</tr>
<tr>
<td>48</td>
<td>32</td>
<td>15.1%</td>
</tr>
<tr>
<td>54</td>
<td>31</td>
<td>19.2%</td>
</tr>
</tbody>
</table>

Send A, B @ 36 mbps to ensure delivery
Traditional rate assignment

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
</table>

- **Rate** | **Trpt.** | **Er. Prb.**
- 6 | 4.5 | 0
- 36 | 28 | 1%
- 48 | 32 | 15.1%
- 54 | 31 | 19.2%

Send A, B @ 36 mbps to ensure delivery

Send D, E @ 54 mbps to compensate
Value Aware MAC: ordering

How to make packet ordering value aware?
Traditional ordering

Order of transmitting packets

Lowest Value

Highest Value
Traditional ordering

A B C D E

External interference
Traditional ordering

A B C D E

External interference
Traditional ordering

A B C D E

MAC layer retransmit

External interference
Traditional ordering

A B C D E

Head of line blocking

External interference
Value Aware MAC: ordering

How to make packet ordering value aware?

Transmit valuable packets earlier to maximize quality (not in FIFO order)
Value aware ordering

A B C D E

External interference
Value Aware MAC: retransmissions

How to make retransmission strategy value aware?
Value Aware MAC: retransmissions

How to make retransmission strategy value aware?

Retransmit valuable packets more to maximize quality (not fixed for all packets)
Outline

• Motivation
• Case Study: Value aware MAC
• Value aware MAC design and evaluation
• Conclusion
• Demo
Example

How to multicast HD video to clients connected to an AP?
MEDUSA

Media delivery using adaptive (pseudo)broadcast

– Value estimation (normalized weight heuristic)
– Rate adaptation (Inflate-Deflate algorithm)
– Packet ordering (Inflate-Deflate algorithm)
– Retransmission planning (Network coded)
– Application level asynchronous feedback

Details in “Scalable WiFi based Media Delivery using Adaptive Broadcasts”, NSDI’10
Scaling user count

(5-15% error rates), mobile calendar, 2 min, 5 Mbps, 20 runs
Scaling user count

PSNR (in dB)

Number of Clients

(5-15% error rates), mobile calendar, 2 min, 5 Mbps, 20 runs
Scaling user count

PSNR (in dB)

Number of Clients

UCAST_INDIV
UCAST_SIMUL
BDCST

(5-15% error rates), mobile calendar, 2 min, 5 Mbps, 20 runs
Scaling user count

PSNR (in dB) vs. Number of clients

- UCAST_INDIV
- UCAST_SIMUL
- BDCST
- MEDUSA

(5-15% error rates), mobile calendar, 2 min, 5 Mbps, 20 runs
Scaling video quality

(5-15% error rates), mobile calendar, 2 min, 10 clients, 20 runs
Scaling video quality

(5-15% error rates), mobile calendar, 2 min, 10 clients, 20 runs
Scaling video quality

(5-15% error rates), mobile calendar, 2 min, 10 clients, 20 runs
Scaling video quality

(5-15% error rates), mobile calendar, 2 min, 10 clients, 20 runs
MEDUSA outperforms UCAST_INDIV !!

(5-15% error rates), mobile calendar, 2 min, 10 clients, 20 runs
Scaling video quality

MEDUSA outperforms UCAST_INDIV !!
Value aware retransmission helps

(5-15% error rates), mobile calendar, 2 min, 10 clients, 20 runs
Conclusion

• Motivate the necessity of value aware protocol design
• Show how MAC layer decisions can be taken based on value of packets
• Present a value aware adaptive multicast media delivery scheme: Medusa
• Evaluate performance of Medusa and find its performance to be satisfactory
Demo

• 5 mbps, @30 fps, MPEG4
• Evalvid sender, Quicktime player
• 15-25% MAC error rate
• Screen capture @15 fps (Camtasia)
• Show the worst client:
 • WiFi Broadcast
 • Medusa