GENI and ORBIT
Experimental Infrastructure Projects

Ivan Seskar
WINLAB
Rutgers, The State University of New Jersey
www.winlab.rutgers.edu
Contact: seskar (at) winlab (dot) rutgers (dot) edu
Cluster E: ORBIT

OMF
Rutgers University
Marco Gruteser
Ivan Seskar
NICTA
Max Ott

WiMAX Virtualization
Rutgers University
Dipankar Raychaudhuri
Ivan Seskar
NEC Laboratories
USA
Sampath Rangarajan

CR KIT
Univ. of Colorado
Dirk Grunwald
Rutgers University
Ivan Seskar
SDR Systems
Peter Wolnianski

Meso-scale Deployments

WiMAX: Rutgers, Stanford, Brooklyn Poly, UMass, Columbia, UCLA, UWisconsin-Madison, Ucolorado

OpenFlow: Stanford, Rutgers, Clemson, Georgia Tech, Indiana, UWisconsin-Madison, UWashington, Princeton
Spiral I Project: Orbit Management Framework

- Mature testbed control framework (more than 6 years old)
- Currently @ version 5.2:
 - Full pub/sub implementation (xmpp) for control management
 - Multiple simultaneous experiment support
 - Disconnected operation support
 - New aggregate managers (WiMAX, Cognitive radio, ION)
 - Extended to support multiple heterogeneous testbeds
OMF 5.2 Disconnected Operation

- Supports disruption-free experiments when control network coverage is not available
- Allows for disconnected experiment control and data collection
- Measurement results are stored on disconnected nodes and retrieved back to the central measurement database upon reconnection
OMF 5.2: Controlling Mobile Experiments with Spatial and Temporal Triggers

- Provides spatial and temporal control on the experiments e.g., executes commands when:
 - Vehicle passes a certain region of the highway
 - 15s after vehicle enters into parking lot
 - Five nodes are within ½ mile radius

- Implemented through feedback loop using GPS on mobile nodes

- Current implementation allows specifying trip-lines on Google Maps and creates trip-line coordinates for experiment script
 - Experiment script binds trip-lines to commands
 - GPS updates are matched with these trigger commands
Orbit Measurement Library (OML) 2

- Push based architecture
- All experiment data in one place – including metadata
- Separation of concerns
 - Instrumentation
 - Collection
- Minimize collection overhead
 - Application CPU time
 - Experimental traffic interference
- Proxy server for disconnected operation
OML2 Client + Server

Application or Service

Measurement points

Filters

Measurement streams

OML Server

Database (SQL)

Database tables

File

OML client library
Where is OMF currently used?

- Rutgers University, New Jersey
- INRIA, France
- University of Thessaly
- Thomson Lab
- Alcatel-Lucent
- GENI
- PlanetLab (early integration)
- NICTA, Sydney
New in OMF 5.3

- Federation of OMF Control tools with PlanetLab
 - New OMF packages for Fedora distribution
- General naming scheme
 - Replaces previous coordinate-based scheme to identify resources on any testbed
- New user-definable event-driven mechanisms (defEvent) enables measurement driven (steered) experiments
- New support for Netem-based traffic shaping on resources
- Architectural support for virtualisation (separation of RM and RC)
- New post-install configuration script to simplify OMF deployment
- Misc:
 - Improved Documentation
 - Refactoring/cleanup of code
 - Aggregate Manager services now support Publish/Subscribe communication
 - Many bug fixes
- Target Release date: End of July 2010
 - Track: http://tiny.cc/omf-5-3
- Experimenters include the cellular-like system as a part of their experiments
- Backbone is time shared ..so.. How do we share the BTS?
Coverage map of the WiMAX BaseStation
WiMAX Virtualization: Prototype Architecture

Outdoor Network

Internal Network

vBTS Substrate

ASN Substrate

Base Station (BTS)

Outside Bus (Trunk)

VM Bus (Trunk)

Instrumentation Network

Outside World
Spiral II project: CR kit

Open Source Platform

- Range of COTS baseband FPGA platforms
 - Medium size (LX50)
 - Large size (SX95)

- Standard interfaces:
 - 1000 BaseT, (SFP)
 - USB
 - (8x PCIExpress)

- 4 (2) configurable radio modules for phased or smart antenna applications:
 - SDR – 25 MHz, ISM
 - WDR – 25 MHz, 0-7 GHz
 - XDR – 500 MHz, 0-7 GHz

- Application framework with support for both RTL and Matlab (Simulink)
Each module allows two 25 MHz bands from 30 to 8000 MHz
- 50/80 MSps 12bit A/D converter.
- 200MSps 12bit D/A converter.
- 1 usec RF frequency switching time

99 x 99 mm, double sided 12 layer PCB, Rogers 4350B high-frequency material

Supports full duplex operation.
Switched antenna diversity for both TX and RX channels
CR Kit Software Architecture
MESO-SCALE DEPLOYMENTS
WiMAX Meso-scale Deployments

Figure 1. WiMAX campus buildout.
OF Meso-scale Deployments: Rutgers

LEGEND:
- OpenFlow Enabled Switch
- OpenFlow Enabled Router
- Access Router (not OF)

Rutgers Core Network

NetFPGA Busch Campus

NetFPGA Cook Campus

1.) SB9
 - GENI Open Base Station (WiMax)
 - Outdoor ORBIT
 - Outdoor RU Wireless

2.) ORBIT Grid
 - GENI Open Base Station (WiMax)
 - Outdoor ORBIT
 - Outdoor Wireless

3.) Rutgers Outdoor Network

4.) Rutgers Outdoor Network

L3 → L2

L2

To MEGP1 PoP (Philadelphia)

IP8800

sw-out06.orbit-lab.org

sw-out-top.orbit-lab.org

sw-sb09.orbit-lab.org

sw-co-top.orbit-lab.org
ION: ORBIT I2 Connectivity
ION Performance

60 sec. transfer size [MB] vs. Dialed bandwidth [Mbps]

- TCP
- UDP

Data points:
- 333 MB at 665 Mbps
- 325 MB at 638 Mbps
- 1331.2 MB at 1228.8 Mbps
- 2918.4 MB at 2918.4 Mbps
- 5519.36 MB at 5519.36 Mbps
- 5775.36 MB at 1000 Mbps