Thinking beyond the network & Lessons from the not-so-past

Henning Schulzrinne
Columbia University

NSF Future Wireless Cities
Natural evolution
IoT varies in communication needs

sensors

actuators

1/hour 1/minute 1/second 10/second

CPS

IoT
IoT: more than programmable light bulbs

- Public sensors & actuators
- Semi-private
- Private
Lessons on our way to wireless cities

- We don’t predict applications well
- Resource constraints are dollar constraints
 - they mainly offer temptation to do QoS research (again)
- Internet lesson #1: L3 is forever, but don’t get too attached to L1/L2
 - Cross-layer optimization may make for better papers, but confuse developers
- Security usability is more important than security sophistication
 - Cliché: Internet not designed for security
 - Network security is about naming
"Ongoing problems continue to threaten NextGen’s costs and timeline."

"[NTSB] has advocated for some form of positive train control for more than 45 years."

allocated in 1999

NSF Future Wireless Cities
Design for 20 years

Mobile Network Technology Lifecycles (North America)

© Chetan Sharma Consulting, 2014
We need research for opex, not (just) capex

<table>
<thead>
<tr>
<th>Company</th>
<th>Revenue</th>
<th>Capital expenditures</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comcast (US) [3Q14]</td>
<td>$11.04B</td>
<td>$1.644B</td>
<td>14.9</td>
</tr>
<tr>
<td>Telekom (DE) [3Q14]</td>
<td>€15.6B</td>
<td>$2.58B</td>
<td>16.5</td>
</tr>
<tr>
<td>Safaricom (KE) [H1FY15]</td>
<td>Ksh 79.34B</td>
<td>Ksh 12.37</td>
<td>15.5</td>
</tr>
</tbody>
</table>
Generational surprises in cellular networks

<table>
<thead>
<tr>
<th>Generation</th>
<th>Expectation</th>
<th>Surprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G</td>
<td>better voice quality ("digital!")</td>
<td>SMS</td>
</tr>
<tr>
<td>3G</td>
<td>WAP</td>
<td>web</td>
</tr>
<tr>
<td>4G</td>
<td>IMS</td>
<td>YouTube, WhatsApp, notifications</td>
</tr>
<tr>
<td>5G</td>
<td>IoT (low latency)</td>
<td>?</td>
</tr>
</tbody>
</table>

underestimated cost and fixed-equivalence as drivers
Lessons, in brief

<table>
<thead>
<tr>
<th>Experience</th>
<th>Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoLTE, IMS</td>
<td>avoid complexity</td>
</tr>
<tr>
<td></td>
<td>avoid layer entanglement</td>
</tr>
<tr>
<td></td>
<td>plan intercarrier interfaces</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>don’t trust the RAN/AP</td>
</tr>
<tr>
<td>disaggregation of functions</td>
<td>clear & simple interfaces</td>
</tr>
<tr>
<td></td>
<td>don’t assume trust between elements</td>
</tr>
<tr>
<td>app stores</td>
<td>keep it application-neutral</td>
</tr>
<tr>
<td>FTTH, backhaul cost</td>
<td>re-use backhaul where you can find it</td>
</tr>
</tbody>
</table>

Premature optimization is the root of all evil (Knuth 1974)
Lesson: sensor networks may be (tiny) niche

- Most IoT systems will be near power since they’ll interact with energy-based systems (lights, motors, vehicles)
- Most IoT systems will not be running TinyOS (or similar)
- Protocol processing overhead is unlikely to matter
- Low message volume → cryptography overhead is unlikely to matter

In particular, according to the indexes, a Raspberry Pi is about seven times as fast as a baseline SPARCstation 20 model 61 — and has substantially more RAM and storage, too. And the Raspberry Pi 2 is sixteen times as fast at single-threaded tasks, and on tasks where all cores can be put to use it’s forty one times faster.

$35.00

- A 900MHz quad-core ARM Cortex-A7
- 1 GB RAM

http://eschatologist.net/blog/?p=266
What is the best generic (simple) architecture?

NSF Future Wireless Cities

MQ135 Air Pollution sensor

SENML?

cloud, fog, ...

SQL (via HTTP RESTful API)

Streaming (JSON web stream ... RTP)

event notification

mediate access

user-delivered code

14 sensors!
How should we name things?

- network interface
- device (independent of network)
- domain name? → portability? phone number?
- device by function & location

“ceiling lamp in kitchen” (used in programs)

NSF Future Wireless Cities
Phone numbers for machines?

212 555 1212 < 2010

500 123 4567
(and geographic numbers)

500 123 4567
533, 544

< 2010

< 2010

5XX code a year...
(8M numbers)

12% of adults

254 mio.

5 mio.

311,000

64 mio.

44.9 mio.

10 billion +1 #’s available

2/2/2016

see Tom McGarry, Neustar
How should we secure things?

Old model

New model

"I want to join!"

NSF Future Wireless Cities
SECE (Sense Everything, Control Everything)
Conclusion

• Design for simplicity and generality, not performance
• Design for surprises
• Design for developers – what do they need and want?
• Design for L2 evolution and co-existence