Secret Communications with a Helping Interferer

Xiaojun Tang and Predrag Spasojevic

WINLAB, Rutgers University

joint with Ruoheng Liu and H. Vincent Poor (Princeton University)
Outline

• **Introduction**
 - Physical Layer (information-theoretic) secrecy
 - Interference

• **System Model**
 - The Gaussian wiretap channel with a helping interferer

• **Results**
 - An achievable secrecy rate
 - A computable upper bound
 - Numerical examples

• **Summary**
Secret Wireless Communication

Secret Message W

- can be successfully decoded by the desired receiver (user 1)
- can NOT be understood by anyone else (e.g. user 2)
Crypto-Systems v.s. Physical Layer Secrecy?

Crypto-Systems

- Difficult to distribute *initial key* in a large wireless network.
- Perfect secrecy cannot be ensured, unless the key is infinitely long.

Physical Layer Secrecy

- Perfect secrecy is possible without a key.
- Can be used to distribute keys!
How Physical-Layer Secrecy Works

Alice

Bob

Eve

Bob has a “better” channel than Eve
Wiretap Channel Model

- **Reliability**
 \[P_e = \Pr(\hat{W} \neq W) \to 0 \]

- **Secrecy**
 \[\frac{1}{n} H(W \mid Z^n) \to \frac{1}{n} H(W) \]

Secrecy capacity (maximal reliable rate with perfect secrecy) [Wyner-75, Csiszar&Korner-78]:

\[
C_s = \max_{U \to X \to YZ} \left\{ I(U;Y) - I(U;Z) \right\}
\]

Gaussian channel [Leung-Yan-Cheong&Hellman-78]:

\[
C_s = \max_X \left\{ I(X;Y) - I(X;Z) \right\}^+
\]

Rate loss (to confuse the eavesdropper)

and Gaussian input distribution is optimal.

Can we increase the secrecy capacity with the assistance from an interferer?
Interference can be exploited to keep secrecy

• Interference is created through scheduling transmissions.

Interference (to Eve) carries information to David, NO power is wasted (unlike generating artificial noise).
Gaussian wiretap channel with a helping interferer

- Gaussian channel (standard form)

- Average power constraints: (\(P_1, P_2\))

- Alice transmits at the rate \(R_1\), which is higher than the secrecy rate \(R_S\).

- Chris transmits at the rate \(R_2\):

Q: What is the rate \(R_S\) under the reliability and secrecy constraints?
Achievable Rate

• What is the rate \(R_1 \) the receiver can decode reliably?

• How many bits can the eavesdropper deduce from \(R_1 \)?
Achievable Rate

- The following secrecy rate \((R_S)\) is achievable:

\[
R_s = R_1 - R_{1E}
\]

An interferer can increase the secrecy rate!
Symmetric Gaussian channels

- To illustrate the results, we focus on a symmetric Gaussian channel in which $a=b$.

Q1: What is the achievable rate for this channel? *(answered)*

Q2: Should the transmitters use full power (\bar{P}_1, \bar{P}_2)?

Power Control!
Power control for the symmetric channel

• When $a < 1$, the receiver has advantage over the eavesdropper. Hence, do not introduce too much interference.

\[
(P_1, P_2) = \left(\overline{P}_1, \min \{ \overline{P}_2, P_2^* \} \right)
\]

where $P_2^* = \frac{\sqrt{1 + (1 + a)\overline{P}_1} - 1}{1 + a}$.

• When $a \geq 1$, the eavesdropper has advantage over the receiver. Hence, introduce the maximum interference.

\[
(P_1, P_2) = \begin{cases}
 \left(\min \{ \overline{P}_1, P_1^* \}, \overline{P}_2 \right) & \text{if } \overline{P}_2 > a - 1, \\
 (0, 0) & \text{otherwise}
\end{cases}
\]

where $P_1^* = a - 1$.

Let the receiver decode the interference first!
How power control benefits the secrecy rate?

Fix $\overrightarrow{P}_1 = 2$ and vary \overrightarrow{P}_2 from 0 to 8.

Power control can effectively increase the secrecy rate.

\[P_1^* = a - 1 = 1 \quad \text{when } a = 2 \]
\[P_2^* = \sqrt{\frac{1 + (1 + a)\overrightarrow{P}_1 - 1}{1 + a}} = \frac{2}{3} \quad \text{when } a = \frac{1}{2} \]
How the secrecy rate varies with a?

Assume $\bar{P}_1 = \bar{P}_2 = 2$ and vary a.

1. $a < 1$: the eavesdropper gets more information with the increase of a.
2. $a = 1$: the receiver and eavesdropper get the same signal.
3. $1 < a < 1.73$: the receiver can decode and cancel interference; only the eavesdropper is interfered with.
4. $a > 1.73$: interference does not hurt the eavesdropper much when a is large.

Interference is particularly helpful in the strong interference regime ($a > 1$)
An Upper bound on the secrecy capacity

- An upper bound assumes that a genie gives the eavesdropper’s signal \tilde{Y}_2 to the intended receiver as the side information for decoding.
Assume $\overline{P}_1 = \overline{P}_2 = 2$ and vary a

Achievable rate and upper bound

For the symmetric channels $a=b$

The upper bound and the achievable rate are close when $a<1$ (weak interference)

Not good for the case of strong interference
Achievable rate and upper bound

For the general Gaussian channels

Assume $P_1 = P_2 = 2$. Fix b and vary a.

Assume $P_1 = P_2 = 2$. Fix a and vary b.

The upper bound and the achievable rate are close when $ab \leq 1$.

Need to develop a new upper bound for other cases.
Summary

• Considered the use of interference to alleviate the eavesdropping issues.

• Studied the wiretap channel with a helping interferer.

• Given an achievable secrecy rate, which shows that interference can be exploited to assist secret communication.

• Given an outer bound, which shows the achievable rate is close to the capacity in some cases.
Thank you!