Robust and Energy Efficient MAC/PHY Strategies of Wi-Fi

Sunghyun Choi, Ph.D., FIEEE
Multimedia & Wireless Networking Lab.
Seoul National University, Korea
http://www.mwnl.snu.ac.kr
Introduction

- Wi-Fi has become an indispensable part of our daily lives!
 - 8 billion global Wi-Fi shipments expected in 2015

Source: IDC & HIS Research
Introduction

- New features of the emerging Wi-Fi
 - PHY rate
 - Multiple antenna system: up to 8 antennas
 - Wider bandwidth: up to 160 MHz
 - Higher order modulation: up to 256 QAM → Require robustness and energy efficiency
 - MAC efficiency
 - Frame aggregation: Aggregate MPDU (A-MPDU)
Contents

- Robust Wi-Fi in mobile environments
 - MoFA: Mobility-Aware Frame Aggregation in Wi-Fi
 - ChASER: Channel-Aware Symbol Error Reduction

- Energy efficient Wi-Fi
 - Power consumption of Wi-Fi
 - WiZizz: Energy Efficient Bandwidth Management
Robust Wi-Fi in Mobile Environment
Introduction

- Paradigm shift of Wi-Fi
 - Now, people hold their Wi-Fi devices and move
 - Performance degradation due to mobility (user and/or environment)
 - Faster PHY rate (higher modulation, multiple streams, and wide bandwidth)
 - Longer frame duration (Aggregate MPDU, A-MPDU)
Introduction

- **Aggregate MAC protocol data unit (A-MPDU)**
 - **Core technology** of IEEE 802.11n/ac
 - Packing several MPDUs into a single A-MPDU
 - **Amortizing protocol overhead** over multiple frames
 - Positive/negative acknowledgement for individual MPDUs (subframes) using **BlockAck**
 - Aggregating more subframes results in much higher throughput!
Introduction

- Channel estimation and compensation in Wi-Fi
 - Obtaining channel state information (CSI) using **training symbols** in PLCP preamble
 - Conducted only at the beginning of a frame reception
 - OFDM pilot symbols designed only to track the difference of the local oscillators
 - No way to catch up with **CSI variations during a frame reception**
Channel Estimation and Compensation in Wi-Fi

- Limitation of channel estimation and compensation

Testbed experiment 1. Error Vector Magnitude (EVM) and IQ constellation

- Microsoft Sora SDR platform (Rx) and Qualcomm Atheros AR9380 (Tx)
 - As mobility increases, EVM increases!

Rx symbol dispersion at the latter part of AMPDU is much larger than that at the front part of A-MPDU
Channel Estimation and Compensation in Wi-Fi

- Limitation of channel estimation and compensation

Testbed experiment 2. Throughput measurement

- Programmable **802.11n commercial device**
 - Qualcomm Atheros AR9380 / Intel IWL5300
 - Using **hostAP** to build an AP on linux machine
 - Controlling device drivers (**ath9k/iwlwifi**)
Two Proposed Approaches

- **MoFA: Mobility-Aware Frame Aggregation in Wi-Fi**
 - A-MPDU length (aggregation bound) adaptation with ease of implementation
 - **Simple modification of device driver** (using commercial programmable 802.11n NIC)

- **ChASER: Channel-Aware Symbol Error Reduction**
 - Chasing channel variation without overhead
 - **Receiving process modification** (using SDR platform)
MoFA: Mobility-Aware Frame Aggregation in Wi-Fi

MoFA: Mobility-Aware Frame Aggregation in Wi-Fi

![Diagram showing MoFA](image)

11111101101101110010000000

\[T_{D_{o,new}} \]

\[SFER_f \leftrightarrow SFER_l \]

\[SFER_l - SFER_f = M > M_{th} ? \]
MoFA: Mobility-Aware Frame Aggregation in Wi-Fi

- Implementation issues
 1) Standard-compliant algorithm (with ease of implementation)
 2) Prototype in commercial 802.11n devices (AR9380) with ath9k driver
 3) Need to modify transmitter-side only

A-RTS: Adaptive use of RTS/CTS in order to overcome hidden interference
MoFA: Mobility-Aware Frame Aggregation in Wi-Fi

