Cognitive Radio
Research@WINLAB

Roy Yates
WINLAB
Rutgers University

December 10, 2008
ryates@winlab.rutgers.edu
www.winlab.rutgers.edu
Cognitive Radio Research
A Multidimensional Activity

- Spectrum Policy
 - Economics
 - Regulation
 - Legal
 - Business

- Theory and Algorithms
 - Fundamental Limits
 - Information & Coding Theory
 - Cooperative Communications
 - Game Theory & Microeconomics

- Hardware/Software Platforms & Prototyping
- Programmable agile radios
 - GNU platforms
 - Cognitive Radio Network Testbed
FCC Spectrum Management
False Scarcity

- All bands are allocated, many for multiple purposes.
- Most bands are actually largely unused.
Spectrum Policy Debate

- **Property Rights**
 - Triumph of Economics
 - [Coase, Hazlett, Faulhaber+Farber]
 - Owners can buy/sell/allocate spectrum
 - A spectrum market will yield an efficient solution

- **Open Access and Commons**
 - Triumph of Technology
 - [Noam, Benkler, Shepard, Reed]
 - Agile radios to dynamically share common spectrum
 - Open Access: Strict technology needs- sensing, interference
 - Commons: Distributed protocol followed in system
The Spectrum Debate & Cognitive Radio

- What everyone agrees on now: 😊
 - Spectrum use is inefficient
 - FCC licensing has yielded false scarcity

- Possible middle ground?
 - Dynamic spectrum access
 - Short-term property rights
 - Spectrum use driven by both technology and market forces

- Cognitive Radios with ability to incorporate market forces?
 - Microeconomics based approaches to spectrum sharing
Cognitive Approaches: Outlook

- Lots of **network (and channel) state information** needed to enable efficient
 - Discovery
 - Self-organization
 - Cooperation Techniques

Functionality can be quite challenging!
Cognitive Radios need information

- Reactive schemes (without explicit coordination protocols) have limitations.
 - Interference is a receiver property.

- Alternative: Infrastructure-based coordination

- Examples of coordination mechanisms:
 - Information aids
 - “Spectrum Coordination Channel” to enable spectrum sharing
 - Network architectures
 - “Spectrum Servers” to advise/mediate sharing
Common Spectrum Coordination Channel (CSCC) [Jing, Raychaudhuri]

- CSCC can coordinate radios with incompatible PHY
 - Employs an out-of-band etiquette channel & protocol
 - Periodic TX of radio parameters on CSCC
 - TX at higher power to reach hidden nodes
 - Local contention resolved via protocol-independent etiquette policies
 - Also supports ad-hoc multi-hop routing associations

Periodic Announcements: User ID (MAC Address), Frequency Band, Power Level, Service Type, Technologies used, Priority, Cost/Price Bids, Multi-hop Forwarding capabilities, etc.
802.11 & 16 Co-Existence: Reactive vs. CSCC-based Power Control

CSCC frequency adaptation when $D_{SS-AP} = 200m$ and traffic load 2Mbps

Throughputs vs. D_{SS-AP} by using CSCC power adaptation and traffic load 2Mbps
What can a Spectrum Policy Server do?
(Anything & Everything)

- Secondary sensors
- Wireless LANs
- Home networking
- TV broadcasting

- Multiaccess/variable rate transmission schemes
- Orthogonal & non-orthogonal multiplexing schemes
- Interference channel / wideband transmissions

Implicit CSCC
Cognitive Radio: Spectrum Policy Server

- Internet-based Spectrum Policy Server (a “Google for spectrum”)
 - IP-based CSCC
 - Coarse location information
 - SPS provides centralized local spectrum coordination
Cognitive Radio Networks
Cross Layer Scheduling via a spectrum server

- **Scheduling Physical links** - achievable rates depend on PHY layer TX & RX
- **Routing** – decisions based on network/application layer metrics
- **Constraints**
 - Link Rate > \(\Sigma \) flows on link
- **Performance bounds via centralized scheduling**

Low-complexity scheduling schemes
- Randomized Distributed scheduling (RDS)
- Column generation methods for choosing good scheduling modes

[Raman, Mandayam, Yates]
Two Tier Dynamic Spectrum Access

Spectrum Policy Server/Regulator/Clearinghouse

Service Providers (SP) compete

Level I
SPs obtain spectrum from SPS

Level II
End users obtain spectrum from SPs

End Users: Adapt rate, power, spectrum use for max net utility

Examples: 802.22 Service Providers
OFDM tone allocation to end users
DimsumNet
Two Tier DSA Properties

- Develop engineering models for shaping spectrum policy

- Features:
 - **Dynamic Spectrum Access**: Short term allocation of spectrum resources
 - **Temporary Exclusive Usage**: Parties do not suffer interference
 - **Market Based Allocation**: Supply and demand determines who gets how much bandwidth
Two-Tier Spectrum Access Mechanisms

