Location-Based Flooding Techniques for Vehicular Emergency Messaging

Sangho Oh, Jaewon Kang*, and Marco Gruteser of WINLAB, Rutgers University
*Telcordia Technologies
Emergency Warning Message (EWM)

- **Purpose**
 - Avoidance of collision
 - Inform drivers of possible dangers on the road
Requirement for EWM

- Broadcast of message
- with small delay and high reliability
- Delivery of message some km away from the event

RSU (Roadside Unit)

Road Blocked

1~10km
Issues in V2V communication

- Communication channel is unreliable
 - Higher frequency band at 5.9Ghz spectrum
 - Unfavorable channel condition due to moving vehicles

- Solutions
 - Multi-hop communication is a kind of spatial diversity
 - Use flooding for broadcasting
 - Simple to implement
 - Low delay
 - Generate redundancy
 - While increasing reliability
Flooding

- Simple Flooding vs. Controlled Flooding
 - Simple flooding cause “Broadcasting Storm”
 - In controlled flooding, the next hop forwarding node will be selected

- Location based Controlled Flooding
 - Use location information in deciding the next hop forwarder
 - Deterministic method

- Probability based Controlled Flooding
 - Make a probabilistic choice for the next hop forwarder
 - More reliable with the increased redundancy.
 - Counter based method is an example
Hybrid Scheme

Key idea I

Utilize both Probability based method & Location based method

- Prioritize forwarders depending on the node location,
 - Give higher probability of forwarding to edges nodes
- Use opportunistic forwarding method
 - Deterministic is not appropriate for unreliable wireless communications
 - Make sure the coverage holes be covered by the forwarding process.

Key idea II

Normalize the probability of forwarding
Simulation Setup

- **Simulator**: NS-2
 - Channel fading: Rayleigh
 - Number of nodes: 200 Nodes
 - Node density: Change the network size from 1Km to 5Km

- **Measurement**
 - **Reliability**
 \[
 \text{Reliability} = \frac{\text{Number of nodes who received EWM pkt}}{\text{Total number of nodes in the network}}
 \]
 - **Efficiency**
 \[
 \text{Efficiency} = \frac{\text{Number of nodes received EWM pkt}}{\text{Number of the nodes broadcasted EWM pkt}}
 \]

Length of Network (road size)
Simulation Results

- **Reliability**
 - 40% gain in 5km road

- **Network efficiency**
 - 41% gain in 1km road
Extremely Congested Network Scenario

- **Scenarios**
 - Rush hour in 12 lane, 5m inter vehicle distance, 300m range
 - Multiple number of EWM sources transmitting similar events
 - 6 lanes x 60 = 360 vehicles in the communication range
Alleviation of the Network Congestion

- Controlled flooding may not sufficiently suppress the redundant message forwarding
 - Too many nodes are in the communication range
 - Multiple number of Emergency message source
- It needs to give additional back-off delay
 - Adaptive to the network congestion status

Number of Node in one hop communication range : 100

![Graph showing the number of message reception and transmission per node with adaptive suppression and basic controlled flooding.]
Conclusions

- Using location information for forwarder selection in flooding techniques
 - More efficiency & reliability

- These techniques can be implemented on top of
 - 802.11a MAC
 - 802.11p MAC

- In extremely congested network scenarios,
 - Density-based adaptation of the probability of forwarding in each node
 - Power/rate adaptation to use spectrum utilization
 - Data aggregation
Future Work

- Need to make a more precise consideration for end to end delay

- The channel is V2V communication
 - Impact on the reliability of Emergency message dissemination
 - Heavily affects the simulations results

- Through more realistic channel modeling
 - Accurate simulation result
 - More reliable protocol design
Future Work: Evaluation on ORBIT
Experimental Facilities

400 Node High-Density Controlled Indoor Testbed

10-Node Vehicular Testbed

Mini ITX-based SSF PC w/ 2x 802.11a/b/g
Antennas
Thank You !!

- Additional Slide I
- Additional Slide II
Controlled Flooding Methods

- **Counter based method**
 - Count overheard forwarding packets for RAD (Random Access Delay) time and suppress its transmission when the number exceeds a certain threshold (*Max_count*).
 - **Pro:** Generally performs well in overall network environments
 - Reliable and convenient
 - Autonomous operation
 - **Con:** Inefficient, because edge nodes may not have chance to broadcast

- **Location based method**
 - Use its location information in deciding its forwardings. Nodes farther than a certain distance will forward the received packet.
 - **Pro:** Optimal for fast routing
 - **Con:** A kind of deterministic method, so nodes close to the source will never have chance to broadcast

- **Neighbor knowledge based method**
 - Using neighbor list, decide its forwarding
 - **Pro:** Minimize the number of transmission
 - **Con:** require exchange of hello messages, cannot applicable to high mobility condition and to scenarios that has tight delay requirements
Weakness of Counter-based Method

- **Average interval between the RAD values in each node**
 - 360 vehicles
 - \(\frac{20 \text{msec}}{360} = 0.056 \text{msec} = 56 \mu \text{sec} \)

- **Internal processing delay**
 - Assume 1msec
 - \(\frac{1 \text{msec}}{56 \mu \text{sec}} = 17.8 \)

- **18 RAD timers expire before the first forwarded packet really appears in the channel,**
 - They will initiate their transmission processes in the application layer
 - Before they transmit the packet, they will sense the channel
 - If the channel is busy, they will go to back-off process and try to access the channel in the next available channel slot
 - Result in collisions or further congestions