- Performance of MoFA in time-varying mobile environments
 - One-to-one scenario: Stays and moves half-and-half with a regular pattern
 - Divided into two regions (dashed line in the left figure)

 ➔ Performance of MoFA reaches up to the most outer curve which is obtained by the optimal fixed time bound in each region

(CDF vs. Throughput (Mb/s) and Throughput (Mb/s) vs. Time (sec))
Performance of MoFA in time-varying mobile environments

- Multiple node scenario: Three mobile nodes and two stationary nodes

- 127%, 109%, and 35% higher network throughput than no aggregation, 802.11n default setting, and optimal bound for 1 m/s

- STA4 (stationary and close to AP) gets the biggest benefit
ChASER: Channel-Aware Symbol Error Reduction

ChASER: Channel-Aware Symbol Error Reduction

- Channel estimation using unknown data symbols
 - Exploit unknown data symbols using
 \[H_i = \frac{Y_i}{X_i} \]
 - Exponential weighted moving average filter
 \[\tilde{H}_i = (1 - \mu)\tilde{H}_{i-1} + \mu \frac{Y_i}{\tilde{X}_i} \]
 - CRC-assisted error correction

- Evaluation methodologies
 - Microsoft Sora SDR platform
 - SDK version 1.6
ChASER: Channel-Aware Symbol Error Reduction

- Implementation issues (Microsoft Sora SDR platform)
 - High complexity and difficult to implement
 - Feasibility verification
 - We cannot control the commercial 802.11 device’s Rx process (hardware-level)
 - Real-time rx processing?
 - Processing latency due to multiple thread ➔ update CSI every 4 OFDM symbols
 - Sora does not provide real-time AGC at RF front-end ➔ Offline gain control

- Testbed experiments
 - Baseline 802.11n vs. ChASER
 - Fixed MCS 3, good channel condition
ChASER: Channel-Aware Symbol Error Reduction

- ChASER chases the wireless channel variation with high fidelity

- Eliminate caudal losses by tracking channel variation
- Standard compliant, but high performance gain (up to 56%)
Energy Efficient Wi-Fi
Introduction

- IEEE 802.11ac standard offers data rate as high as 6933 Mb/s

 - Higher order modulation: up to 256QAM
 - The number of spatial streams and antennas: up to 8
 - Channel bonding: up to 160 MHz

- WiFi is a primary energy consumer in battery-powered mobile devices

 - IEEE 802.11n 3x3 MIMO receiver consumes more energy than IEEE 802.11a receiver [1]

 - 2x in active mode
 - 1.5x in idle/listening (IL) mode.
 - More energy consumption in IEEE 802.11ac

Background

- Time and energy spent in IDLE/CCA mode [2]
 - Real-world Wi-Fi traces
 - IDLE/CCA is the dominant source of energy consumption in Wi-Fi

Background

- IDLE/CCA mode power consumption in IEEE 802.11 [3, 4]

\[
P_{idle} = P_{mix} + P_{LNA} + P_{fil} + P_{amp} + P_{ADC}
\]

\[
P_{ADC} \propto \text{Bandwidth} \times N_{ANT}
\]

Measurement Environment

- **Network Interface Card (NIC)**
 - Qualcomm Atheros 9880 (QCA 9880)
 - IEEE 802.11ac
 - 3 x 3, 80 MHz, 256QAM

- **Device driver**
 - ath10k
 - 3.18.0 Linux kernel

- **Measurement tools**
 - NI USB-6218 Data Acquisition (DAQ)
 - PEX1-MINI-E Adaptor
 - Current sense resistors (40 mΩ)
 - External power source (Power Monitor)
 - LabVIEW
Measurement Result

- Power consumption of QCA 9880 in Idle mode
 - The power consumption highly depends on BW and N_{ANT}
 - Power consumption of 160 MHz is obtained from our model
Measurement Result

- Power consumption of QCA 9880 in RX mode
 - The power consumption highly depends on BW, MCS, and N\textsubscript{ANT}
WiZizz: Energy Efficient Bandwidth Management

