Law-Governed Multi-Agent Systems: From Anarchy to Order

Naftaly Minsky

Rutgers University
Example: An ad hoc Mission Team

Actuation
Coordination—to ensure mutual exclusion, say.

Monitoring + control = management

Necessary: rules of engagement that are complied with by all
The General Problem with Wireless Multi-Agent Systems (MASs)

- A wireless MAS consists of inherently autonomous agents, which are increasingly heterogeneous, and thus anarchical.

- And anarchical systems tends to be unmanageable, unsafe and insecure—this is particularly true under wireless communication.

- But the anarchy of a MAS—like that of a social system—can to be tamed by a regulatory mechanism, that imposes appropriate laws over it.

- I will discuss some of the principles of such regulation, and their realization by Law-Governed Interaction (LGI), recently released via http://www.moses.rutgers.edu/
Principles of Regulation of Multi-agent systems

- A law of a MAS can only be about the interaction between agents—not about their internal behavior.
- **High expressive power**: a law needs to be, in particular:
 - **Stateful**—sensitive to the history of interaction, and
 - **Proactive**—able to force actions to be carried out.
- Laws should be **enforced**, so they can be relied upon to be universally observed.
- Enforcement of laws should be **decentralized**—for scalability—and it should be **secure**.
- Multiplicity of laws needs to be supported, and different laws should be able to **interoperate**, and be organized into "conformance hierarchies".
- This goes far beyond conventional access control (AC)
Conventional Access-Control (AC): Two Approaches

Recipient-centric AC

Centralized AC (with state)

Legend:
P--- Explicit statement of a policy.
I--- Policy interpreter
S--- the interaction-state of the community

N. Minsky---Winlab Security Workshop, may 07
Limitation of Recipient-Centric AC

- The state of the sender is not available to the policy of the recipient.
- No secure way to ensure that all recipients employ the same policy.
- Thus, no support is provided to coordination or management.
Limitation of Centralized Access-Control

- Lack of scalability — which, for stateful policies, cannot be achieved by replication.
- Centralization provides distorted representation of the distributed interaction.
- Impractical for wireless communication
Distributed Law-Enforcement under LGI

\[\text{actor} \xrightarrow{\text{Move}(2)} \text{controller} \]

\[\text{controller} \xrightarrow{\text{Move}(2)} \text{moved(2)} \]
The local nature of laws, and their global sway

- A law must be local—to enable decentralized enforcement—although its sway should be global.
- The locality of LGI laws.
 - Laws deals explicitly only with local events—such as the sending or arrival of a message.
 - the ruling of a law for an event \(e \) at agent \(x \) is a function of \(e \), and of the local control state \(CS_x \) of \(x \).
 - a ruling can mandate only local operations at \(x \).
- Under LGI, locality does not reduce the expressive power of laws!!
On Interoperability and Hierarchy of Laws

- A large and complex MAS is likely to be governed by multiple laws that regulate different parts of the MAS, or different kinds of activities in it.

- This requires laws to be able to interoperate, and be organized into hierarchies.

- A case in point is the phenomenon of Coalition...
Governance of Dynamic Coalitions (a Case Study)

Consider a coalition C of groups $\{G_1, \ldots, G_n\}$, governed by a coalition-law L_C—assuming that the participation of each G_i in this coalition is governed by its own internal-law L_i.
The Main Challenges

- The ensemble \(\{L_C, L_1, \ldots, L_n\} \) of laws must be consistent, and its formulation and evolution must be flexible, in the following sense:
 - New groups should be able to join the coalition, and leave it, dynamically—subject only to the coalition law \(L_C \)
 - It should be possible to formulate the individual laws \(L_i \), and to change them, dynamically, independently of each others.

- The decentralized enforcement of this law ensemble—including \(L_C \)
The LGI-based Coalition
(Hierarchical Organization of Laws)

Given L_c, each group G_i would formulate its own law L_i as subordinate to L_c and thus, in conformance to it—this is done independently of other local laws L_j.

L_i—defined as subordinate to L_c—is built to conform to it.
The LGI-based Coalition
(Interoperability within a Hierarchy)

Let us focus on the interoperability between G_1 and G_2
Interoperability within a Hierarchy

\[\text{imported}(x, L_2, m) \]

\[\text{export}(m, y, L_1) \]

\[\text{imported}(x, L_2, m) \]

\[\text{export}(m, y, L_1) \]
Conclusion

- As long as a wireless MAS is homogeneous, the conventional access control is quite satisfactory for it.
- But an heterogeneous MAS requires the more sophisticated LGI-like control—particularly if it needs to be managed, and if it requires coordination.
Questions,
Or Lunch?
The Conventional Compositions-Based Approach...

- Given the set \(\{P_C, P_1, \ldots, P_n\} \) of policies (by “policy” I mean, the traditional, less general, analog of a law)

- Compose all these policies to a single one:
 \[P = \text{composition} (P_C, P_1, \ldots, P_n) \]

- Provide \(P \) to a central controller, which will mediate all coalition-relevant interactions.
... and its Problematics

- Composition is *computationally intractable* (McDaniel & Prakash 2002).
- It is unlikely for arbitrary, and independently formulated, policies to be consistent—so such composition is likely to simply fail.
- **Inflexibility**: any change of a single P—and any change in membership—requires re-composition of the entire ensemble, and is likely to require changes in other local policies, to achieve consistency.
- Our solution rests on: hierarchy & interoperability
A Beta version of LGI is to be released in May 2005, via: http://www.cs.rutgers.edu/moses/
- This release would not include law-hierarchy, and hot-update of laws

Papers about this subject are available through my website: http://www.cs.rutgers.edu/~minsky/

LGI is very much work-in-progress. There is much work to be done, on both the LGI mechanism itself, and on its various applications and implications.

And I hope some of you will take a look at these issues.
Roles: each E_i should have its director D_i (*); and the coalition E a director D_E. A director D_i can mint E_i-currency S_i needed to pay for services provided by E_i and it can give D_E some of this currency. A director D_i can mint E_i-currency S_i needed to pay for services provided by E_i and it can give D_E some of this currency.

S_i Currency cannot be forged—by anyone!

A director D_2 can distribute its S_i budget among agents at its enterprise.

Servers at E_1 can send their earning in S_i back to their director.

N. Minsky---Winlab Security Workshop, may 07
Beyond Access Control (AC)

- Access control is concerned with “who has the right to do what to whom”
- But we are also concerned with the dynamic process of interaction.
 - For analogy: traffic laws require not only than the driver has a license, but also that he stops on a red light.
- A regulatory mechanism that
Distributed Law-Enforcement under LGI

\[
\begin{array}{c}
\text{actor} \quad \text{controller} \\
\text{agent } x
\end{array}
\]

\[
\begin{array}{c}
\text{Move(2)} \\
\text{Moved(2)}
\end{array}
\]