A QoS Routing and Admission Control for 802.11 Ad Hoc Networks

Lin Luo, Marco Gruteser, Hang Liu, Dipankar Raychaudhuri

WINLAB
Rutgers, The State University of New Jersey
Piscataway, NJ 08854
Motivations and Challenges

- Higher data rates supported by short-range wireless networking standards enable a variety of new media streaming and distribution applications
- Real-time media streams have specific service quality requirements, e.g.,
 - Stringent bandwidth requirement
 - Delay constraint
 - Packet loss requirement

Goal: to Provide Quality of Service to satisfy the requirements of the media streams

Challenges:
- The open and shared nature of single channel wireless communications
- Different view of channel utilization based on the position in space
- Contention from outside the direct communication range
- No centralized control
Challenges

- Transmission range (TxR) – Neighbors (N), e.g. node B
- Carrier sensing range (CSR) -- Carrier-sensing neighbors (CSN), e.g. node C
 - extended contention range (C interferes with A)
 - location based contention
 - Intra-flow contention
 - Parallel transmission (A and D do not interfere with each other)
Overview of Our Solutions

- An admission control mechanism integrated with ad hoc routing
 - Admission Control – prevents the network from reaching congestion by rejecting new media streams if insufficient bandwidth is available
 - QoS routing – find an end-to-end path between sender and receiver satisfying the QoS requirement; go around the heavily-loaded areas

- Highlights:
 - In multi-rate networks,
 - channel utilization \(\leq \rho = \frac{T_{\text{busy}}}{T_p} \): node-oriented
 - available bandwidth \(\leq W = (1 - \rho)C \): link-oriented

- More accurate estimate of channel availability by considering channel reuse due to parallel transmission estimate and add the amount of possible parallel transmissions
Outline

- Challenges and Overview of Our Solution
- **QoS routing and admission control**
 - Prediction of link utilization of a flow
 - Estimation of channel availability
- Protocol Implementation
- Simulation Results
- Conclusions
Prediction of Link Utilization of A Flow

For IEEE 802.11 MAC using RTS-CTS-DATA-ACK handshake, per-hop occupation time of a data packet

\[T_{occu} = T_{difs} + T_{rts} + T_{cts} + \frac{L}{B} + T_{ack} + 3T_{sifs} + \frac{CW_{\text{min}}}{2}.\text{SlotTime} \]

= \frac{L}{B} + T_{oh}

L – length of data packet; B – link rate

Assuming the application generates R packets per second, the link utilization requirement of the source

\[\rho_{req} = R \times \left(\frac{L}{B} + T_{oh} \right) \]
Prediction of Link Utilization of A Flow

- Estimating flow self-interference -- on the same flow, transmission at each hop has to contend for the channel with upstream and downstream nodes.

- Total link utilization of a flow depends on the link’s position on the path:

\[
\rho_{aggr} = \sum_{i=1}^{N_{cont} + 1} R \cdot \left(\frac{L}{B_i} + T_{oh} \right)
\]

\[N_{cont} \text{ -- number of contending nodes on the flow} \approx \left[\frac{CSR}{RxR} \right]\]
Estimation of Channel availability

- Channel availability is estimated through passive monitoring at each node.

 carrier-sensing threshold: \(T_{\text{busy}}^{\text{local}} \Rightarrow \rho_{\text{local}} = \frac{T_{\text{local}}^{\text{busy}}}{T_p} \)

 Channel availability at a node is affected by its CSNs

 neighbor-carrier-sensing threshold: \(T_{\text{busy}}^{\text{csn}} \Rightarrow \rho_{\text{csn}} = \frac{T_{\text{busy}}^{\text{csn}}}{T_p} \)

 Transmission from the node itself affects channel availability at its CSNs
Estimation of Channel availability (cont’)

- Parallel transmission part

\[
\rho_{\text{overlap}} = \frac{T_{\text{busy}}^\text{csn} - T_{\text{busy}}^\text{local}}{T_p} \times R \cdot (T_{oh} + \frac{L}{B_t})
\]

Transmission outside I’s CSR

Admitting node’s own transmission

- To admit the requesting flow,

\[
\rho_{\text{local}}' = \rho_{\text{local}} + \rho_{\text{aggr}} \leq 1
\]

\[
\rho_{\text{csn}}' = \rho_{\text{csn}} + \rho_{\text{aggr}} - \rho_{\text{overlap}} \leq 1
\]

Since the second condition is more stringent, it is enough for admission decision making.
Example

- A and E can transmit at the same time
- Whether E admits flow 3 depends on:
 \[\rho_{CD} + \rho_{EF} < 1 \]
 \[\rho_{AB} + \rho_{CD} + \rho_{EF} - \rho_{overlap} < 1 \]

\(\rho_{overlap} \) - represents the fraction of A and E transmitting simultaneously

Node C’s transmission range

Transmission range = 250m
Carrier-sensing range = 550m

WINLAB
Simulation

Throughput

- flow A->B
- flow C->D
- flow E->F (no parallel transmission consideration)
- flow E->F (with parallel transmission consideration)
Outline

- Challenges and Overview of Our Solutions
- QoS routing and admission control
 - Estimation of Channel utilization
 - Prediction of Link Utilization of a Flow
- Protocol Implementation
- Simulation Results
- Conclusions
Protocol Implementation

flow 1 (t1)

flow 2 (t2)

flow 3 (t3)

request

rejected

Response
resource resvd

R.L
Hops=0

...
Outline

- Challenges and Overview of Our Solutions
- QoS routing and admission control
 - Estimation of Channel utilization
 - Prediction of Link Utilization of a Flow
- Protocol Implementation
 - Simulation Results
- Conclusions
Simulation Settings

- MAC settings: IEEE 802.11 DCF
 - radio model (Lucent WaveLAN):
 - bit-rate: 1Mb/sec, 2Mb/sec
 - carrier sense range: 550m
- Sending buffer: 64 packets with timeout 30s
- Interface queue:
 - capacity: 50 packets
 - two priorities: routing and data
Benefit Brought by Parallel Transmission

- **Settings:**
 - 1000m X 1000m network
 - 20 randomly positioned nodes
 - Every node attempts to establish a CBR connection to a random destination
 - 50 repetitions of experiment

- **Results:** 19 times – more admitted flows; 31 times – more aggregate throughput

Number of admitted flows

Aggregate throughput
Throughput Improvement vs. Packet Delivery Ratio

- Throughput Improvement vs. Packet Delivery Ratio

Diagram showing the relationship between aggregate throughput improvement and packet delivery ratio with and without parallel transmission consideration.
Case Studies

- Case Study 1:

- Case Study 2:

 no parallel transmission consideration with parallel transmission consideration
Outline

• Challenges and Overview of Our Solutions
• QoS routing and admission control
 ➢ Estimation of Channel utilization
 ➢ Prediction of Link Utilization of a Flow
• Protocol Implementation
• Simulation Results

➢ Conclusions
Conclusions

- Proposed a QoS routing and admission control scheme for wireless ad hoc networks, considering:
 - shared nature of single-channel wireless communication
 - parallel transmission
- Showed the effectiveness of the proposed scheme via simulation
 - QoS routing
 - QoS guarantees to admitted flows
 - benefit of parallel transmission consideration
Questions ?
Thank You