WiZizz: Energy Efficient Bandwidth Management

- WiFi in Zizz (WiZizz)
 - Save the power consumption of STAs
 - More suited to portable devices than SMPS (e.g., Smartphone)
 - Key idea
 - Listen with the narrowest bandwidth (e.g., 20 MHz)
 - Transmit/receive data frames with a larger bandwidth (e.g., 160 MHz)
WiZizz: Energy Efficient Bandwidth Management

- **PHY-level Filtering**
 - WiZizz STAs can ignore 40/80/160 MHz PPDUs addressed to others
 - Bandwidth information in the preamble
 - Reduce RX mode power consumption

![Diagram showing energy saving and processes](image)
WiZizz: Energy Efficient Bandwidth Management

- Dynamic WiZizz
 - Switching delay \((D_{up}, D_{down}) < SIFS\)
 - Use RTS/CTS sequence to announce bandwidth switching and to set Network Allocation Vector (NAV)
 - 20 MHz duplicate frame
 - Upward switching condition
 - If switching overhead is relatively small compared to the frame duration
 \[T_{RTS} + T_{CTS} + T_{data} (r_{80}) + T_{ack} + 3SIFS < T_{data} (r_{20}) + T_{ack} + SIFS \]
 - Downward switching condition
 - End of data packet reception

\[T_{RTS} + T_{CTS} + T_{data} (r_{80}) + T_{ack} + 3SIFS < T_{data} (r_{20}) + T_{ack} + SIFS \]
WiZizz: Energy Efficient Bandwidth Management

- Dynamic WiZizz example

Upward switching condition

Network Allocation Vector (NAV)

Downward switching condition

BW of STA

Bandwidth

<table>
<thead>
<tr>
<th>RTS</th>
<th>RTS</th>
<th>RTS</th>
<th>RTS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20 MHz</th>
<th>Switch to 80 MHz</th>
<th>Switch to 20 MHz</th>
</tr>
</thead>
</table>

Time
WiZizz: Energy Efficient Bandwidth Management

- Delay in switching bandwidth
 - QCA 9880
 - Average over 15 runs

<table>
<thead>
<tr>
<th>BW</th>
<th>N\text{ANT}</th>
<th>Upward (D_{up})</th>
<th>Downward (D_{down})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20→80</td>
<td>3</td>
<td>73.6 \mu s</td>
<td>48.53 \mu s</td>
</tr>
<tr>
<td>20→80</td>
<td>1</td>
<td>73.04 \mu s</td>
<td>45.07 \mu s</td>
</tr>
<tr>
<td>20→40</td>
<td>3</td>
<td>40.53 \mu s</td>
<td>22.67 \mu s</td>
</tr>
</tbody>
</table>
WiZizz: Energy Efficient Bandwidth Management

- **Pseudo-Dynamic WiZizz**
 - Can be readily implemented with current hardware
 - **Switching delay** \((D_{up}, D_{down}) > SIFS\)
 - Use action frame to announce bandwidth switching and to set NAV
 - Upward switching condition
 - If switching overhead is relatively small compared to the frame duration
 \[
 T_{action} + SIFS + T_{ack} + T_{data}(r_{80}) + D_{up} + D_{down} < T_{data}(r_{20})
 \]
 - Downward switching condition
 - Receives the WiZizz action frame addressed to it
 - Receives a frame addressed to others, its duration is longer than the switching delay
 - Receives a frame with the more data bit in the frame control field set to 0
WiZizz: Energy Efficient Bandwidth Management

- Pseudo-Dynamic WiZizz example

Upward switching condition

- Action
- Action
- Action
- Action

DATA

More Data = 0

Downward switching condition

- ACK

Switch to 20 MHz

- ACK
- ACK
- ACK

Switch to 80 MHz

- ACK
- ACK
- ACK

Switch to 20 MHz

- ACK

BW of STA

Time

Bandwidth

20 MHz
WiZizz: Energy Efficient Bandwidth Management

- Prototype and testbed experiments (QCA 9880)
 - Pseudo-dynamic WiZizz
 - Single node with various source rates
 - Multiple node environment
 * Saturated downlink traffic

![Graphs showing energy saving comparison between Baseline and WiZizz]

- Single node (80 MHz)
 - 25% energy saving

- Multiple node (80 MHz)
 - 55% energy saving
WiZizz: Energy Efficient Bandwidth Management

