Secret Communication via Multi-antenna Systems

Zang Li
Wade Trappe
Roy Yates

WINLAB, Rutgers University
Outline

- Information theory background on information security
- Problem formulation for multiple antenna system
- Solution for a multiple-input-single-output (MISO) system
- Numerical evaluation
- Conclusion
Introduction

- **Information theoretic** secret communication over wireless medium in presence of a passive eavesdropper
 - Eavesdropper is no better than random guessing the secret message
- The noisy nature of the wireless medium can be exploited to achieve information theoretic communication
- **Multi-antenna system**: the extra degrees of freedom facilitates secret communication
Scenario

- Wireless broadcast channel
- Passive eavesdropper
- Can Alice talk to Bob secretly? If yes, what is the secrecy rate?
Information Secure Secret Communication

- Reliable transmission requirement
- Perfect secrecy requirement
- **Secrecy capacity**: maximum reliable rate with perfect secrecy
 - This rate might be very small, but we only need it to setup the key for subsequent communication

Bob receives $Y^n \rightarrow \hat{S}$

Error Probability
$P(S \neq \hat{S}) \leq \varepsilon$

Eve overhears Z^n

Normalized Equivocation
$H(S|Z^n)/H(S) > 1- \varepsilon$

Message: S \(\rightarrow\) Alice X^n

$P(Y|X)$

$P(Z|X)$
Wiretap Channel

- Wiretap channel (Wyner75)

\[C_{\text{sec}} = \max_{P(x)} I(X; Y) - I(X; Z) \]
Broadcast Channel

- Broadcast channel (Csiszar & Korner 78)

\[C_{\text{sec}} = \max_{X \to XZ\to YZ} \left(I(X;Y;Y') \right) \]

V is designed to confuse Eve more than Bob!
When does $V = X$?

- **More capable** condition (Csiszar & Korner 78):
 - $I(X; Y) - I(X; Z) \geq 0$ for all input x

- Bob’s channel is more capable $\Rightarrow V = X$
 - Wiretap channel satisfies the more capable condition
 - Gaussian broadcast channel (when Bob’s SNR > Eve’s SNR)
 - Leung-Yan-Cheong & Hellman 1978

- Still a **mystery** in many other scenarios
Recent Work on Wireless PHY Secrecy

- Mitrpant, Vinck, Luo [ISIT 06] Wiretap with noncausal CSI
- Barros & Rodrigues [ISIT 06] Outage in Rayleigh Fading
- Liang & Poor [Allerton 06] Ergodic Secrecy Capacity in Flat Fading
- Li, Yates, Trappe [Allerton 06] Parallel Channels
- Gopala, Lai, H. El Gamal [ITA 07] Slow Fading
- Khisti, Tchamkerten and Wornell [IT] Secure broadcasting
- Relay channel, multiple access channel, interference channel…
- Multi-antenna system: Hero 03, Negi et. al. 03, Xiaohua Li et. al. 03, Parada & Blahut 05 …
Problem Formulation

Multi-antenna system provides gains in both communication rate and error performance. Can multiple antennas facilitate secret communication?

What is the secrecy capacity for this system?
Why is the Problem Hard?

Capacity

\[
C_{\text{sec}} = \max_{V \rightarrow X \rightarrow YZ} I(V; Y) - I(V; Z)
\]

Issues:
- Preprocessing \(V \rightarrow X\) ?
- Optimal Input \(V\) ?

More capable condition is not satisfied!
Simplification: Achievable Secrecy Rate

- Take \(V=X \) to obtain a secrecy rate lower bound
 - Achievable Rate: \(R = \max_x I(X;Y) - I(X;Z) \)
- Assume \(H \) & \(G \) are known to all parties
- How to maximize the rate over the distribution of \(X \)?
 - Gaussian input characterized by covariance matrix \(Q \)

\[
\max \quad \log \det (I_r + HQH^\dagger) - \log \det (I_r + GQG^\dagger)
\]
\[
\text{s.t.} \quad \text{tr}(Q) \leq P, \quad Q \succeq 0, \quad Q = Q^\dagger,
\]

Difference of concave functions 😞
Gaussian MISO:
M TX antennas, 1 RX antenna/user

\[X = [X_1 \cdots X_M]^T \]
\[Y = h^T X + W_1 \quad h = [h_1 \cdots h_M]^T \]
\[Z = g^T X + W_2 \quad g = [g_1 \cdots g_M]^T \]

Now the outputs are scalars!

