Hype, Myths, Fundamental Limits and New Directions in Wireless Systems

Reinaldo A. Valenzuela,
Director, Wireless Communications Research Dept.,
Bell Laboratories
Rutgers, December, 2007
Need to greatly increase rates for new apps and services....
...Not possible to break the laws of physics...

- Cellular revolution from extensive coverage and mobility
- Universal reuse maximizes spectral efficiency
- Classic deployments dominated by interference (Not the case for Hot Spot, Indoor)
- Link performance is approximating fundamental limits
- Gains from smaller cells, increased spectrum and Interference cancellation

Increasing BW or reducing range is expensive or ineffective

![Diagram showing achievable rate vs. required SNR and data rate vs. bandwidth for SISO and MIMO systems](image)
1-D FDM ORTHOGONAL RELAYS WITHOUT REUSE

K relays between source and destination at unit distance
N = K + 1 orthogonal channels, each gets 1/N of full system bandwidth
Reuse options also explored
All nodes transmit all the time
Reference SNR (K = 0): ρ

Propagation loss reduction: N^γ

Capacity (total power constant): $\frac{1}{N} \log_2 (1 + \rho N^\gamma)$

$\frac{1}{N}$ the power per node
Similar to TDM with peak power limit

Capacity (power per node constant): $\frac{1}{N} \log_2 (1 + \rho N^{\gamma+1})$

N times total power
Similar to TDM with average power limit

ORTHOGRONAL RELAYS - Power per node constant

Relays: 0 1 2 3 4 5

$\gamma = 4$

Rate (Bits/Symbol)

Reference SNR

-15 -10 -5 0 5 10 15 20

0 1 2 3 4 5

Γ
ORTHOGONAL RELAYS - Total power constant

No. of Relays = 0

γ = 4

Reference SNR (dB)

Rate (Bits/Symbol)

-15 -10 -5 0 5 10 15 20

0 1 2 3 4 5
Reuse improves performance below 3.18 b/symbol / 4 dB
ORTHOGONAL RELAYS WITH REUSE - Total power constant

Rate (Bits/Symbol) vs. Reference SNR (dB)

G = 4

Reuse 2 curves for 2, 3, 4, and 5 relays

No reuse

Reuse improves performance below 3.18 b/symbol / 7 dB

.5log2(82) = 3.18
Reducing out of cell interference with pico cells

- Increasing base station density for the same users
- Increases capacity per unit area
- At some point most neighboring cells will be idle
- Hardware Versus Software? (NetMIMO) approach

Methodology

Baseline network:
- Same number of users and bases
Denser base deployment
- Number of users and geographical coverage fixed
- Increase base density by N along each dimension

Single base detection
- Idle bases create a de facto guard band reducing ICI
- Infrastructure upgrade, hardware approach

Gerard Foschini, Dmitry Chizhik, Reinaldo Valenzuela - Bell Labs
Yifan Liang, Andrea Goldsmith - Stanford University
Reducing Out of Cell Interference with Net MIMO

Net MIMO methodology
- Realistic channel models
 - Planar array, downlink
 - Empirical propagation models

Criterion
- Portion q of users allowed outage
- Deliver equal rate to remaining users

Tradeoff between rate region and complexity
- Dirty Paper Coding (DPC) optimal, complexity high
- Suboptimal schemes include Zero Forcing (ZF), ZF-DPC

Characterization at system level
- Maintain Infrastructure
- Advance signal processing
System Topology

Two dimensional planar array

One user per cell (TD/FD)

User location within each cell
i.i.d. uniform distributed
Propagation Model

Short-range (SR) model
- Mobile user in the neighborhood of the base
- Free-space path loss + Rayleigh

\[P_r = \left(\frac{\lambda}{4\pi d} \right)^2 \cdot G \cdot g \cdot P_t \]

Long-range macro-cell model (Hata)
- Path-loss + shadowing + fading

\[10 \log_{10} \left(\frac{P_r}{P_t} \right) = -L_{dB} + G_{dB} + \psi_{dB} + 10 \log_{10} (g) \]

Propagation characteristics change at
- Transition distance \(d_t \), i.i.d. 30–70m
- Cutoff distance \(d_c \), \(2\sqrt{3}R \)
Infrastructure Upgrade