- **Simulation (ns-3)**
 - Dynamic WiZizz
 - Using measurement-based power model
 - Performance of 160 MHz bandwidth can be obtained
 - Saturated downlink traffic

80 MHz

- **57% energy saving**

160 MHz

- **73% energy saving**
Conclusion (1/2)

- Robust Wi-Fi in mobile environments
 - **MoFA**: Mobility-Aware Frame Aggregation in Wi-Fi
 - Standard-compliant adaptive frame aggregation control at transmitter
 - Prototyping using programmable **802.11n commercial device**
 - Open-source linux device driver: Ath9k / iwlwifi

 - **ChASER**: Channel-Aware Symbol Error Reduction
 - Eliminate caudal losses by tracking channel variation at receiver
 - Receiver architecture modification
 - Prototyping using Microsoft **Sora SDR platform**
Conclusion (2/2)

- Energy efficient Wi-Fi
 - Power consumption of Wi-Fi
 - IEEE 802.11n/ac consume more energy than IEEE 802.11a/b/g
 - Impact of wider channel bandwidth on the power consumption is significant

- **WiZizz**: Energy Efficient Bandwidth Management
 - Practical, standard-congenial bandwidth management
 - Achieve significant performance gain over the baseline 802.11ac
Do You Have any Questions?
Thank you for your attention!
References

Back-up slides
Impact of Mobility (1/2)

- Impact of modulation

 • MCS 4 / MCS 7 (using **amplitude modulation**) are highly susceptible to mobility

- Impact of 11n features

 • Spatial multiplexing (MCS 15) and channel bonding (BW 40) are highly affected by the mobility

 • STBC (2 X 1) does not alleviate the performance degradation
Impact of Mobility (2/2)

- Rate adaptation: *Minstrel*
 - Window-based rate adaptation algorithm

 - Achieving the maximum throughput at 2 ms aggregation time bound

 - **Malfunction** for large aggregation time bound due to high SFER for currently selected PHY rate
 - Undesirably using too high MCS index
 - Unnecessarily frequent MCS changes

> A-MPDU length adaptation will increase the accuracy of *Minstrel* rate selection
Measurement Result

- Power consumption of QCA 9880 in TX mode
 - The power consumption highly depends on N_{ANT}
 - $P_{\text{DAC}} \ll P_{\text{ADC}}$
Measurement Result

- Power consumption of QCA 9880 in TX mode
 - W.R.T TX power
Related Work

- **Spatial Multiplexing Power Save (SMPS)**
 - Save the power consumption of STAs
 - Static
 - Use a single antenna
 - Dynamic
 - Use a single antenna in IDLE/CCA mode
 - STA enables its additional antennas when it receives the start of a frame sequence (e.g., RTS) addressed to it

![Baseline SMPS Diagram](image)
Power Consumption Modeling

- RX/IDLE listening mode power consumption in 802.11ac [1]

\[P_{rx} = (\alpha_1 N_{rx} + f(N_{ss}))BW + \alpha_2 N_{rx} + \alpha_3 r + P_f \]

\[P_{idle} = i_1 N_{rx}BW + i_2 N_{rx} + P_f \]

\(BW\) : Bandwidth (MHz)

\(r\) : Data rate (Mb/s)

<table>
<thead>
<tr>
<th>OURS</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>(\alpha_3)</th>
<th>(f(N_{ss}))</th>
<th>(P_f)</th>
<th>(i_1)</th>
<th>(i_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWL5300 (11n)</td>
<td>2.5</td>
<td>354</td>
<td>0.2</td>
<td>3.34</td>
<td>493.1</td>
<td>4.117</td>
<td>241.4</td>
</tr>
<tr>
<td>AR9380 (11n)</td>
<td>2.31</td>
<td>19.8</td>
<td>0.3</td>
<td>0.6</td>
<td>414.7</td>
<td>1.654</td>
<td>34.62</td>
</tr>
<tr>
<td>QCA9880 (11ac)</td>
<td>2.22</td>
<td>54.36</td>
<td>0.472</td>
<td>1.08</td>
<td>11.93</td>
<td>472.1</td>
<td>79.88</td>
</tr>
</tbody>
</table>

- Non-linear regression analysis in SPSS

- Average error rate is 0.329%