Coordinate rotation can simplify the expressions without changing the system properties
Coordinate Transform

\[Y = h^T X + W_1 \]
\[Z = g^T X + W_2 \]

Useless to put power in the space orthogonal to \(h \) & \(g \)

\[\alpha = \frac{g^T h}{\| g \| \cdot \| h \|} \]

\[\vec{h} = \| h \| \vec{e}_1 \]
\[\vec{X'} = X_1 \vec{e}_1 + X_2 \vec{e}_2 \]
\[\vec{g} = \| g \| \left(\alpha \vec{e}_1 + (1-\alpha^2)^{1/2} \vec{e}_2 \right) \]
Jamming View of the MISO Problem

- X_1 is signal for Bob, with power P_1
- X_2 is jamming signal to annoy Eve, with power P_2
- Similar to correlated jamming [Medard 97], [Shafiee+Ulukus 05]
 - except X_1 and X_2 are designed and transmitted by TX,
 - $P_1 + P_2 \leq P$

Questions:
- How to signal?
- How to allocate power between X_1 and X_2?

Alice

Bob

$Y = \| h \| X_1 + W_1$

Eve

$Z = \| g \| \alpha X_1 + \| g \| \sqrt{1 - \alpha^2} X_2 + W_2$

$X' = [x_1, x_2]^T$
Gaussian MISO with Gaussian Input

\[Y = \| h \| X_1 + W_1 \]

\[Z = \| g \| \alpha X_1 + \| g \| \sqrt{1 - \alpha^2} X_2 + W_2 \]

- \(X_2 \) should be linear to \(X_1 \) for cancellation at Eve
- When \(P_1 \) is small, we should zero force Eve
 - Choose \(X_2 = \frac{-\alpha}{\sqrt{1 - \alpha^2}} X_1 \)
 - Eve receives \(Z = W_2 \Rightarrow \) pure noise
 - \(R_{ZF} = I(X; Y) = \log (1 + \|h\|^2 P_1) \)
- For zero-forcing to be possible, \(P_1 \cdot P^* = (1 - \alpha^2)P \)
Gaussian MISO with Gaussian Input

\[Y = \| h \| X_1 + W_1 \]

\[Z = \| g \| \alpha X_1 + \| g \| \sqrt{1 - \alpha^2} X_2 + W_2 \]

- Largest rate obtained by zero-forcing:
 - \[R_{ZF}^* = \log (1 + \| h \|^2 P^*) \]

- But this is not optimal!
 - Very conservative, same rate regardless of Eve’s channel gain

- For \(P_1 > P^* \), choose \(X_2 = -\alpha X_1 \) and \(P_2 = P - P_1 \) to cancel \(X_1 \) as much as possible
 - \[R_s(P_1) = I(X; Y) - I(X; Z) = \log \left(\frac{\| h \|^2 P_1 + 1}{\| g \|^2 \left(\sqrt{\alpha^2 P_1} - \sqrt{(1 - \alpha^2)(P - P_1)} \right)^2 + 1} \right) \]
Secrecy Rate $R_S(P_1)$

$\alpha = 0.7$, $P = 10$, $\|h\| = 1$.

$R_s(P_1) = \log \left(\frac{\|h\|^2 P_1 + 1}{\|g\|^2 \left(\sqrt{\alpha^2 P_1 - \sqrt{(1-\alpha^2)(P-P_1)}} \right)^2 + 1} \right)$

Largest ZF rate obtained at $P_1 = P^*$

Cancellation is not enough and Eve has a better channel.
Optimal Secrecy Rate R_s^*

$P = 10, \ |h| = 1$

Converge to ZF rate

$R_{ZF} = \log (1 + |h|^2 P^*)$

$P^* = (1 - \alpha^2) P$

R_s^* (bits per channel use) vs. Eavesdropper Link Gain $|g|$

- No Eve
- $\alpha = 0.3$
- $\alpha = 0.6$
- $\alpha = 0.9$
Conclusions

- The extra dimensions provided by multi-antenna system can enhance the secrecy rate
- Derived the secrecy rate for MISO Gaussian broadcast channel
 - Coordinate transform
 - Partial cancellation at Eve
 - This rate was shown to be the capacity recently (Khisti et al, ISIT2007)
Thanks! Any Questions?
Coding Procedure

- **Stochastic encoding, joint typical decoding** (Csiszar&Korner 78)

 \[S = 1 \bullet \bullet \bullet w \bullet \bullet \bullet 2^{nR} \]

 To ensure correct decoding at Bob

 (Bob finds only one typical sequence in the whole table.)

 \[R + R' < I(V;Y) \]

 To ensure full equivocation at Eve

 (Eve finds at least one typical sequence in every column.)

 \[R' > I(V;Z) \]

 \[R < I(V;Y) - I(V;Z) \]