$N = 1$

$N = 2$

$N = 3$
Operating Regime Shift

![Graph showing signal to impairment power ratio vs. number of bases relative to baseline network (N). The graph includes lines for combined, interference only, and noise only scenarios.]
CDF of SINR

![Graph showing the CDF of SINR with different values of N (1, 2, 3, 4, 5)]
Net MIMO: Zero-Forcing Beamforming

Declare portion q of users in outage

- Users with smallest channel gain norms

Notations

- Input $X_{m_r \times 1}$
- Precoding $W_{m_t \times m_r}$
- Channel $H_{m_r \times m_t}$
- Output $Y_{m_r \times 1}$
- Noise $Z_{m_r \times 1}$

$$
Y_{m_r \times 1} = H_{m_r \times m_t} \cdot W_{m_t \times m_r} X_{m_r \times 1} + Z_{m_r \times 1}
$$

$$
H_{m_r \times m_t} \cdot W_{m_t \times m_r} = I
$$

ZF: NO ICI
Power Optimization for ZF

Criterion: max min received SNR

\[\rho_i = \frac{P_i}{N_0} \]

Subject to per-antenna power constraint

\[\sum_{i=1}^{m_r} |W_{ji}|^2 P_i \leq P_{\text{max}}, \quad \text{for} \quad 1 \leq j \leq m_t \]

Solution

\[P_i = P_{ZF} = \frac{P_{\text{max}}}{\max_j \sum_{i=1}^{m_r} |W_{ji}|^2} \]
Zero-Forcing Dirty Paper Coding

Interference totally eliminated through

- Orthogonal constraint
- Dirty paper coding

Declare portion q of users in outage

- Users with smallest channel gain norms

Specify encoding order

- Heuristic algorithm proposed in view of fairness
Optimization for ZF-DPC

Channel QR decomposition $H = LQ$

Precoding matrix $W = Q'$

Receive signal $y = HX + z = LQQ'x + z = Lx + z$

Criterion: max min received SNR

Subject to per-antenna power constraint

Solution

$$P_i = \frac{P_{ZF-DPC}}{\left|L_{ii}\right|^2} = \frac{P_{\text{max}}}{\max_j \sum_{i=1}^{m_r} \left|W_{ji} / L_{ii}\right|^2}$$
Comparison: Pico Cells Vs. Net MIMO

Target: max min SINR at outage level q

Under a realistic channel model

Denser deployment outperforms ZF when $N \geq 4$

Close-to-optimal ZF-DPC outperforms denser deployment
Network MIMO: Potential performance gains

Throughput (bps/Hz/base)

Uplink: Users to Bases

Downlink: Bases to Users

(1,1) (2,2) (4,4)

(1,1) (2,2) (4,4)

Conventional: SU MIMO, no coordination

Network MIMO

Up to a factor of 5 capacity gain using network MIMO under ideal conditions.

What gains could be achieved in practice?

[R. Valenzuela department]
Summary: MIMO strategies

<table>
<thead>
<tr>
<th>Recommended strategy</th>
<th>Cellular network type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU MIMO techniques</td>
<td>Urban macrocell with reduced frequency reuse and peak rate is more important than throughput (6-sectors + SU-MIMO (SM))</td>
</tr>
<tr>
<td>SU MIMO techniques</td>
<td>Urban macrocell with universal frequency reuse (6-sectors + MU-MIMO (ZF-BF))</td>
</tr>
<tr>
<td>MU MIMO techniques</td>
<td>Suburban macrocell (adaptive BF for increasing throughput)</td>
</tr>
<tr>
<td>MU MIMO techniques</td>
<td>Rural macrocell (adaptive BF for increasing range)</td>
</tr>
<tr>
<td>Network MIMO</td>
<td>Cluster of cells with high-speed backhaul (indoor femtocell network or future macrocell network)</td>
</tr>
</tbody>
</table>
Concluding remarks

Next generation systems must deliver a significant and cost effective performance improvement

- Increasing Bandwidth hits battery power limits
- Reducing cell size or increasing Tx power may be too expensive
- Relay help with coverage at low spectral efficiency

Network MIMO may deliver substantial performance gains:

- Initial uplink results are promising:
 - Median goodput more than doubled.
 - 5-fold increase in cell edge (90% availability) goodput.

Results show that network MIMO is viable within constraints of **WiMAX**.

- In particular, channel estimation not a problem indoors (but real test will be outdoors).