The Internet is (unfortunately) not yet the computer

Roch Guérin
Washington University in St. Louis

NSF Future Wireless Cities Workshop

February 2-3, 2016
Acknowledgments

- The ideas outlined in this talk are based on joint projects with Chris Gill and Chenyang Lu at Washington University

A High-Level View

- Lots of very different networks with very different characteristics and choke-points
Premises & Pain Points

• Diversity
 – of networks with a wide range of capabilities and mechanisms for resources arbitration
 – of applications with a wide range of latency and data volume requirements

• Mobility
 – Frequent state updates to/from infrastructure and mobile devices
Goals

• End-to-end predictability and scalability
 – Dealing with network and application heterogeneity
 – Accommodating rapid state updates from tens of thousands of mobile devices/connections
An Example & an Ongoing Investigation

- Latency guarantees across heterogeneous VMs
 - Focus on Xen, but similar issues in other virtualization systems

- Real-time messaging middleware

- Testbed implications
 - Easy to realistically test individual pieces
 - Hart to do holistic system-level tests
Network Components in Xen Virtualized Hosts

- Dom0: customized Linux VM

- **Network components in dom0:**
 - Queueing Discipline
 - Virtualization-related components

- **Queueing Discipline (Qdisc) implements traffic control**
 - Rate-limit and shape each flow
 - Prioritization or fair packet scheduling

- **Problem: virtualization-related components**
 - A variety of places where priority inversion can arise
Latency of Real-Time Traffic

- Measure real-time traffic latency, with increasing number of interfering streams

- Characterize delay contributions of individual components
 - Virtual interface (vif) – impact of vif polling mechanism (poll_list)
 - QDisc layer – handling of interrupt handler controlling NIC buffer cleanup (NET_RX_SOFTIRQ) can create NIC congestion
 - rx_queue – rx_kthread delayed by NET_RX_SOFTIRQ handler
Mitigating Priority Inversion

• A thread-based solution
 – TX/RX handled by prioritized kernel threads
 • Dedicated tx_queue and rx_queue for each priority

Same scenario as before with one real-time stream and two interfering streams
A Typical 5G Scenario

- Distributed gateways (VNFs) and APPs are deployed at the edge
 - Close to mobile users → shorten transmission path → reduce latency
- Low-latency & light-weight messaging middleware is key for application coordination at the edge
Requirements & “Solutions”

- Key properties
 - Real-time
 - Millisecond latency
 - Lightweight
 - < 100 Mbytes memory consumption
 - < 10% of one CPU core
 - Distributed
 - Broker vs. brokerless vs. peer-to-peer
 - Fault-tolerance (persistency)
- Delivery options
 - Compiled in application
 - Micro-service

- A plethora of contenders
 - RabbitMQ
 - ZeroMQ (Nanomsg)
 - NSQ
 - Kafka
 - Aeron

- No systematic understanding of impact of architectural choices on performance, functionality, flexibility trade-off