- **D-Pass** (Dynamic Property-Rights Spectrum Access)
 - **Allocation based charges**
 - SPs pay for spectrum allocation
 - SPs then compete for users via simultaneous auctions

- **D-CPass** (Dynamic-Commons Property-Rights Spectrum Access)
 - **Usage based charges**
 - Clearinghouse mediates bidding among users
 - SPs only pay for spectrum actually used

- **D-CPass** yields better spectrum utilization

Ileri, Mandayam
Two Tier DSA
User and Service Provider Heterogeneity

Level I
SPs buy/lease spectrum from clearinghouse

Level II
End users lease spectrum from SPs

Service Providers (SP) compete to maximize profits

End Users: Adapt rate, power, spectrum use for max net utility

Acharya, Yates
Cost Model for the SP

- **Spectrum Cost**
 - \(C(X) = CX \), \(X \): sum of spectrum from all users
 - Constant C set by clearinghouse
 - Depends on Geographical region, urban/rural

- **Power Cost**
 - Transmit power = \(\nu X \)
 - \(F(\nu, X) = T \nu X \)
 - Constant T may depend on
 - Presence of other providers in band ‘\(X \)’
User j: spectrum & rates

- $h_j =$ downlink gain
- TX: fixed power spectral density ν
- Spectral efficiency
 $$K_j = \log(1+\nu h_j/N_0)$$
- $x_j =$ allocated spectrum
- Rate $R_j = K_j x_j$
- Higher Spectral Efficiency K_j
 = Better Radio Technology
User j: utility functions

- Logarithmic
 \[U(R_j) = \log(1+R_j) \]
 - Elastic data application (large file download)

- Exponential
 \[U(R_j) = \Gamma_j[1-\exp(-R_j/\Gamma_j)] \]
 - Application with target rate \(\Gamma_j \)
Objective of the SP and Users

- Clearinghouse set spectrum price

- SP maximizes its net revenue
 - Expense: Spectrum purchase and transmit power
 - Income: Charges the users

- Users maximize their utility minus cost
 - Expense: Charge paid to the SP
 - Gain: Increase in utility due to spectrum
Elasticity of Demand

- Ratio of % change in demand to % change in price

\[\varepsilon = - \frac{\mu}{X} \frac{\partial X}{\partial \mu} > 0 \]

- Logarithmic Utilities: Elastic demand \((\varepsilon>1)\) always
 - When price is increased, % fall in demand is higher
 - SP can’t arbitrarily overprice spectrum

- Exponential Utilities: Inelastic demand \((\varepsilon<1)\) for low \(\mu\)
 - Low \(\mu\): Enough spectrum for users to be rate saturated
 - Price changes in this regime, % change in demand is less
SP Profit vs Spectrum Cost C

Exponential Utilities
Target Rate = 1 Mbps
Power Cost, T=10
Total cost $C_e = C + TV$

- **High C**
 $$C_e = C + TV \sim C$$
 User Utility ↑ as $ν$ ↑
 SP incentive: High $ν$

- **Low C**
 $$C_e = C + TV \sim TV$$
 SP incentive: Low $ν$

Graph:
- $ν = 50$ dBm/MHz
- $ν = 30$ dBm/MHz
- $ν = 20$ dBm/MHz
- $ν = 10$ dBm/MHz

Y-axis: Profit of SP
X-axis: Spectrum cost (C) $$/MHz$
User Net Utility

Exponential Utilities
Target Rate = 1 Mbps
Power Cost, $T=10$
Total cost $C_e = C+Tv$

- Low C and high v
 $C_e = C+Tv \sim Tv$
 SP costs rise with v
 - SP buys less spectrum
 - User net utility reduced

- High C and high v
 $C_e = C+Tv \sim C$
 SP costs indifferent to v
 User utility \uparrow as $v \uparrow$
Barter Mechanisms

- Exchange goods that are of mutual value
 - Shared understanding of worth
 - More immediate appreciation of benefits

- Barter Mechanisms
 - **Content Exchange**
 - I relay for you, you give me access to some files
 - **Connectivity Exchange**
 - I relay for you, you relay for me at the same time
 - **Bandwidth Exchange**
 - Assume each user has an exclusive spectrum band
 - I relay for you, you lend me some bandwidth
Emerging Themes

- Hierarchical Network Architecture wins
 - Capacity scaling, energy efficiency, increases lifetimes, facilitates discovery

- Cooperation wins
 - Achievable rates via information theoretic relay and broadcast channels

- "Global" awareness and coordination wins
 - Space, time and frequency awareness and coordination beyond local measurements

- Efficient operation requires radios that can:
 - Cooperate
 - Collaborate
 - Discover
 - Self-Organize into hierarchical networks